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Speedup

● Speedup = Ts / Tp
● Amdahl's Law: Speedup is limited by the 

sequential part of the task.

● If 20% of the task is sequential, program's 
speedup is limited to 5 (irrespective of the 
number of cores or amount of effort).
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Instruction Parallel vs. Data Parallel

● Parallelism extracted from 
multiple instructions on the 
data items.

S1: a[ii] = 2
S2: b[ii] = 4
S3: c[ii] = a[ii]

S1: a[ii] = 2
S2: b[ii] = 4
S3: c[ii] = a[ii]

S1S1

S3S3
S2S2

● Parallelism extracted from 
the same task on different 
data items.

a

b

c

S1S1

S2S2

S3S3

S1 is the source and S3 is 
the sink of the dependence.
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Control Dependence

● if (x == 4) y = 10; else y = 1;
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Data Dependence

● pi = 3.142; r = 5.0; area = pi * r * r;
● Types

– True / Flow / RAW: S1 δ S2 (x = ...; ... = x;)

– Anti / WAR: S1 δ-1 S2 (... = x; x = ...)

– Output / WAW: S1 δo S2 (x = ...; x = ...)
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Program Order vs. Dependence

● Sequential order imposed by the program is 
too restrictive.

● Only the partial order of all dependences need 
to be maintained by the compiler to guarantee 
program correctness.

● So, reorder flow; maintain dependence.
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Advantages of Reordering

● Improved locality
– Spatial: matrix operations

– Temporal: xinit(); yinit(); xcompute(); ycompute();

● Improved load balance
– small1(); big1(); small2(); big2();

● Improved parallelism
– xuse(); xdef(); yuse(); ydef();
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Let's Focus on Loops

● Iteration vector: Sequence of outer loops.
– iv = (ioutermost, ..., imiddle, ..., iinnermost)

– For instance (i, j, k).

● Iteration space: Set of all possible iteration 
vectors for a statement.

● Statement instance: S(i)
● S(i) δ S(j) iff

(a) i < j or (i == j and S1 S2 path in loop-body)

(b) both access the same memory location

(c) at least one of the accesses is a write
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Safe Transformations

● Loop Dependence Theorem
– There exists a dependence from statement S1 to 

statement S2 in a common nest of loops iff there 
exist two iteration vectors i and j for the nest, such 
that S1(i) δ S2(j).

● Two computations are equivalent if on the 
same inputs they produce the same output.

● A transformation is safe if it leads to an 
equivalent program.
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Reordering Transformations

● A reordering transformation is any program 
transformation that merely changes the execution 
order of the code, without adding or deleting any 
executions of any statements.

● A reordering transformation preserves a dependence 
if it preserves the relative execution order of the 
source and the sink of that dependence.

● Theorem: Any reordering transformation that 
preserves every dependence in a program leads to 
an equivalent computation.
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Valid Transformations

● A transformation is valid for the program to 
which it applies if it preserves all the 
dependences in the program.

Valid 
Transformations

Equivalent 
computation

Dependence not preserved

Classwork: Write a simple transformation that maintains computation equivalence 
but does not preserve dependence.
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Loop Parallelization

● Theorem: It is valid to convert a sequential 
loop to a parallel loop if the loop carries no 
dependence.

for (k = 0; k < n; ++k) {
  S1: a[k] = b[k];
  S2: b[k] = a[k] + 1;
}

for (k = 0; k < n; ++k) {
  S1: a[k] = b[k];
  S2: b[k] = a[k] + 1;
}

for (k = 0; k < n; ++k) {
  S1: a[k] = a[k + 1];
}

for (k = 0; k < n; ++k) {
  S1: a[k] = a[k + 1];
}
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General Strategy

for (ii = 0; ii < n; ++ii) {
    for (jj = 0; jj < m; ++jj) {
        a[f(ii, jj)][g(ii, jj)] = ...
        ... = ... a[h(ii, jj)][k(ii, jj)]...
    }
}

for (ii = 0; ii < n; ++ii) {
    for (jj = 0; jj < m; ++jj) {
        a[f(ii, jj)][g(ii, jj)] = ...
        ... = ... a[h(ii, jj)][k(ii, jj)]...
    }
}

Conditions for flow dependence from 
iteration (ii

w
, jj

w
) to (ii

r
, jj

r
):

0 <= ii
w
 < n

0 <= jj
w
 < m

0 <= ii
r
 < n

0 <= jj
r
 < m

(ii
w
, jj

w
) <= (ii

r
, jj

r
)

f(ii
w
, jj

w
) = h(ii

r
, jj

r
)

g(ii
w
, jj

w
) = k(ii

r
, jj

r
)

If f, g, h, k are affine functions of loop variables, then dependence testing can 
be formulated as an ILP.

If f, g, h, k are affine functions of loop variables, then dependence testing can 
be formulated as an ILP.
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ILP Formulation

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there a flow dependence
between different iterations?

Dependence equations
0 <= ii

w
 < ii

r
 < 10

2 * ii
w
 = 2 * ii

r
 + 1

which can be written as

0 <= ii
w

ii
w
 <= ii

r
 - 1

ii
r
 <= 9

2 * ii
w
 <= 2 * ii

r
 + 1

2 * ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
w

ii
r

-1 0

1 -1

0 1

2 -2

-2 2

0

-1

9

1

-1

<=

Dependence exists if the system has a solution.Dependence exists if the system has a solution.
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ILP Formulation

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there an anti-dependence
between different iterations?

Dependence equations
0 <= ii

r
 < ii

w
 < 10

2 * ii
w
 = 2 * ii

r
 + 1

which can be written as

0 <= ii
r

ii
r
 <= ii

w
 - 1

ii
w
 <= 9

2 * ii
w
 <= 2 * ii

r
 + 1

2 * ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

-1 0

1 -1

0 1

-2 2

2 -2

0

-1

9

1

-1

<=

The system is not satisfiable, so anti-dependence does not exist.The system is not satisfiable, so anti-dependence does not exist.
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ILP Formulation

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
}

Is there an anti-dependence
between different iterations?

Dependence equations
0 <= ii

r
 < ii

w
 < 10

2 * ii
w
 = ii

r
 + 1

which can be written as

0 <= ii
r

ii
r
 <= ii

w
 - 1

ii
w
 <= 9

2 * ii
w
 <= ii

r
 + 1

ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

-1 0

1 -1

0 1

-1 2

1 -2

0

-1

9

1

-1

<=

The system is not satisfiable, so anti-dependence does not exist.The system is not satisfiable, so anti-dependence does not exist.
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ILP Formulation

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
}

Is there a true dependence
between different iterations?

Dependence equations
0 <= ii

w
 < ii

r
 < 10

2 * ii
w
 = ii

r
 + 1

which can be written as

0 <= ii
w

ii
w
 <= ii

r
 - 1

ii
r
 <= 9

2 * ii
w
 <= ii

r
 + 1

ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

0 -1

-1 1

1 0

-1 2

1 -2

0

-1

9

1

-1

<=

The system is satisfiable, so true dependence exists.The system is satisfiable, so true dependence exists.

ii
r

ii
w

0 --

1 --

2 --

3 2

4 --

5 3

6 --

7 4

8 --

9 5
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ILP Formulation

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
    A[3 + ii] = ... a[5 * ii] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
    A[3 + ii] = ... a[5 * ii] ...
}

Is there a true dependence
between different iterations?

If any of the systems is satisfiable, then true dependence exists.If any of the systems is satisfiable, then true dependence exists.

We will have to model equations across all inter-
iteration pairs of reads/writes.
● 2* ii and ii + 1
● 3 + ii and 5 * ii
● 2 * ii and 5 * ii
● 3 + ii and ii + 1

How about 2 * ii and 3 + ii?
How about ii + 1 and 5 * ii?
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Managing Races

● Data-race between iterations p and q for 
element a[f(i)].

● Critical section
– Locks

– Atomics

– Barriers
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Inserting Locks

● Data-race between iterations p and q for 
element a[f(i)].

● e.g., Producer-consumer

if (i == p || i == q) {
lock(f(i));
... perform operation ...
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
... perform operation ...
unlock(f(i));

}

produce() {
while (...) {

items.add(...);
}

}

produce() {
while (...) {

items.add(...);
}

}

consume() {
e = items.remove();

}

consume() {
e = items.remove();

}

This operation could be 
same or different for the 
involved threads.
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Inserting Locks

● For multiple data items a[f(i)] and a[g(i)]
– Single lock

– Multiple locks

● Multiple locks may lead to deadlock
– may allow deadlock if it improves parallelism

● Deadlock avoidance may lead to livelock
– may allow livelock if rare
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Inserting Locks

● Sometimes, a lock may be for a simple operation

● A simple critical section may be convertible to 
atomics.

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}
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Inserting Atomics
● If the operation is simple

– Primitive type

– Single element

– Relative update / read-write
● Example

– Producer-consumer with single element update

● Types

– increment, decrement

– add, sub

– min, max

– exch, CAS
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Inserting Atomics

● Classwork: convert the following example 
from locks to atomics

● Classwork: write parallel slist insertion and 
deletion routines using atomics

● Homework: write parallel dlist insertion 
routine using atomics

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}
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Inserting Locks

● If there are many threads involved in the if(...) 
condition and the operation is multi-step, 
overapproximate the dependences.

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();

moreitems = process(item);
items.add(moreitems);
unlock(f(i));

}

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();

moreitems = process(item);
items.add(moreitems);
unlock(f(i));

}
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Dependences

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2
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Barriers

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2
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Barriers

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2



29

Inserting Barriers

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();
unlock(f(i));
-- barrier --

moreitems = process(item);
-- barrier --

lock(f(i));
items.add(moreitems);
unlock(f(i));
-- barrier --

}

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();
unlock(f(i));
-- barrier --

moreitems = process(item);
-- barrier --

lock(f(i));
items.add(moreitems);
unlock(f(i));
-- barrier --

}

Can lead to 
good parallelism.

Can be converted 
to atomics.

Can be converted 
to atomics.
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Inserting Barriers

if (i == 1 || i == 2 || i == 4 || ...) {
atomicDec(items[f(i)]);
-- barrier --

moreitems = process(item);
-- barrier --

atomicAdd(items[f(i)], size(moreitems));
items.addunsync(moreitems);
-- barrier --

}

if (i == 1 || i == 2 || i == 4 || ...) {
atomicDec(items[f(i)]);
-- barrier --

moreitems = process(item);
-- barrier --

atomicAdd(items[f(i)], size(moreitems));
items.addunsync(moreitems);
-- barrier --

}

If the barrier is 
emulated, one 
can combine 
these operations.
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Barriers and Dependences

● A barrier may be considered in effect similar to 
loop distribution.

● If dependences are sparse, use atomics/locks; 
otherwise barriers work well.

● A barrier may add more dependences than 
required. 

● But it must preserve all the existing 
dependences.
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Barriers and Dependences

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2

Did we add any extra dependences?Did we add any extra dependences?
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Limitations of Static Parallelization

● Some programs cannot be effectively 
parallelized using static techniques.
– e.g. graph algorithms, pointer-savvy programs

● Existing static optimization techniques 
(analysis) are also very conservative for such 
programs.

● Ineffectiveness of static techniques forces us 
to use dynamic approaches.
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Examples of Graph Algorithms

C1C1 C2C2 C3C3 C4C4 C5C5

X1X1 X2X2 X5X5X4X4X3X3

a = &x
b = &y
p = &a
*p = b
c = a

aa

cc

pp bb

x

ya

5

3

8

5

6 6

4

7

Delaunay Mesh Refinement Points-to Analysis

Minimum Spanning 
Tree Computation

Survey Propagation
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What is IrReg
u
LariTy?

● Data-access or control patterns are 
unpredictable at compile time.

Irregular data-access Irregular control-flow

int a[N], b[N], c[N];
readinput(a);

c[5] = b[a[4]];

int a[N], b[N], c[N];
readinput(a);

c[5] = b[a[4]];

Pointer-based data structures often contribute to irregularity.

int a[N];
readinput(a);

if (a[4] > 30) {
...

}

int a[N];
readinput(a);

if (a[4] > 30) {
...

}

Needs dynamic 
techniques
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Regular vs. Irregular Algorithms

X =

aa

cc

bb dd

7
4

2

gg

ff

ee

Matrix Multiplication Shortest Paths Computation

By knowing matrix size and its 
starting address, and without knowing 

its values we can determine 
the dynamic behavior.

Dynamic behavior is 
dependent on the input graph.

This results in
pessimistic synchronization.
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ee

Dynamic Techniques

aa

cc

bb dd

gg

ff hh ii

jj Active node

Neighborhood

Non-overlapping neighborhoods can be processed in parallel.

Overlapping neighborhoods require synchronization.

Leads to optimistic and cautious parallelizations.
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Sequential to Parallel

● Sequential programs often overspecify dependencies.

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

Processing of a[ii + 1] is specified 
after that of a[ii].

Processing of assignment, function call 
and while are sequentially specified.

We need a way to specify that various operations need not be 
executed in a specific order.
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Unordered Execution

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

forall (e in a) {
process(e);

}

forall (e in a) {
process(e);

}

unordered(
x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}
);

unordered(
x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}
);
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Sequential to Parallel

● We added unorderedness.
● We added non-determinism.
● We added higher-level information.
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