Security Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2016

Outline

* [ntroduction and applications
» Buffer overrun vulnerability

Introduction

Security in a broad sense.

- Effects: crash, non-termination, wrong output, unintended
actions

- Causes: dangling pointers, buffer overruns, null pointer
dereference, wrong opcode, arbitrary data-change

C programs are more susceptible to buffer overflow
attacks.

C allows direct pointer manipulation — since space and
performance are primary concerns — not security.

Standard library contains functions that are unsafe if not
used carefully (e.g., gets, strcpy, strcat). Does strncpy
solve the problem?

Stack Smashing

 How can a malicious code be executed by
exploiting buffer overrun vulnerability?

void f(char *b) { f:
gets(b); pop b f
L2: push L2
) push b 1000
void main() { jump gets b 1000/L2 L2
char a[4];
f(a); pop PC L1 1004 |
Ll: .. a[3] main
} main: al2
mov a, SP 2] 4 L1
add SP, 4 a[1]
push a
Jjump f .. 4
malicious

To Avoid Stack Smashing

* Insert a sentinel near the return address.
* Check if it is intact before jumping.

void f(char *b) { f:

gets(b); pop b f
L2: push senti 1000

} push L2
void main() { push b b 1000/L2

char a[4]; jump gets L1 L2

f(a);
L1: .. intact senti? senti 1004

} pop PC .
a[3] main

main:
mov a, SP 3[2]

add SP, 4
push senti 8[1] L1

hL1
- a[0] 1000

push a
intact senti?

Jjump f . .
malicious

To Avoid Stack Smashing

 Insert sentinel / canary
 Check addresses / bounds explicitly (Java)
* Wrap system calls with securlty checks

Dynam|c techniques
) Runtime overhead |
» Program is terminated

 When the code segment is writable, it is more
vulnerable to attacks (self-modifying code, W"X).

* What does the following program do?
Qhar*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

Notes on Stack Smashing

» Using canary for stack smashing detection?

- Canary is a bird used in coal-mines to detect toxic
gases (humans follow the caged birds)

- Researchers have validated its performance impact to
be minimal

- Randomizing canary improves odds
- Does not guarantee protection

 How about heap smashing?

- Heap usually doesn't contain return addresses
- But then, we have function pointers

Static Buffer Overrun Detection

* A good example of static analysis that can be
iIncomplete as well as unsound.

All accesses

<«

complete

unsound and incomplete
(false negatives and false positives)

Static Buffer Overrun Detection

* A good example of static analysis that can be
iIncomplete as well as unsound.

All accesses All accesses

Vulnerable
Accesses -

<«

complete

< sound

complete sound

unsound and incomplete
(false negatives and false positives) 9

Using Pre and Post-conditions

* Annotations define properties

- minDef, maxDef, minUse, maxUse
€.J., minDef (buff) = 0, maxUse (buff) = N / 2
- notNull, null, restrict

€.J., notNull (ptr), restrict (ptr)

- Homework: Write an example program using restrict
which enables an optimized code.
* |nitially we would assume that these

annotations are user-provided. Later, we will
try to auto-infer them.

10

Specifying Pre and Post-conditions

e char *strcpy(char *s1, char *s2)
[* @requires maxDef(sl) >= maxDef(s2) */
[* @ensures maxUse(sl) == maxUse(s2)
and result == sl */;
» void *malloc(size t size)
[* @ensures maxDef(result) == size
or result == null */;

11

Inferring Constraints

* From the for-loops init, bound and change
- Difficult for general loops such as while

 From the array declarations and malloc
statements

e From conditional checks in the code

 Small number of heuristics often cover large
part of the program.

* Once the constraints are identified, these are
checked against the user annotations.

12

Inferring Constraints

* |In absence of annotations, simply generating
all possible constraints is expensive.

* |In the past, researchers have tried flow-
iInsensitive constraints.

« Auto-inference is feasible when loop-bounds
do not depend on array values.

- while (a[i] '="\0") versus while (i <n)

13

Precision vs. Efficiency

void main() {

int *a; int f(int N) {
a = malloc(N); return N % 5;
ii=N/2+ f(N); ¥

a[ii] = 0;

* Precision requires interprocedural analysis in the above example
(recall Analysis Dimensions).
 Domain knowledge about N may help in filtering out false positives.

14

Stack Smashing in gcc

int main(void) {
~char buff[15];
int pass = 0;

printf("\n Enter the password : \n");
gets(buff);

if(strcmp(buff, "thegeekstuff"))
printf ("\n Wrong Password \n");
else
printf ("\n Correct Password \n"), pass = 1;

if(pass)
/* Now Give root or admin rights to user*/
printf ("\n Root privileges given to the user \n");

return O;

Older gcc

Enter the password :

hhhhhhhhhhhhhhhhhhhh

Wrong Password

Root privileges given to the user

New gcc

Enter the password :

hhhhhhhhhhhhhhhhhhhh

Wrong Password

*** stack smashing detected ***: ./a.out terminated

New gcc with -fno-stack-protector

Enter the password :

hhhhhhhhhhhhhhhhhhhh

Wrong Password

Root privileges given to the user

Vulnerability Analysis as a DFA

» Data-flow facts

o Statements of interest
* Analysis direction

* Meet operator

Classwork

16

Vulnerability Analysis In
Polyhedral Model

 How do you model inequalities?
* What are the constants?
 What do you get after solving the system?

17

Tools

3. BOON

- Array out of bound check for C

- Flow-insensitive, intra-procedural, pointer-
Insensitive

2. CQual

- Annotation-based

- Uses type qualifiers to propagate taint annotation

- Detects format string vulnerability by type
checking

18

Tools

1. xg++

- Template-driven compiler extension
- Finds kernel vulnerabilities

- Tracks kernel data originated in untrusted source,
memory leaks, deadlock situations

0. Eau Claire

- Theorem-prover based (specification-checker)

- Finds buffer overruns, file access races, format
string bugs

19

Self-Modifying Code

:StartAfresh
ShowMenu.exe

Original batch file

:StartAfresh
ShowMenu.exe

CALL C:\Commands\somename.bat
GOTO StartAfresh

Modified batch file

In earlier single-window DOS systems, only one window could be active,
and easy inter-process communication was not well-developed.

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

