
Parallelization

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2016

2

Speedup

● Speedup = Ts / Tp
● Amdahl's Law: Speedup is limited by the

sequential part of the task.

● If 20% of the task is sequential, program's
speedup is limited to 5 (irrespective of the
number of cores or amount of effort).

3

Instruction Parallel vs. Data Parallel

● Parallelism extracted from
multiple instructions on the
data items.

S1: a[ii] = 2
S2: b[ii] = 4
S3: c[ii] = a[ii]

S1: a[ii] = 2
S2: b[ii] = 4
S3: c[ii] = a[ii]

S1S1

S3S3
S2S2

● Parallelism extracted from
the same task on different
data items.

a

b

c

S1S1

S2S2

S3S3

S1 is the source and S3 is
the sink of the dependence.

4

Control Dependence

● if (x == 4) y = 10; else y = 1;

5

Data Dependence

● pi = 3.142; r = 5.0; area = pi * r * r;
● Types

– True / Flow / RAW: S1 δ S2 (x = ...; ... = x;)

– Anti / WAR: S1 δ-1 S2 (... = x; x = ...)

– Output / WAW: S1 δo S2 (x = ...; x = ...)

6

Program Order vs. Dependence

● Sequential order imposed by the program is
too restrictive.

● Only the partial order of all dependences need
to be maintained by the compiler to guarantee
program correctness.

● So, reorder flow; maintain dependence.

7

Advantages of Reordering

● Improved locality
– Spatial: matrix operations

– Temporal: xinit(); yinit(); xcompute(); ycompute();

● Improved load balance
– small1(); big1(); small2(); big2();

● Improved parallelism
– xuse(); xdef(); yuse(); ydef();

8

Let's Focus on Loops

● Iteration vector: Sequence of outer loops.
– iv = (ioutermost, ..., imiddle, ..., iinnermost)

– For instance (i, j, k).

● Iteration space: Set of all possible iteration
vectors for a statement.

● Statement instance: S(i)
● S(i) δ S(j) iff

(a) i < j or (i == j and S1 S2 path in loop-body)

(b) both access the same memory location

(c) at least one of the accesses is a write

9

Safe Transformations

● Loop Dependence Theorem
– There exists a dependence from statement S1 to

statement S2 in a common nest of loops iff there
exist two iteration vectors i and j for the nest, such
that S1(i) δ S2(j).

● Two computations are equivalent if on the
same inputs they produce the same output.

● A transformation is safe if it leads to an
equivalent program.

10

Reordering Transformations

● A reordering transformation is any program
transformation that merely changes the execution
order of the code, without adding or deleting any
executions of any statements.

● A reordering transformation preserves a dependence
if it preserves the relative execution order of the
source and the sink of that dependence.

● Theorem: Any reordering transformation that
preserves every dependence in a program leads to
an equivalent computation.

11

Valid Transformations

● A transformation is valid for the program to
which it applies if it preserves all the
dependences in the program.

Valid
Transformations

Equivalent
computation

Dependence not preserved

Classwork: Write a simple transformation that maintains computation equivalence
but does not preserve dependence.

12

Loop Parallelization

● Theorem: It is valid to convert a sequential
loop to a parallel loop if the loop carries no
dependence.

for (k = 0; k < n; ++k) {
 S1: a[k] = b[k];
 S2: b[k] = a[k] + 1;
}

for (k = 0; k < n; ++k) {
 S1: a[k] = b[k];
 S2: b[k] = a[k] + 1;
}

for (k = 0; k < n; ++k) {
 S1: a[k] = a[k + 1];
}

for (k = 0; k < n; ++k) {
 S1: a[k] = a[k + 1];
}

13

General Strategy

for (ii = 0; ii < n; ++ii) {
 for (jj = 0; jj < m; ++jj) {
 a[f(ii, jj)][g(ii, jj)] = ...
 ... = ... a[h(ii, jj)][k(ii, jj)]...
 }
}

for (ii = 0; ii < n; ++ii) {
 for (jj = 0; jj < m; ++jj) {
 a[f(ii, jj)][g(ii, jj)] = ...
 ... = ... a[h(ii, jj)][k(ii, jj)]...
 }
}

Conditions for flow dependence from
iteration (ii

w
, jj

w
) to (ii

r
, jj

r
):

0 <= ii
w
 < n

0 <= jj
w
 < m

0 <= ii
r
 < n

0 <= jj
r
 < m

(ii
w
, jj

w
) <= (ii

r
, jj

r
)

f(ii
w
, jj

w
) = h(ii

r
, jj

r
)

g(ii
w
, jj

w
) = k(ii

r
, jj

r
)

If f, g, h, k are affine functions of loop variables, then dependence testing can
be formulated as an ILP.

If f, g, h, k are affine functions of loop variables, then dependence testing can
be formulated as an ILP.

14

ILP Formulation

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there a flow dependence
between different iterations?

Dependence equations
0 <= ii

w
 < ii

r
 < 10

2 * ii
w
 = 2 * ii

r
 + 1

which can be written as

0 <= ii
w

ii
w
 <= ii

r
 - 1

ii
r
 <= 9

2 * ii
w
 <= 2 * ii

r
 + 1

2 * ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
w

ii
r

-1 0

1 -1

0 1

2 -2

-2 2

0

-1

9

1

-1

<=

Dependence exists if the system has a solution.Dependence exists if the system has a solution.

15

ILP Formulation

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there an anti-dependence
between different iterations?

Dependence equations
0 <= ii

r
 < ii

w
 < 10

2 * ii
w
 = 2 * ii

r
 + 1

which can be written as

0 <= ii
r

ii
r
 <= ii

w
 - 1

ii
w
 <= 9

2 * ii
w
 <= 2 * ii

r
 + 1

2 * ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

-1 0

1 -1

0 1

-2 2

2 -2

0

-1

9

1

-1

<=

The system is not satisfiable, so anti-dependence does not exist.The system is not satisfiable, so anti-dependence does not exist.

16

ILP Formulation

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
}

Is there an anti-dependence
between different iterations?

Dependence equations
0 <= ii

r
 < ii

w
 < 10

2 * ii
w
 = ii

r
 + 1

which can be written as

0 <= ii
r

ii
r
 <= ii

w
 - 1

ii
w
 <= 9

2 * ii
w
 <= ii

r
 + 1

ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

-1 0

1 -1

0 1

-1 2

1 -2

0

-1

9

1

-1

<=

The system is not satisfiable, so anti-dependence does not exist.The system is not satisfiable, so anti-dependence does not exist.

17

ILP Formulation

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
}

Is there a true dependence
between different iterations?

Dependence equations
0 <= ii

w
 < ii

r
 < 10

2 * ii
w
 = ii

r
 + 1

which can be written as

0 <= ii
w

ii
w
 <= ii

r
 - 1

ii
r
 <= 9

2 * ii
w
 <= ii

r
 + 1

ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
r

ii
w

0 -1

-1 1

1 0

-1 2

1 -2

0

-1

9

1

-1

<=

The system is satisfiable, so true dependence exists.The system is satisfiable, so true dependence exists.

ii
r

ii
w

0 --

1 --

2 --

3 2

4 --

5 3

6 --

7 4

8 --

9 5

18

ILP Formulation

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
 A[3 + ii] = ... a[5 * ii] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
 A[3 + ii] = ... a[5 * ii] ...
}

Is there a true dependence
between different iterations?

If any of the systems is satisfiable, then true dependence exists.If any of the systems is satisfiable, then true dependence exists.

We will have to model equations across all inter-
iteration pairs of reads/writes.
● 2* ii and ii + 1
● 3 + ii and 5 * ii
● 2 * ii and 5 * ii
● 3 + ii and ii + 1

How about 2 * ii and 3 + ii?
How about ii + 1 and 5 * ii?

19

Managing Races

● Data-race between iterations p and q for
element a[f(i)].

● Critical section
– Locks

– Atomics

– Barriers

20

Inserting Locks

● Data-race between iterations p and q for
element a[f(i)].

● e.g., Producer-consumer

if (i == p || i == q) {
lock(f(i));
... perform operation ...
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
... perform operation ...
unlock(f(i));

}

produce() {
while (...) {

items.add(...);
}

}

produce() {
while (...) {

items.add(...);
}

}

consume() {
e = items.remove();

}

consume() {
e = items.remove();

}

This operation could be
same or different for the
involved threads.

21

Inserting Locks

● For multiple data items a[f(i)] and a[g(i)]
– Single lock

– Multiple locks

● Multiple locks may lead to deadlock
– may allow deadlock if it improves parallelism

● Deadlock avoidance may lead to livelock
– may allow livelock if rare

22

Inserting Locks

● Sometimes, a lock may be for a simple operation

● A simple critical section may be convertible to
atomics.

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

23

Inserting Atomics
● If the operation is simple

– Primitive type

– Single element

– Relative update / read-write
● Example

– Producer-consumer with single element update

● Types

– increment, decrement

– add, sub

– min, max

– exch, CAS

24

Inserting Atomics

● Classwork: convert the following example
from locks to atomics

● Classwork: write parallel slist insertion and
deletion routines using atomics

● Homework: write parallel dlist insertion
routine using atomics

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

if (i == p || i == q) {
lock(f(i));
sum += a[i];
unlock(f(i));

}

25

Inserting Locks

● If there are many threads involved in the if(...)
condition and the operation is multi-step,
overapproximate the dependences.

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();

moreitems = process(item);
items.add(moreitems);
unlock(f(i));

}

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();

moreitems = process(item);
items.add(moreitems);
unlock(f(i));

}

26

Dependences

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2

27

Barriers

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2

28

Barriers

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2

29

Inserting Barriers

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();
unlock(f(i));
-- barrier --

moreitems = process(item);
-- barrier --

lock(f(i));
items.add(moreitems);
unlock(f(i));
-- barrier --

}

if (i == 1 || i == 2 || i == 4 || ...) {
lock(f(i));
item = items.remove();
unlock(f(i));
-- barrier --

moreitems = process(item);
-- barrier --

lock(f(i));
items.add(moreitems);
unlock(f(i));
-- barrier --

}

Can lead to
good parallelism.

Can be converted
to atomics.

Can be converted
to atomics.

30

Inserting Barriers

if (i == 1 || i == 2 || i == 4 || ...) {
atomicDec(items[f(i)]);
-- barrier --

moreitems = process(item);
-- barrier --

atomicAdd(items[f(i)], size(moreitems));
items.addunsync(moreitems);
-- barrier --

}

if (i == 1 || i == 2 || i == 4 || ...) {
atomicDec(items[f(i)]);
-- barrier --

moreitems = process(item);
-- barrier --

atomicAdd(items[f(i)], size(moreitems));
items.addunsync(moreitems);
-- barrier --

}

If the barrier is
emulated, one
can combine
these operations.

31

Barriers and Dependences

● A barrier may be considered in effect similar to
loop distribution.

● If dependences are sparse, use atomics/locks;
otherwise barriers work well.

● A barrier may add more dependences than
required.

● But it must preserve all the existing
dependences.

32

Barriers and Dependences

item = items.remove()

moreitems = process(item)

items.add(moreitems)

item = items.remove()

moreitems = process(item)

items.add(moreitems)

Thread 1 Thread 2

Did we add any extra dependences?Did we add any extra dependences?

33

Limitations of Static Parallelization

● Some programs cannot be effectively
parallelized using static techniques.
– e.g. graph algorithms, pointer-savvy programs

● Existing static optimization techniques
(analysis) are also very conservative for such
programs.

● Ineffectiveness of static techniques forces us
to use dynamic approaches.

34

Examples of Graph Algorithms

C1C1 C2C2 C3C3 C4C4 C5C5

X1X1 X2X2 X5X5X4X4X3X3

a = &x
b = &y
p = &a
*p = b
c = a

aa

cc

pp bb

x

ya

5

3

8

5

6 6

4

7

Delaunay Mesh Refinement Points-to Analysis

Minimum Spanning
Tree Computation

Survey Propagation

35

What is IrReg
u
LariTy?

● Data-access or control patterns are
unpredictable at compile time.

Irregular data-access Irregular control-flow

int a[N], b[N], c[N];
readinput(a);

c[5] = b[a[4]];

int a[N], b[N], c[N];
readinput(a);

c[5] = b[a[4]];

Pointer-based data structures often contribute to irregularity.

int a[N];
readinput(a);

if (a[4] > 30) {
...

}

int a[N];
readinput(a);

if (a[4] > 30) {
...

}

Needs dynamic
techniques

36

Regular vs. Irregular Algorithms

X =

aa

cc

bb dd

7
4

2

gg

ff

ee

Matrix Multiplication Shortest Paths Computation

By knowing matrix size and its
starting address, and without knowing

its values we can determine
the dynamic behavior.

Dynamic behavior is
dependent on the input graph.

This results in
pessimistic synchronization.

37

ee

Dynamic Techniques

aa

cc

bb dd

gg

ff hh ii

jj Active node

Neighborhood

Non-overlapping neighborhoods can be processed in parallel.

Overlapping neighborhoods require synchronization.

Leads to optimistic and cautious parallelizations.

38

Sequential to Parallel

● Sequential programs often overspecify dependencies.

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

Processing of a[ii + 1] is specified
after that of a[ii].

Processing of assignment, function call
and while are sequentially specified.

We need a way to specify that various operations need not be
executed in a specific order.

39

Unordered Execution

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

for (int ii = 0; ii < N; ++ii) {
process(a[ii]);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}

forall (e in a) {
process(e);

}

forall (e in a) {
process(e);

}

unordered(
x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}
);

unordered(
x = y;
f(a, b);
while (m < n) {

process(m);
m = next(m);

}
);

40

Sequential to Parallel

● We added unorderedness.
● We added non-determinism.
● We added higher-level information.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

