
CS6843-Program Analysis 22-02-2017

Constant Propagation
Scribe: Tejas and Anuj

1.1 Introduction
Constant propagation is the process of substituting the values of known constants in expressions

at compile time. At every program point, we want to determine the variables that have a constant value.
Also, we intend to propagate these calculated or determined values as far forward in program as possible.
Constant propagation has long been used in compiler optimization passes in order to turn variable reads and
computations into constants, wherever possible.
Definition: A variable x ∈ V has a constant value c ∈ C at a program point u, if for every path reaching
u along which a definition of x reaches u, the value of x is c.
Consider: L : x = c;, where c is a constant
We want to replace the occurrence of x by c, which later might lead to elimination of L altogether. But this
kind of optimization is not always correct. We need to keep track of any branch and reassignment which
might occur between declaration of a variable and its use.

1.2 Lattice for constant propagation

Figure 1.1: Constant Propagation lattice

> : May be constant(undetermined)
⊥ : Constant value cannot be guaranteed

Given a variable x and a program point u > to indicate that no definition of x has been seen along any path
reaching u. ⊥ to indicate that x can have different values at u along different paths reaching u
The structure of the lattice is governed by the choice of ignoring those control flow paths along which no
definition of the variable has been seen.

Conservative approach.

Worklist structure: Every statement or set of statements of the program corresponds to element in
the worklist.

1-1

1-2

Meet rules :
∀x,
x u> = x
x u ⊥ = ⊥
c1 u c1 = c1 , where c1 is a constant
c2 u c1 = ⊥, where c1 and c2 are constant

1.3 Flow Function
Consider each statement as basic block. At each program point, we need to maintain a map(M), consisting
of variables mapping to a value, m ∈M, v → m(v) where m(v) is a value from lattice (> or ⊥ or constant).
Let m,m′ ∈M
Flow function F : set of functions. fs is flow function for statement s : m′ = fs(m)
Computing flow function:

Flow function
Start with the entry node
for every statement s do

If s is not an assignment statement, then fs is simply the identity function : m′ = m
If s is an assignment statement to variable v then fs(m) = m′ , where:

• ∀v′ 6= v, m′(v′) = m(v′)

• if RHS of the statement is constant c, then m′(v) = c

• if RHS is an expression (y op z),

m′(v) =


m(y) op m(z), if m(y) and m(z) are constant values,
⊥, if either m(y) or m(z) is ⊥
>, otherwise.

• If the RHS is an expression that cannot be evaluated, then, m′(v) = ⊥

end

At a merge point, get a meet of the flow maps.

1-3

1.4 Algorithms

1.4.1 Kildall’s Simple Constant algorithm

It uses the program control flow graph for propagation of values. We initialize the map to top. Till the time
there is no change in the value of the maps of each block we will perform the operation. We will maintain a
worklist which will have all the blocks in the program and marked as unvisited.

For all the unvisited successors of block currently in consideration, we will determine the values of maps
using flow function and add it to worklist.

Simple Constant
M [entry] = init
do

change = false
worklist← all statements ∀b,visited(b) = false
while worklist not empty do

b = worklist.remove
visited(b) = true
m′ = fb(m)
∀b′ ∈successors of b
if visited(b′) then

continue
end
else

m[b′] u = m′

if m[b′] changes then
change = true

end
worklist.add(b′)

end
end

while (change == true);

N is the number of assignment statements plus the number of expressions whose value is branched on in the
program.
E is the number of edges in the program flow graph. A reasonable approximation is twice N, since conditional
statements typically have only two successors.
V is the number of variables in the program

Complexity:

Since the lattice value of each variable can only be lowered twice, each node may be visited at most 2 ∗V ∗ I
times, where I is the number of in-edges into that node. Thus, the time required for Kildall’s algorithm is
O(E ∗ V) node visits and V operations during each node visit. This results in a worst-case running time of
O(E ∗ V 2).

1-4

Consider the following example:

1 x=10;
2 y=1;
3 z=1;
4 while (x>1){
5 y=x∗y ;
6 x=x−1;
7 z=z∗ z ; }
8 p=x+y+z ;

Listing 1: SC example Figure 1.2: Simple Constant execution on Listing 1

Explanation- Simple Constant(Figure 1.2): In the given example: The entry block marks the beginning.
Block 1 assigns 10 to x as per the flow function. Similarly, y and z will get assigned to 1. The while loop, not
being an assignment statement, will have the same map as its predecessor. Now, block 4 has two successor.
both will get evaluated and the mapped values get changed accordingly. So, block 8 will assign 12 to p. The
value of y,x,z will be updated accordingly for the blocks 5,6,7. This will mark the end of iteration 1.
The second iteration will be same till block 4. Lattice values of x and y will get changed to ⊥, because
predecessors(block 3 and 7) in Iteration 1 have different lattice value and this information will be propagated
to its successors(block 5 and 8).
Once the fixed point is reached(in Iteration 3), we need to propagate the constants, wherever possible using
the maps. So, the variables on the right hand side of the assignment statement, which turns out to be
constant, can be replaced by the constant lattice value they possess at the fixed point. In the given example,
the lattice value of x, y, z is 10, 1, 1, respectively up to statement 3. Any occurrence of these variables is
replaced by their respective constant value. From block 4 onwards, the values becomes ⊥,⊥, 1. So we can
replace only z with 1 and not x,y. Hence, for block 7, z = z ∗ z, we can replace z by 1. Hence it becomes
z = 1. Also, block 8 becomes p = x+ y + 1.

1.4.2 Conditional Constant

Wegbreit’s algorithm: With each block maintain a flag called executable. Initially each block is marked
not executable. The same simple constant propagation algorithm would be applied here with few minor
changes.. We will mark executable as true if only 1 successor is present which implies it is not a conditional
instruction. If it has 2 or more instructions which implies it is conditional instruction then we will evaluate
the condition and based on the evaluation we will mark the executable flag of its successors. We will update
the maps of successor(s) accordingly.

1-5

Conditional Constant
M [entry] = init
change = false
∀ basic block,b, executable(b) = false
executable(entry) = true
do

change = false
worklist← all statements
∀b, visited(b) = false

while worklist not empty do
b = worklist.remove
visited(b) = true
m′ = fb(m)
∀b′ ∈successors of b

if visited(b′) then
continue

end
else

if only one successor(say b1) then
executable(b1) = true
m[b1] u = m′

if m[b1] changes then
change = true

end
worklist.add(b1)

end
else

evaluate the condition expression v
if v == ⊥ then

mark all successors as executable
m[b′] u = m′

if m[b′] changes then
change = true

end
worklist.add(b′)

end
if v == constant then

mark corresponding successor (b′′) as executable
m[b′′] u = m′

if m[b′′] changes then
change = true

end
worklist.add(b′′)

end
end

end
end

while (change == true);

1-6

Complexity: This algorithm is able to ignore any definition that reaches a use via a program flow graph
edge that is never executed. Thus, this algorithm accomplishes a form of dead code elimination called
unreachable code elimination. This algorithm has the same asymptotic running time as Simple Constant,
O(E ∗ V 2) in the worst case in which no branches are found to be constant. This algorithm is expected to
have better average-case complexity, however, since it can ignore parts of the program that will never be
executed and since SC should behave better than O(E ∗ V 2)

Example 2 - Conditional Constant:

1 i =1;
2 i f (i==1)
3 j =2;
4 else
5 j =3;
6 p r i n t f (i , j) ;
7 i f (j !=2)
8 k=3;
9 else

10 k=4;
11 p r i n t f (i , j , k) ;

Listing 2: Conditional
Constant Example 2 Figure 1.3: Conditional Constant Execution: Listing 2

Explanation: Conditional Constant(Figure 1.3)
In conditional constant algorithms, the lattice values will be calculated in similar way as that of Simple
Constant, but the blocks dependent on conditional blocks will be considered according to the condition
evaluated in parent block. Blocks 5,7,8 will not be set to executable in Iteration 1 as condition is not met
with.In Iteration 2, as the fixed point is reached, we can propagate the constants now. At block 2, since it
will always evaluate to true, we can remove the condition and else block and replace if-else blocks with j = 2.
At block 7, since it will always evaluate to false, we can remove the if-else blocks(7,8,9,10) and replace with
the else body(block 10) i.e k = 4. Hence the transformed program would be :

1 i =1;
2 j =2;
3 p r i n t f (i , j) ;
4 k=4;
5 p r i n t f (i , j , k) ;

Listing 3: Listing 2 after Constant Propagation

1-7

Example 3 - Conditional Constant:

1 i =0;
2 do{
3 i f (i==1)
4 j=j +1;
5 e l s e
6 j =2;
7 i=i +1;
8 }while (i <2)
9 p r i n t f (i , j) ;

Listing 4: Conditional
Constant Example 3 Figure 1.4: Conditional Constant Execution: Listing 4

Explanation: Conditional Constant(Figure 1.4)
In conditional constant algorithms, the lattice values will be calculated in similar way as that of simple
constant, but the blocks dependent on conditional blocks will be considered according to the condition
evaluated in parent block. Blocks 3 and 4 will not be set to executable in Iteration 1 as condition(i == 1)
is false.
In Iteration 2, the lattice value of i is gets changed to ⊥ at block 3 because lattice values of i in parent
blocks(1 and 8) are not same. And this new lattice value gets propagated to all the successors. As a result
of i being ⊥, all the successors of block 3 will become executable.
j will also get assigned to ⊥ because of meet operation at block 7, where value of j is different for the
predecessor blocks(4 and 6).
Once the fixed point is reached, we can propagate the constants based on the maps of each variables at each
program point.In the given example, from block 3 onwards, at each program point, the value of maps of
both the variables is ⊥, so, we can not replace these variables. Hence, the transformation will not happen
in this case, because the lattice values is ⊥ and it won’t get replaced.

1.5 Applications
• Expressions evaluated at compile time need not be evaluated at run time. If such expressions are inside

loops, a single evaluation at compile time can save many evaluations at run time.

• Unreachable code can be detected by identifying conditional branches that always take one of the
possible branch paths.

• Since many of the parameters to procedures are constants, using constant propagation with procedure
integration can avoid the expansion of code that often results from naive implementations of procedure
integration.

References
• Data Flow Analysis: Theory and Practice, Khedker, Sanyal, Karkare

• Constant Propagation with Conditional Branches, Mark N. Wegman and F. Kenneth Zadeck

