Parallelization

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2016

Speedup

* Speedup=Ts/Tp

* Amdahl's Law: Speedup is limited by the
sequential part of the task.

* If 20% of the task is sequential, program's
speedup is limited to 5 (irrespective of the
number of cores or amount of effort).

Instruction Parallel vs. Data Parallel

» Parallelism extracted from
multiple instructions on the
data items.

S1: alii] =2 @
S2: blii] = 4
S3: c[ii] = alii] @ @

Slis the source and S3 is
the sink of the dependence

» Parallelism extracted from
the same task on different
data items.

a (1111111 6D
b (TT 1T 1111 @&
¢ IIITT11]&

Control Dependence

«if(x==4)y=10; elsey = 1;

Data Dependence

e pi=3.142;r=5.0;area=pi *r * r;

* Types
- True /Flow/RAW:S18S2 (x=...;...=X;)
- Anti/WAR: S181S2 (.= x;x=..)
- Output/ WAW: S18°S2 (x=...;x=..)

Program Order vs. Dependence

» Sequential order imposed by the program is
too restrictive.

* Only the partial order of all dependences need
to be maintained by the compiler to guarantee
program correctness.

* So, reorder flow; maintain dependence.

Advantages of Reordering Reordering Transformations

* Improved locality « Areordering transformation is any program
transformation that merely changes the execution

- Spatial: matrix operations order of the code, without adding or deleting any

- Temporal: xinit(); yinit(); xcompute(); ycompute(); executions of any statements.
* Improved load balance » Areordering transformation preserves a dependence
. . if it preserves the relative execution order of the
- small1(); big1(); small20); big20); source and the sink of that dependence.
* Improved parallelism « Theorem: Any reordering transformation that

preserves every dependence in a program leads to

- xuse(); xdef(); yuse(); ydefl); an equivalent computation.

Let's Focus on Loops Valid Transformations
* Iteration vector: Sequence of outer loops. » Atransformation is valid for the program to
— v = (ioutermost, ..., imiddle, ..., iinnermost) which it applies if it preserves all the

dependences in the program.

- For instance (i, j, k).
* |teration space: Set of all possible iteration Equivalent

computation

vectors for a statement.
+ Statement instance: S(T)
. S(i) 5 S(j) iff \
(@) i<jor (i==jand S1 == = S2 path in loop-body) S o ence ot preserved
(b) both access the same memory location

Classwork: Write a simple transformation that maintains computation equivalence u

(c) at least one of the accesses is a write but does not preserve dependence.

Safe Transformations Loop Parallelization
* Loop Dependence Theorem * Theorem: It is valid to convert a sequential
- There exists a dependence from statement S1 to loop to a parallel loop if the loop carries no
statement S2 in a common nest of loops iff there dependence.
exist two iteration vectors i and j for the nest, such for (k= 0: k < 44K {
that S1(i) & S2()). S1: alk] = blk]; @
S2: blk] = a[k] + 1;

» Two computations are equivalent if on the }
same inputs they produce the same output.

)) . for (k = 0; k < n; ++k) {
» Atransformation is safe if it leads to an S1: alk] = alk + 1I; @
equivalent program. !

General Strategy

for (ii = 0; ii < n; ++ii) {

for (Gj = 0; jj < m; ++jj) {
alf(i, jjIlgdi, jj)l = ...

... = ... ath(i, j)Ikdi, jl...

}

Conditions for flow dependence from
iteration (ii,, jj,) to (i, Ij):

0<=ii <n
w
0<=ji <m
0<=ii <n
0<=jj<m

(i, i) <= Gi,)
(i, ji,) = hei,)
g, ii,) = kG, j)

If f, g, h, k are affine functions of loop variables, then dependence testing can

be formulated as an ILP.

ILP Formulation

for (ii = 0; ii < 10; ++ii) {

a[2 *ii]

coal2*i+1] ..

Dependence equations
0<=ii <ii <10
w

2*ji =2%ii +1

w 4
which can be written as
0<=ii,
i, <=1i,
i <=9
2% <=2%ii +1
2*ii +1<=2%ii

4 w

-1

Is there a flow dependence
between different iterations?

ETG) 0
101 -1
0o 1 L i, |9
2 2 II' 1
2 2 Sl

Dependence exists if the system has a solution. ‘

ILP Formulation

for (ii = 0; ii < 10; ++ii) {

}

al2 *ii] = ... a[2 *ii + 1] ...

Dependence equations
0<=ii <ii <10
S
2% =2%ii +1
w 4

which can be written as

0<=i
iiv <= iiW -1
i <=9

2% <=2%ii +1
2*ii +1<=2%*ii
4 w

Is there an anti-dependence
between different iterations?

il 0 0
11| -1
0 1 { il]9
2 2 1 1
2 2 <l

The system is not satisfiable, so anti-dependence does not exist.

ILP Formulation

for (ii = 0; ii < 10; ++ii) {

}

a[2 *ii] = ... alii + 1] ...

Dependence equations
0 <=ii <ii, <10
2% =ii +1

w

'

which can be written as

0 <=ii,

i <=ii -1
4 W

i <=9

W

2% <=ii +1
w 4

i +1<=2%ii

v w

Is there an anti-dependence
between different iterations?

1 0 0

-1) -1
0o 1 Wl =] 9
S0 f, 1
1 -2 -1

The system is not satisfiable, so

anti-dependence does not exist.

ILP Formulation

for (il = 0; i < 10; ++ii) {

}

al2 *ii] = ... alii + 1] ...

Dependence equations
0<=ii <ii <10
w
2%ii =i +1
W

which can be written as

0<=ii,
i, <=ii -1
ii <=9

2%l <=ii +1
i +1<=2%ii
" w

Is there a true dependence
between different iterations?

0 -1 0
11) -1
1 0 { il -9
R 1l 1
1 -2 -1

The system is satisfiable, so true dependence exists.

ILP Formulation

for (ii = 0; ii < 10; ++ii) {

}

a[2 *ii] = ... alii + 1] ...
A[3 +ii] = ... a5 *ii] ...

Is there a true dependence
between different iterations?

We will have to model equations across all inter-

iteration pairs of reads/writes.

e« 2%iiandii+ 1
3 +iiand 5*ii
*2*iiand 5 *ii

*3+iiandii+1

How about 2 *ii and 3 +ii?
How about ii + 1 and 5 *ii?

If any of the systems is satisfiable, then true dependence exists.

© N OO U A WN PR o=

Managing Races

» Data-race between iterations p and q for
element a[f(i)].

« Critical section
- Locks
- Atomics
- Barriers

Inserting Locks

» Data-race between iterations p and q for
element a[f(i)].

ifi==p | li==q){

lock(f()); This operation could be

... perform operation ... <#——— same or different for the
unlock(f(i)); involved threads.

}

* e.g., Producer-consumer

produce() {
while (...) {
items.add(...); }

consume() {
e = items.remove();

}

}

Inserting Locks

» For multiple data items a[f(i)] and a[g(i)]
- Single lock
- Multiple locks
* Multiple locks may lead to deadlock
- may allow deadlock if it improves parallelism
» Deadlock avoidance may lead to livelock
- may allow livelock if rare

Inserting Locks

* Sometimes, a lock may be for a simple operation

if@==plli==q){
lock(f(i));
sum += alil;
unlock(f(i));

}

» Asimple critical section may be convertible to
atomics.

22

Inserting Atomics

* If the operation is simple

- Primitive type

- Single element

- Relative update / read-write
* Example

- Producer-consumer with single element update
* Types

- increment, decrement

- add, sub

- min, max

- exch, CAS 3

Inserting Atomics

» Classwork: convert the following example
from locks to atomics

if@==plli==q){
lock(f(i));
sum += alil;

unlock(f(i));

}

» Classwork: write parallel slist insertion and
deletion routines using atomics

* Homework: write parallel dlist insertion

routine using atomics

24

Inserting Locks

ifG==11li==211i==4 11 .){
lock(f(1));
item = items.remove();
moreitems = process(item);
items.add(moreitems);
unlock(f(i));

}

« If there are many threads involved in the if(...)
condition and the operation is multi-step,
overapproximate the dependences.

Dependences

Thread 1 Thread 2

4 item = items.remove() item = items.remove() F

! v

‘ moreitems = process(item) ‘ moreitems = process(item) ‘

' v

items.add(moreitems)

items.add(moreitems)

T

Barriers

Thread 1 Thread 2

item = items.remove() %

|
Y

moreitems = process(item) ‘

' <

items.add(moreitems)

4 item = items.remove()

L

A

_IT
. x;rk

‘ moreitems = process(item)

'

items.add(moreitems)

*/

Barriers

Thread 2

Thread 1 e
‘ item = items.remove() F—{ item = items.remove() ‘
A=

‘ moreitems = process(item) moreitems = process(item) ‘

‘ items.add(moreitems) H items.add(moreitems) ‘
e

28

Inserting Barriers

ifi==111li==21li==411..){
lock(f(1));
item = items.remove(); e C2N be cOnverted
unlock(fG)); to atomics.
-- barrier --
) 5 Can lead to
mtl:mltgms = process(item); ~<u— good parallelism.
-- barrier --
lock(f(1)); Canb rted
items.add(moreitems); <G t an be converte
_ 0 atomics.

unlock(f(i));

-- barrier --

}
29
ifi==111i==211i==411.){

atomicDec(items[f(i)]);

-- barrier --

moreitems = process(item);

-- barrier --

atomicAdd(items|[f(i)], size(moreitems)); If the barrier is

items.addunsync(moreitems); — | emulated, one

- barrier-- ——— | = cancombine

} these operations.

30

Barriers and Dependences

» A barrier may be considered in effect similar to
loop distribution.

« If dependences are sparse, use atomics/locks;
otherwise barriers work well.

» A barrier may add more dependences than
required.

 But it must preserve all the existing
dependences.

Barriers and Dependences

Thread 1 Thread 2
4 item = items.remove() H item = items.remove() F

1 Ve |

- v

‘ moreitems = process(item) (J moreitems = process(item) ‘

* |

A

items.add(moreitems) ——q items.add(moreitems)
e

‘ Did we add any extra dependences? ‘

Limitations of Static Parallelization

* Some programs cannot be effectively
parallelized using static techniques.
- e.g. graph algorithms, pointer-savvy programs
 Existing static optimization techniques
(analysis) are also very conservative for such
programs.

* Ineffectiveness of static techniques forces us
to use dynamic approaches.

Examples of Graph Algorithms

a = &x a
b=& . [%
p=&a (pa (b
*p =b - 8 -
c=a Ols
Delaunay Mesh Refinement Points-to Analysis
Minimum Spanning Survey Propagation

Tree Computation

What is Ire(Lari'y?

 Data-access or control patterns are
unpredictable at compile time.

Irregular data-access Irregular control-flow
int a[N], b[N], c[N]; int a[N];
readinput(a); readinput(a); Needs dynamic
techniques
c[5] = bla[4]]; if (a[4]1>30) {
}

Pointer-based data structures often contribute to irregularity.

35

Regular vs. Irregular Algorithms

72
(4] TR
(b) (d)

2

I o i e
X = ey (c) (g)
o Nt NP4
X N

I)

p
Matrix Multiplication Shortest Paths Computation

36

Dynamic Techniques

2 v > . Active node
N/
b 4 N ol Neighborhood

Non-overlapping neighborhoods can be processed in parallel.
Overlapping neighborhoods require synchronization.
Leads to optimistic and cautious parallelizations.

Sequential to Parallel

» Sequential programs often overspecify dependencies.

for (intii = 0; ii < N; ++ii) {
process(alii]);

'lé'}ocessing of afii + 1] is specifie’d”

after that of aii].

We need a way to specify that various operations need not be
executed in a specific order.

X=Y;

f(a, b);

while (m < n) {
process(m);
m = next(m);

Pl;bcessing of assignment, function ééll
~and while are sequentially specified.

Unordered Execution

for (int i = 0; ii < N; ++ii) { X=y;
process(alii]); f(a, b);
while (m < n) {
process(m);
m = next(m);
}
forall (e in a) { unordered(
process(e); X=Y,;
f(a, b);
while (m < n){
process(m);
m = next(m);
)i

Sequential to Parallel

* We added unorderedness.
* We added non-determinism.
* We added higher-level information.

40

