Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2015

Outline

Introduction

Pointer analysis as a DFA problem
Design decisions

Andersen's analysis, Steensgaard's analysis
Pointer analysis as a graph problem
- Optimizations

Applications

Parallelization

- Constraint based

- Replication based

- Graph rewrite rules

Applications

Dead-code elimination

Common subexpression elimination
Parallelization

Escape analysis

Dead Code Elimination

a = sl.arr;
b = s2.ptr;
q = &aliil;
p = &bljjl;

if(p==q{
x = 10;
y = 100;
}else {
x =20;
y =30;

To check the condition, we need to test if
e p==gq
* a+ii * typesize == b + jj * typesize
« sl.arr + ii * typesize == s2.ptr + jj * typesize

This needs to be tested statically

Common Subexpression Elimination

q = sl.arr;
p = sl.ptr;

if(p+i==q+j{
x = 10;
y = 100;
} else {
x =20;
y =30;

To identify if the expression is common
e p+ii==q+]jj
« slarr + i * typesize_ii == sl.ptr + jj * typesize_jj

This needs to be computed statically

Parallelization

To identify if the functions are parallelizable, check if
« lalias(*p, *q)

Escape Analysis

0 { To identify if the definition escapes functionf, check
*p = 10; « if p points-to any global / heap variable
} * pointsto(p, x) where x € globals or x € heap-
allocated

Parallel Pointer Analysis

* putta-cc-2012 slides

Pointer Analysis as Graph Rewrite Rules

« Initially: Constraint-based: pointers and
associated points-to sets

* Later: Graph problem: pointers as nodes,
subset relation forms edges, points-to set with
each node

* Now: Graph rewrite rules: variables as nodes,
all relations form edges, points-to set defined
using edges

Graph Rewrite Rules

Program Andersen's

a= &x; a - {x,y}
b=&y; |b-{y}
p=&a; |c- iy
c=b; p— {a}
*p=c;

b7

99 op OO
& & &

copy rule

store rule —>» Store
—>» Points-to
—» Copy
—yp Load

Graph Rewrite Rules

Program Andersen's

a=&x; a-(x,y}
b=&y; |b-{y
p = &a; c - {y}
c=b; p— {a}
#p =

c;

%!

P op PO
$ © o

copy rule store rule —» Store
—>» Points-to
—» Copy
—p Load
Classwork

Program

p=g v@

7 ®

b ="*p;

a=&x;

O D

. v
c=p;
c=&z; e

@
v
©

copy rule

e e
L

—>» Store
—>» Points-to

store rule —> Copy
—» Load

Classwork
Program
Zp:&c;'; (b) Y® V®
bl g
. ; &x;’

o @ egﬁ

oopre 9w
Pl

6 —> Store
—>» Points-to
copy rule load rule store rule :; Eggg
Classwork
Program
p=g y@
b = &y; (b) v@
b ="*p;
p=&a; e
a=&x;
i DNy g0
c=p;
c =&z G
s ¢ 8, =m
—>» Points-to
copy rule load rule store rule :; Eggg
Classwork
Program
p=g y@
b= &y; (b) (%)
b ="*p;
p=&a; e
a=&x;
o OWy g0
c=p;
c =&z G
v - o —>» Store
@ é —>» Points-to
store rule —»> Copy

copy rule load rule o

Classwork

Program

p=g
b= &y;
b = *p;
p=&a;
a=&x;
p=c
¢=p;
c=&z;

—> Store
—>» Points-to

store rule —> Copy
—» Load

©

copy rule load rule

e e I e
7. g 7

Classwork

Program

*p=c; ® Y®
Ezf;y ‘ 7®
p=&a; e
a=&x; ‘

*p=c;

i on eg@

c =&z

o 9o PO

© é @'5 —> Points-to

—> Co
copy rule load rule store rule _; Lo;)é,

Classwork

Program
*p=g

b = &y;
b="*p;
p=&a;
a=&x;
p=c
c=p;
c=&z;

w v — Sore

@ @ —>» Points-to
— Co

copy rule load rule store rule _; Logc)i,

Classwork

Program Andersen's

*p=c; a—{a, x, z}

b = &y; b-{a, x,y, z}
b = *p; c—{a, z}
p=&a; p—{a}

a=&x;
p=c;
c=p;
c=&z;
o e ,/"/
e” = 4 —> Store
—>» Points-to
— Co
copy rule load rule store rule _; Logg

Parallel Graph Rewrite Rules

AV

Program Andersen's

a=&x; a- {x,y}
b= &y; b - {y}
p=&a |c-{y

c=b; p—iaxyl
#p =c; x = {y}
p=3a; y = {y}

90 o-p 90
& & &

copy rule load rule store rule —>» Store
—>» Points-to
—» Copy
— Load

Parallel Graph Rewrite Rules

Program Andersen's

a=&x; a- {x,y}
b = &y; b - {y} Q
p = &a; c - {y}

c=b; p—{a xy} é é
p=c x> {y} e

p=a; y = {y}
s © ©
copy rule load rule store rule —>» Store
—>» Points-to
—» Copy

—» Load

Parallel Graph Rewrite Rules

* Open: How to order rule evaluation?

* Open: How to combine rules for better
efficiency?

