

Dynamic Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras

Jan 2016

2

Outline

● Applications of dynamic analysis

– Limitations of static analysis
– Trade-offs

● Profiling techniques

● Finding invariants

– Equality
– Affine

● Dynamic type inferencing

3

Applications

● Bug finding (testing)
● Data race detection
● Identifying security vulnerabilities
● Improved precision of static analysis
● Input-dependent analysis

4

Limitations of Static Analysis

● Reduced precision: Over-approximations
● Cannot perform input-dependent analysis

5

Static versus Dynamic

● Sound
● Imprecise
● Input-oblivious

● Incomplete
● Precise
● Input-dependent

● Choosing between static and dynamic analysis often requires a trade-off
between soundness and precision.

● Current trend is to combine the two techniques to get better precision at
improved scalability.

6

Profiling

● Profiling is a method of collecting information of
interest during program execution.

● The information is often useful to find hot-spots
in the program.

● Examples
– Number of times an instruction is executed
– Number of page faults
– Number of cache hits
– Total memory used
– ...

7

Profiling

● Intrusive: inserts instructions in the program
(source, IR, assembly) statically, which get
executed at runtime
– File log
– Memory locations pointed to by a pointer
– Execution time of a function

● Non-intrusive: the program is unaltered; uses
external means to profile
– Hardware counters
– Program execution time

8

Path Profiling

● Consider a program with an entry node and an
exit node. There are several execution paths
(traces) that the program takes from entry to
exit.

● The task is to find the frequency of execution of
each path.

AA

BB CC

DD

EE FF

Path Frequency

ACDF 90

ACDEF 60

ABCDF 0

ABCDEF 100

ABDF 20

ABDEF 0

9

Path Profiling

● Naïve path profiling is expensive: instrumenting
each path may lead to exponential blow up in
computation and storage

● This can lead to unacceptable program
slowdown

10

Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated –

which is used to find the path frequency

++ab ++ac

++bc
++bd ++cd

++de ++df

++ef

++
fa

11

Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated –

which is used to find the path frequency

120
150

100
20

250

160 110

160

27
0

Path Frequency

ACDF 110

ACDEF 150

ABCDF 100

ABCDEF 100

ABDF 20

ABDEF 20

Choose the minimum
edge-frequency in the path

12

Path vs. Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated –

which is used to find the path frequency

120
150

100
20

250

160 110

160

27
0

Path Path
Frequency

(actual)

Path
Frequency
(estimated)

ACDF 90 110

ACDEF 60 150

ABCDF 0 100

ABCDEF 100 100

ABDF 20 20

ABDEF 0 20

● Can this instrumentation be optimized?
● Can we have better precision?

13

Efficient Edge Profiling

● Observation: We do not need to instrument every edge.
● How to find a minimal, low-cost set of edges to instrument?
● Use a spanning tree (instrument non-st edges):

– reduced instrumentation along paths,
– not all edges carry instrumentation

AA

BB CC

DD

EE FF

++ac

++bc
++bd

++de

Path Frequency

C → D ac + bc

D → F ac + bc + bd - de

E → F de

A → B bc + bd

F → A ac + bc + bd

Classwork: Find counts for uninstrumented edges.

14

Edge Profiling

AA

BB CC

DD

EE FF

● Edge profile may not always be a good
indicator of a path profile

● Efficient edge profiling requires a unique
variable along each instrumented edge
(non-spanning tree edge)

120
150

100
20

250

160 110

160

27
0

Path Frequency Actual Freq. Actual Freq. 2

ACDF 110 90 110

ACDEF 150 60 40

ABCDF 100 0 0

ABCDEF 100 100 100

ABDF 20 20 0

ABDEF 20 0 20

But path profiling is expensiveBut path profiling is expensive

15

Efficient Path Profiling
● Since index variable across all paths

● Path linearization: Unique (and consecutive) path
numbering, which enables indexing

● Most hardware support registers, fast increment and
indexing

AA

BB CC

DD

EE FF

++x

x-=2

--x

++
co

un
t[x

]

Path x

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

x+=5

Check the value of x for
each path.

Classwork: Prove that
such a path numbering
is unique.

16

Efficient Path Profiling

● Path numbering is not unique
AA

BB CC

DD

EE FF

0

2
4

1

++
co

un
t[x

]

Path x

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

AA

BB CC

DD

EE FF

1

-2

-1

++
co

un
t[x

]

5

AA

BB CC

DD

EE FF

-2

++
co

un
t[x

]

4

0

1

In all the above cases, the
path numbering is the same,
number of instrumented
edges (5) is the same

So, which instrumentation
should we choose?

17

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

18

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

AA

BB CC

DD

EE FF

0

0

0

2

NumPaths(node) = 0
NumPaths(leaf) = 1
In reverse topological order
 For each edge v w {→
 Val(v w) = NumPaths(v)→

 NumPaths(v) += NumPaths(w)
 }

0
2

1

0 11

2

2

6

4

19

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

AA

BB CC

DD

EE FF

0

0

0

2

● Find a spanning tree.
● Find chord (non-ST) edges.
● For each chord, find

fundamental cycle.

0
2

1

0 11

2

2

6

4

20

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

AA

BB CC

DD

EE FF

0

0

0

2

Chord AC: cycle ACDF : 0
Chord BC: cycle ABCDF : 2
Chord BD: cycle ABDF : 4
Chord DE: cycle DEF : 1

0
4

1

0 11

2

2

6

4

AA

BB CC

DD

EE FF

0

2
2

11

21

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

Prelude: Allocate and initialize the
array of counters

Postlude: Write the array to
permanent storage

Main:
● Initialize path register r in the

entry vertex
● Increment path memory counter

in the exit vertex
● Optimizations

22

Efficient Path Profiling

1. Assign integer values to
edges such that no two
paths compute the same
path-sum.

2. Use a spanning tree to
select edges to instrument
and compute the
appropriate increment.

3. Select appropriate
instrumentation.

4. After collecting the run-time
profile, derive the execution
paths.

Path Regeneration
 Path id → Path mapping?

AA

BB CC

DD

EE FF

Path id

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

2

2

0
0

0

0

01

23

Classwork

● Find the instrumentation for the following CFG

AA

FF

GG HH

II

BB

CC DD

EE

