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Applications

Dead-code elimination

Common subexpression elimination
Parallelization

Escape analysis

Dead Code Elimination

a = sl.arr;
b = s2.ptr;
q = &aliil;
p = &bljjl;

if(p==q{
x = 10;
y = 100;
}else {
x =20;
y =30;

To check the condition, we need to test if
e p==gq
* a+ii * typesize == b + jj * typesize
« sl.arr + ii * typesize == s2.ptr + jj * typesize

This needs to be tested statically

Common Subexpression Elimination

q = sl.arr;
p = sl.ptr;

if(p+i==q+j{
x = 10;
y = 100;
} else {
x =20;
y =30;

To identify if the expression is common
e p+ii==q+]jj
« slarr + i * typesize_ii == sl.ptr + jj * typesize_jj

This needs to be computed statically

Parallelization

To identify if the functions are parallelizable, check if
« lalias(*p, *q)




Escape Analysis

0 { To identify if the definition escapes functionf, check
*p = 10; « if p points-to any global / heap variable
} * pointsto(p, x) where x € globals or x € heap-
allocated

Parallel Pointer Analysis

* putta-cc-2012 slides

Pointer Analysis as Graph Rewrite Rules

« Initially: Constraint-based: pointers and
associated points-to sets

* Later: Graph problem: pointers as nodes,
subset relation forms edges, points-to set with
each node

* Now: Graph rewrite rules: variables as nodes,
all relations form edges, points-to set defined
using edges

Graph Rewrite Rules

Program  Andersen's

a= &x; a - {x,y}
b=&y; |b-{y}
p=&a; |c- iy
c=b; p— {a}
*p=c;
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Parallel Graph Rewrite Rules
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Parallel Graph Rewrite Rules
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Parallel Graph Rewrite Rules

* Open: How to order rule evaluation?

* Open: How to combine rules for better
efficiency?



