
Security Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2016

2

Outline

● Introduction and applications
● Buffer overrun vulnerability

3

Introduction
● Security in a broad sense.

– Effects: crash, non-termination, wrong output, unintended
actions

– Causes: dangling pointers, buffer overruns, null pointer
dereference, wrong opcode, arbitrary data-change

● C programs are more susceptible to buffer overflow
attacks.

● C allows direct pointer manipulation – since space and
performance are primary concerns – not security.

● Standard library contains functions that are unsafe if not
used carefully (e.g., gets, strcpy, strcat). Does strncpy
solve the problem?

4

Stack Smashing

● How can a malicious code be executed by
exploiting buffer overrun vulnerability?

void f(char *b) {
gets(b);

L2:
}
void main() {

char a[4];
f(a);

L1: ...
}

void f(char *b) {
gets(b);

L2:
}
void main() {

char a[4];
f(a);

L1: ...
}

f:
pop b
push L2
push b
jump gets
...
pop PC

main:
mov a, SP
add SP, 4
push L1
push a
jump f

f:
pop b
push L2
push b
jump gets
...
pop PC

main:
mov a, SP
add SP, 4
push L1
push a
jump f

L1

1000/L2

1000

a[0]

a[1]

a[2]

a[3]

1000

1004

b

f

L2

main

L1

malicious

5

To Avoid Stack Smashing

● Insert a sentinel near the return address.
● Check if it is intact before jumping.

void f(char *b) {
gets(b);

L2:
}
void main() {

char a[4];
f(a);

L1: ...
}

void f(char *b) {
gets(b);

L2:
}
void main() {

char a[4];
f(a);

L1: ...
}

f:
pop b
push senti
push L2
push b
jump gets
...
intact senti?
pop PC

main:
mov a, SP
add SP, 4
push senti
push L1
push a
intact senti?
jump f

f:
pop b
push senti
push L2
push b
jump gets
...
intact senti?
pop PC

main:
mov a, SP
add SP, 4
push senti
push L1
push a
intact senti?
jump f

L1

1000/L2

1000

a[0]

a[1]

a[2]

a[3]

1000

1004

b

f

L2

main

L1

malicious

senti

6

To Avoid Stack Smashing

● Insert sentinel / canary
● Check addresses / bounds explicitly (Java)
● Wrap system calls with security checks

● When the code segment is writable, it is more
vulnerable to attacks (self-modifying code, W^X).

● What does the following program do?

Dynamic techniques
● Runtime overhead
● Program is terminated

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

7

Notes on Stack Smashing

● Using canary for stack smashing detection?
– Canary is a bird used in coal-mines to detect toxic

gases (humans follow the caged birds)

– Researchers have validated its performance impact to
be minimal

– Randomizing canary improves odds

– Does not guarantee protection

● How about heap smashing?
– Heap usually doesn't contain return addresses

– But then, we have function pointers

8

Static Buffer Overrun Detection

● A good example of static analysis that can be
incomplete as well as unsound.

Safe
Accesses
Safe
Accesses

All accesses

sound

complete

unsound and incomplete
(false negatives and false positives)

9

Static Buffer Overrun Detection

● A good example of static analysis that can be
incomplete as well as unsound.

Vulnerable
Accesses
Vulnerable
Accesses

All accesses

complete

sound Safe
Accesses
Safe
Accesses

All accesses

sound

complete

unsound and incomplete
(false negatives and false positives)

10

Using Pre and Post-conditions

● Annotations define properties
– minDef, maxDef, minUse, maxUse

e.g., minDef(buff) = 0, maxUse(buff) = N / 2

– notNull, null, restrict

e.g., notNull(ptr), restrict(ptr)
– Homework: Write an example program using restrict

which enables an optimized code.

● Initially we would assume that these
annotations are user-provided. Later, we will
try to auto-infer them.

11

Specifying Pre and Post-conditions

● char *strcpy(char *s1, char *s2)
/* @requires maxDef(s1) >= maxDef(s2) */

/* @ensures maxUse(s1) == maxUse(s2)

and result == s1 */;

● void *malloc(size_t size)
/* @ensures maxDef(result) == size

or result == null */;

12

Inferring Constraints

● From the for-loops init, bound and change
– Difficult for general loops such as while

● From the array declarations and malloc
statements

● From conditional checks in the code
● Small number of heuristics often cover large

part of the program.

● Once the constraints are identified, these are
checked against the user annotations.

13

Inferring Constraints

● In absence of annotations, simply generating
all possible constraints is expensive.

● In the past, researchers have tried flow-
insensitive constraints.

● Auto-inference is feasible when loop-bounds
do not depend on array values.
– while (a[i] != '\0') versus while (i < n)

14

Precision vs. Efficiency
void main() {

int *a;
a = malloc(N);
ii = N / 2 + f(N);
a[ii] = 0;

}

void main() {
int *a;
a = malloc(N);
ii = N / 2 + f(N);
a[ii] = 0;

}

...
int f(int N) {

return N % 5;
}

...
int f(int N) {

return N % 5;
}

● Precision requires interprocedural analysis in the above example
(recall Analysis Dimensions).

● Domain knowledge about N may help in filtering out false positives.

15

Stack Smashing in gcc
#include <stdio.h>
#include <string.h>

int main(void) {
 char buff[15];
 int pass = 0;

 printf("\n Enter the password : \n");
 gets(buff);

 if(strcmp(buff, "thegeekstuff"))
 printf ("\n Wrong Password \n");
 else
 printf ("\n Correct Password \n"), pass = 1;

 if(pass)
 /* Now Give root or admin rights to user*/
 printf ("\n Root privileges given to the user \n");

 return 0;
}

#include <stdio.h>
#include <string.h>

int main(void) {
 char buff[15];
 int pass = 0;

 printf("\n Enter the password : \n");
 gets(buff);

 if(strcmp(buff, "thegeekstuff"))
 printf ("\n Wrong Password \n");
 else
 printf ("\n Correct Password \n"), pass = 1;

 if(pass)
 /* Now Give root or admin rights to user*/
 printf ("\n Root privileges given to the user \n");

 return 0;
}

Source: Ramesh Natarajan, thegeekstuff.com

 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password

 Root privileges given to the user

 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password

 Root privileges given to the user

Older gcc

New gcc
 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password
*** stack smashing detected ***: ./a.out terminated

 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password
*** stack smashing detected ***: ./a.out terminated

New gcc with -fno-stack-protector

 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password

 Root privileges given to the user

 Enter the password :
hhhhhhhhhhhhhhhhhhhh

 Wrong Password

 Root privileges given to the user

16

Vulnerability Analysis as a DFA

● Data-flow facts
● Statements of interest
● Analysis direction
● Meet operator

ClassworkClasswork

17

Vulnerability Analysis in
Polyhedral Model

● How do you model inequalities?
● What are the constants?
● What do you get after solving the system?

18

Tools

3. BOON
– Array out of bound check for C

– Flow-insensitive, intra-procedural, pointer-
insensitive

2. CQual
– Annotation-based

– Uses type qualifiers to propagate taint annotation

– Detects format string vulnerability by type
checking

19

Tools

1. xg++
– Template-driven compiler extension

– Finds kernel vulnerabilities

– Tracks kernel data originated in untrusted source,
memory leaks, deadlock situations

0. Eau Claire
– Theorem-prover based (specification-checker)

– Finds buffer overruns, file access races, format
string bugs

20

Self-Modifying Code

 :StartAfresh
 ShowMenu.exe
 CALL C:\Commands\somename.bat
 GOTO StartAfresh

 :StartAfresh
 ShowMenu.exe

Original batch file Modified batch file

In earlier single-window DOS systems, only one window could be active,
and easy inter-process communication was not well-developed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

