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Outline

● Applications of dynamic analysis

– Limitations of static analysis
– Trade-offs

● Profiling techniques

● Finding invariants

– Equality
– Affine

● Dynamic type inferencing
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Applications

● Bug finding (testing)
● Data race detection
● Identifying security vulnerabilities
● Improved precision of static analysis
● Input-dependent analysis
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Limitations of Static Analysis

● Reduced precision: Over-approximations
● Cannot perform input-dependent analysis
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Static versus Dynamic

● Sound
● Imprecise
● Input-oblivious

● Incomplete
● Precise
● Input-dependent

● Choosing between static and dynamic analysis often requires a trade-off 
between soundness and precision.

● Current trend is to combine the two techniques to get better precision at 
improved scalability.
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Profiling

● Profiling is a method of collecting information of 
interest during program execution.

● The information is often useful to find hot-spots 
in the program.

● Examples
– Number of times an instruction is executed
– Number of page faults
– Number of cache hits
– Total memory used
– ...
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Profiling

● Intrusive: inserts instructions in the program 
(source, IR, assembly) statically, which get 
executed at runtime
– File log
– Memory locations pointed to by a pointer
– Execution time of a function

● Non-intrusive: the program is unaltered; uses 
external means to profile
– Hardware counters
– Program execution time
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Path Profiling

● Consider a program with an entry node and an 
exit node. There are several execution paths 
(traces) that the program takes from entry to 
exit.

● The task is to find the frequency of execution of 
each path.

AA

BB CC

DD

EE FF

Path Frequency

ACDF 90

ACDEF 60

ABCDF 0

ABCDEF 100

ABDF 20

ABDEF 0
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Path Profiling

● Naïve path profiling is expensive: instrumenting 
each path may lead to exponential blow up in 
computation and storage

● This can lead to unacceptable program 
slowdown
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Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated – 

which is used to find the path frequency

++ab ++ac

++bc
++bd ++cd

++de ++df

++ef

++
fa
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Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated – 

which is used to find the path frequency
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Path Frequency

ACDF 110

ACDEF 150

ABCDF 100

ABCDEF 100

ABDF 20

ABDEF 20

Choose the minimum
edge-frequency in the path
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Path vs. Edge Profiling

AA

BB CC

DD

EE FF

● Path profile is approximated as an edge profile
● The frequency of each edge is calculated – 

which is used to find the path frequency
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Path Path 
Frequency 

(actual)

Path 
Frequency 
(estimated)

ACDF 90 110

ACDEF 60 150

ABCDF 0 100

ABCDEF 100 100

ABDF 20 20

ABDEF 0 20

● Can this instrumentation be optimized?
● Can we have better precision?
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Efficient Edge Profiling

● Observation: We do not need to instrument every edge.
● How to find a minimal, low-cost set of edges to instrument?
● Use a spanning tree (instrument non-st edges): 

– reduced instrumentation along paths, 
– not all edges carry instrumentation

AA

BB CC

DD

EE FF

++ac

++bc
++bd

++de

Path Frequency

C → D ac + bc

D → F ac + bc + bd - de

E → F de

A → B bc + bd

F → A ac + bc + bd

Classwork: Find counts for uninstrumented edges.
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Edge Profiling

AA

BB CC

DD

EE FF

● Edge profile may not always be a good 
indicator of a path profile

● Efficient edge profiling requires a unique 
variable along each instrumented edge       
(non-spanning tree edge) 
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Path Frequency Actual Freq. Actual Freq. 2

ACDF 110 90 110

ACDEF 150 60 40

ABCDF 100 0 0

ABCDEF 100 100 100

ABDF 20 20 0

ABDEF 20 0 20

But path profiling is expensiveBut path profiling is expensive
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Efficient Path Profiling
● Since index variable across all paths

● Path linearization: Unique (and consecutive) path 
numbering, which enables indexing 

● Most hardware support registers, fast increment and 
indexing

AA

BB CC

DD

EE FF

++x

x-=2

--x

++
co

un
t[x

]

Path x

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

x+=5

Check the value of x for
each path.

Classwork: Prove that 
such  a path numbering 
is unique.
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Efficient Path Profiling

● Path numbering is not unique
AA

BB CC

DD

EE FF
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t[x

]

Path x

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5
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DD

EE FF
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]
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EE FF
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In all the above cases, the 
path numbering is the same, 
number of instrumented 
edges (5) is the same

So, which instrumentation 
should we choose?
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.

AA

BB CC

DD

EE FF

0

0

0

2

NumPaths(node) = 0
NumPaths(leaf) = 1
In reverse topological order
    For each edge v   w {→
        Val(v   w) = NumPaths(v)→

        NumPaths(v) += NumPaths(w)
    }
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.

AA

BB CC

DD

EE FF

0

0

0

2

● Find a spanning tree.
● Find chord (non-ST) edges.
● For each chord, find 

fundamental cycle.
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.

AA

BB CC

DD

EE FF

0

0

0

2

Chord AC: cycle ACDF : 0
Chord BC: cycle ABCDF : 2
Chord BD: cycle ABDF : 4
Chord DE: cycle DEF : 1

0
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.

Prelude: Allocate and initialize the 
array of counters

Postlude: Write the array to 
permanent storage

Main: 
● Initialize path register r in the 

entry vertex
● Increment path memory counter 

in the exit vertex
● Optimizations
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Efficient Path Profiling

1. Assign integer values to 
edges such that no two 
paths compute the same 
path-sum.

2. Use a spanning tree to 
select edges to instrument 
and compute the 
appropriate increment.

3. Select appropriate 
instrumentation.

4. After collecting the run-time 
profile, derive the execution 
paths.

Path Regeneration
  Path id → Path mapping?

AA

BB CC

DD

EE FF

Path id

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

2

2

0
0

0

0

01
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Classwork

● Find the instrumentation for the following CFG

AA

FF

GG HH

II

BB

CC DD

EE


