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ABSTRACT

KEYWORDS: Combinatorics; VLSI Design; Hierarchical Floorplan; Simulated

Annealing.

A floorplan is a rectangular dissection which describes the relative placement of elec-

tronic modules on the chip. It is called a mosaic floorplan if there are no empty rooms

or cross junctions in the rectangular dissection. We study a subclass of mosaic floor-

plans called hierarchical floorplans of order k (abbreviated HFOk). A floorplan is a

hierarchical floorplan of order k if it can be obtained by starting with a single rectangle

and recursively embedding mosaic floorplans of at most k rooms inside the rooms of

intermediate floorplans. When k = 2 this is exactly the class of slicing floorplans as

the only distinct floorplans with two rooms are a room with a vertical slice and a room

with a horizontal slice respectively. Embedding such a room is equivalent to slicing the

parent room vertically/horizontally.

In this thesis we characterize permutations corresponding to the Abe-labeling of

HFOk floorplans and also give an algorithm for identification of such permutations in

linear time for any particular k. We also prove that Hierarchical floorplans of order k are

in bijective correspondence with Skewed Generating trees of Order k. From this result

we give a recurrence relation for exact number of HFO5 floorplans with n rooms which

can be easily extended to any k also. Based on this recurrence we provide a polynomial

time algorithm to generate the number of HFOk floorplans with n rooms. Considering

its application in VLSI design we also give moves on HFOk family of permutations

for combinatorial optimization using simulated annealing etc. We also explore some

interesting properties of Baxter permutations which have a bijective correspondence

with mosaic floorplans.
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CHAPTER 1

INTRODUCTION

Floorplanning is an important phase of VLSI design. It is usually formulated as the

problem of placing a given set of rectangular circuit modules on the plane to minimize

some objective functions like area of the bounding rectangle containing all modules or

total interconnection wire length. At an early stage of physical design like floorplanning

the shape and and dimensions of the modules are in general not fixed. Hence a floor-

plan usually captures relative placement of modules alone and so is represented using

rectangular dissections. The number of feasible solutions for a given instance of floor-

planning problem is very large. The introduction of an objective function like intercon-

nection wiring length lets us select superior floorplans from among the set of feasible

solutions. But the introduction of an objective function makes floorplanning problem a

combinatorial optimization problem thus increasing the hardness of the problem.

It is already known that floorplanning problem is NP-Hard. This is because floor-

planning problem is a generalization of placement problem which is a generalization

of quadratic assignment problem which is known to be NP-Hard (Sait and Youssef

(1999)).

Due to the algorithmic hardness of the problem, stochastic search methods like

Simulated annealing, Genetic algorithms etc. are used to find a floorplan which near-

optimizes the objective function. These algorithms work by using a code to represent

the floorplan and by making small perturbations on the codes to do a neighbourhood

search for better codes in terms of the objective function. To work with a family of

floorplans it is necessary to have a coded representation for that family. Since floorplan

describes the relative placement of the blocks, it is modeled mathematically as a dissec-

tion of a rectangle with axis parallel (horizontal/vertical) non-intersecting line segments

which captures the relative placement of the blocks. It is called a mosaic floorplan if

there are no empty rooms or cross junctions in the rectangular dissection.

In this thesis we study a subclass of mosaic floorplans called hierarchical floorplans

of order k (abbreviated HFOk). A floorplan is a hierarchical floorplan of order k if it



can be obtained by starting with a single rectangle and recursively embedding mosaic

floorplans of at most k rooms inside the rooms of intermediate floorplans (Wong and

Sakhamuri (1989)). When k = 2, this is exactly the class of slicing floorplans as the

only distinct floorplans with two rooms are a room with a vertical slice and a room

with a horizontal slice respectively. Embedding such a room is equivalent to slicing the

parent room vertically/horizontally.

In this thesis, we characterize permutations corresponding to the Abe-labeling of

HFOk permutations and also give algorithms for identification of such permutations

in polynomial time for any arbitrary k. These results can be used to create stochastic

search algorithms on the family of HFOk floorplans. We also explore interesting char-

acteristics of Baxter permutations which have a bijective correspondence with mosaic

floorplans.

1.1 History

Wong and Liu (1986) were the first to consider the use of stochastic search methods

like simulated annealing for floorplan optimization problem. In their seminal paper on

simulated annealing based search on the family of slicing floorplans ( Wong and Liu

(1986) ), they introduced slicing trees and proved that there is a one-one correspon-

dence between slicing floorplans with n rooms and skewed slicing trees with n leaves.

They also proved that there is a one-one correspondence between skewed slicing trees

with n leaves and normalized polish expression of length 2n − 1. These normalized

polish expressions were the coded representation of slicing floorplans in their simulated

annealing search . The set of moves they defined on these normalized polish expres-

sions defined the neighbourhood relation among floorplans in the search space. Wong

and The (1989) gave a representation of hierarchical floorplans of order 5 extending the

normalized polish expressions of slicing floorplans to incorporate wheels which are the

only non-slicing floorplans with at most five rooms. They also described neighbourhood

moves for simulated annealing search on HFO5 floorplans based on this representation.

Since then, there has been attempts to find codes for larger families of floorplans

like mosaic floorplans. Murata et al. (1995) were the first to come up with a nice rep-

resentation of mosaic floorplans. They used a representation called a sequence pair to
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represent a mosaic floorplan uniquely. A sequence pair is a set of two permutations of

length n which uniquely capture a mosaic floorplan. In the same paper they introduced

the notion of P-admissibility for a coded representation of a floorplan family. These

are a set of desirable properties for the solution space represented by the coded repre-

sentation which would result in faster and better search on that family of codes. These

properties are :

• The solution space is finite.

• Every solution is feasible.

• Evaluation of each code is possible in polynomial time and so is the realization
corresponding to the packing.

• The floorplan corresponding to the best evaluated code in the space coincides
with an optimal solution of the floorplanning problem.

They later improved sequence-pair representation to contain just one sequence (Mu-

rata et al. (1996) ) where in which they utilized the value of the labels in the sequence to

capture the first sequence in sequence pair and the relative position of these labels in the

sequence to capture the second sequence in sequence pair. This sparked off a great in-

terest in better and faster representations for non-slicing floorplans. Hong et al. (2000)

came up with an entirely different data structure called Corner block list to represent

mosaic floorplans.

The algorithms started looking at bigger families of floorplans because it is known

that to capture the optimum solution based on an objective function like intercon-

nection wire length for a floorplanning problem it is necessary to consider topolo-

gies with empty rooms also. Young et al. (2002) characterized that while searching

for optimal floorplans, empty rooms need to be present only at the center of wheel

structures(Figure 1.11). In fact characterizing and enumerating permutations that are

mapped to optimal floorplans is one of the biggest open problems in designing codes

corresponding to non-slicing floorplans. Zhou et al. (2001) came up with an extension

to corner block list idea to incorporate the concept of empty rooms. They give an ex-

tension factor λ to corner block list to contain general non-slicing floorplan containing

empty rooms. But to guarantee that the solution space contains the optimal solution

their λ is to be set to n, the number of modules to be placed on the plane, thus making

it a costly data structure.
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Several other works addressed combinatorial properties of these codes like count,

characterization, enumeration etc. Sakanushi et al. (2003) were the first to consider the

number of distinct mosaic floorplans. They found a recursive formula for this number.

Yao et al. (2003) showed a bijection between mosaic floorplans and twin binary trees

whose number is known to be the number of Baxter permutations ( Dulucq and Guibert

(1998) ). They have also shown that the number of distinct slicing floorplans containing

n blocks is the (n−1)th Shrőder number. Later Ackerman et al. (2006) constructed a

bijection between mosaic floorplans with n-rooms to Baxter permutations on [n]. They

also proved that this bijection when restricted to Slicing floorplans gives a bijection

from slicing floorplans with n-rooms to separable permutations on [n]. And with this

bijection we can obtain a unique permutation corresponding to any mosaic floorplan or

naturally for a floorplan which belongs to a subclass of mosaic floorplans.

To characterize the class of permutations corresponding to HFOk floorplans we need

some results on a well studied class of permutations called Simple permutations. Simple

permutations and their properties were studied first by Albert and Atkinson (2005).

They proved a crucial theorem about exceptionally simple permutations using a result

from a paper by Schmerl and Trotter (1993) about critically indecomposable partially

ordered sets.

Another important combinatorial property of codes corresponding to floorplan fam-

ilies, which has been studied extensively in literature is the number of distinct floorplans

with n rooms in a floorplan family . Shen and Chu (2003) presented a generating func-

tion based approach to count skewed slicing trees, to obtain a tight bound on number

of slicing floorplans with n rooms. Chung et al. (1978) obtained closed form expres-

sion for the number of Baxter permutations of length n using a generating tree based

approach.

1.2 Motivation

Hierarchical floorplans of order k are well studied in the context of area optimization

problem. Area optimization problem for floorplans is, given a floorplan and modules

which are rectangles with a finite set of implementations (in terms of dimensions of

the module) select the optimal implementation for each module such that the total area
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is minimized. The area minimization for hierarchical floorplans of order 5 and above

is proved to be NP-Complete (Pan and Liu (1995)). But for Hierarchical floorplans of

order k, a near optimal algorithm for area minimization is given by Wang and Wong

(1992). Even though area optimization problem for hierarchical floorplans of order

k is well studied in the literature, to our best knowledge there are no floorplanning

algorithms which work on HFOk floorplans alone and there is no efficient computer

representation of HFOk floorplans. There are algorithms and representations for HFOk

for k = 2 and k = 5 by Wong and Liu (1986) and Wong and The (1989) respectively.

But these representations cannot be easily generalized to any k. Hierarchical floorplans

are an interesting family because of their hierarchical structure which simplifies phys-

ical design and synthesis of these floorplans and allows the synthesis to be carried out

in a nice top-down fashion.

1.3 Preliminaries

1.3.1 Mosaic floorplans

Mosaic floorplans are rectangular dissections satisfying the following properties ( Hong

et al. (2000) ) :

1. No empty rooms.

2. Topological equivalence on sliding line segments.

3. Non-degenerate-topology : No degenerate case where two distinct T junctions
forms a + junction.

The first property says that in the floorplan there should be exactly as many rooms as

there are modules which are to be placed on the chip. For example the floorplan shown

in Figure 1.1 is not a mosaic floorplan because there are only 2 modules to be placed on

the chip and there are 3 rooms in the given floorplan. The second property says that two

floorplans are equivalent if one can be obtained from the other by sliding one or more

line segments in such a way that all the other line segments which ends at line segment

are also pulled along with the line segment when sliding it. By this definition floorplans

(a) and (b) in Figure 1.4 are equivalent but (c) is different from both.
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module 1

module 2

empty room

Figure 1.1: Floorplan with empty rooms

Figure 1.2: Topological Equivalence on sliding

The floorplan given in Figure 1.3 is not a mosaic floorplan because it violates the

non-degenerate topology condition. The non-degenerate topology is needed because

mosaic floorplans are defined so as to capture the following relative placement rela-

tions between blocks ( Murata et al. (1997) ). Let f be a mosaic floorplan and let b1

and b2 be blocks in f . We say that b1 is to the left of (respectively, above) b2 if there

exists a line segment l of f which contains the right (respectively, lower) edge of b1

and the left(respectively, top) edge of b2, or if there exists a block b3 such that b1 is

to the left of (respectively, above) block b3 and b3 is to the left of (respectively, above)

block b2. The degenerate case of a cross junction is not allowed because it will lead

to multiple representation of the same floorplan for most of the codes in the literature.

This is because a coded representation like the corner block list captures exactly one

of {above,below,left,right } relation between any two blocks. If there is a cross junc-

tion in a mosaic floorplan there can be more than one of these relations between blocks

constituting the cross junction, resulting in multiple valid codes representing the same

floorplan. The first floorplan in Figure 1.4 has a cross junction. But between blocks

labeled a and b in this floorplan both above and left of relations hold as there is a line

segment containing right edge of a and left edge b and there is another containing bot-

tom edge of a and top edge of b. Hence cross junctions are not allowed in mosaic

floorplans. The degenerate case is avoided by sliding one side of a line segment in-

volved in a cross junction by a small amount to make it a T-junction as shown in second

floorplan of Figure 1.4.

6



Cross junction

Figure 1.3: Non-Moaic Floorplan

Figure 1.4: Handling non degenerate topology

1.3.2 Pattern Matching Problem on Permutations

Pattern matching problem for permutation is given a permutation π ∈ Sn called text and

another permutation σ ∈ Sk called pattern we would like to know if there exists k in-

dices i1 < i2 < i3 < i4 < . . . < ik such that the numbers π[i1], π[i2], π[i3], π[i4], . . . , π[ik]

are in the same relative order as σ[1], σ[2], σ[3], σ[4], . . . , σ[k], that is π[ih] > π[il] if

and only if σ[h] > σ[l]. If π contains such a sub-sequence we call text π contains the

pattern σ, and the sub-sequence is said to match the pattern.

1.3.3 Baxter Permutations

A Baxter permutation on [n] = 1, 2, 3, . . . , n is a permutation π for which there are no

four indices 1 ≤ i < j < k < l ≤ n such that

1. π[k] < π[i] + 1 = π[l] < π[j]; or

2. π[j] < π[i] = π[l] + 1 < π[k]

Thus π is a Baxter permutation if and only if whenever there is a sub-sequence

matching the pattern 3142 or 2413, then the absolute difference between the first and

last element of the sub-sequence is always greater than 1. For example 2413 is not

Baxter as the absolute difference between 2 and 3 is 1 and 41352 is Baxter even though
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the sub-sequence 4152 matches the pattern 3142 but the absolute difference between

first and last of the sub-sequence is |4− 2| = 2 > 1.

1.3.4 Algorithm FP2BP

Ackerman et al. (2006) showed the existence of a direct bijection between mosaic floor-

plans with n rooms and Baxter permutations of length n. They did this by providing

two algorithms, one which takes a mosaic floorplan and produces the corresponding

Baxter permutation and another which takes a Baxter permutation and produces the

corresponding mosaic floorplan. To explain the algorithm the following operations on

a mosaic floorplan are defined.

Definition 1 (Top-Left Block Deletion). Let f be a mosaic floorplan with n > 1 blocks

and let b be the top left block in f . If the bottom-right corner of b is a a (resp., ⊥)

junction, then one can delete b from f by shifting its bottom(resp., right) edge up-

wards(resp., leftwards), while pulling the T-junctions attached to it until the edge hits

the bounding rectangle.

Definition 2 (Bottom-Left Block Deletion). Let f be a mosaic floorplan with n > 1

blocks and let b be the bottom left block in f . If the top-right corner of b is a a

(resp., T) junction, then one can delete b from f by shifting its top(resp., right) edge

downwards(resp., leftwards), while pulling the T-junctions attached to it until the edge

hits the bounding rectangle.

Note that the above deletion procedures do not change the relative ordering among

the remaining blocks.

Input : A mosaic floorplan f with n blocks
Output: A (Baxter) permutation of length n
Label the rooms in their top-left deletion order from {1, . . . , n} ;1

Obtain the permutation by arranging the room labels in their bottom-left deletion2

order ;
Algorithm 1: Algorithm FP2BP

The algorithm captures all the information contained in a mosaic floorplan. Given

any two blocks in the floorplan, by looking at their labels and relative positions in the

permutation it can be exactly decided which one of the above, below, left or right re-

lations hold between those two blocks. This is possible because the labeling is done
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starting from the top-left corner and extraction of the permutation from the other diago-

nal, that is starting from bottom-left corner. The following two lemmas prove why this

is true.

Lemma 1 (Ackerman et al. (2006)). If a block b1 precedes a block b2 in both top-left

deletion ordering and bottom-left deletion order then b1 is to the left of b2.

Proof. If a block b1 precedes a block b2 in top-left deletion ordering implies that there is

an intermediate floorplan obtained by deleting the top-left blocks successively, where b1

is the top-left block and b2 is contained within that floorplan. Hence b1 is either above

or to the left of b2. Since b1 precedes b2 in bottom-left deletion ordering there is an

intermediate floorplan where b1 is the bottom-left block and b2 is contained within that

floorplan. Hence b1 is either below or to the left of b2. In a mosaic floorplan a block b1

cannot be both above and below block b2. Hence b1 is to the left of b2.

The following lemma can be proved in a similar fashion.

Lemma 2 (Ackerman et al. (2006)). If a block b1 precedes a block b2 in top-left deletion

ordering. But in the bottom-left deletion order b2 precedes b1 then b1 is above b2.

From the permutation π corresponding to a mosaic floorplan f the relative position

of any block with respect to any other can be decided. This is because the blocks are

labeled from {1, . . . , n} in their top-left deletion order and these labels corresponding

to blocks appear in the permutation π in the same order as their bottom-left deletion

order.

The action of the algorithm on a mosaic floorplan is illustrated by the figures 1.7 and

1.8. To illustrate how it captures the relative placement among blocks let us take blocks

labeled 3 and 2 in the Figure 1.8. Since 2 < 3 block 2 is either to the left of or above

3. Since 3 appears before 2 in the permutation corresponding to the floorplan block 3

is either to the left of or below 2, or in other words block 2 is either to the right of or

above 3. But since block 2 can not be both to the right and left of block 3 in a mosaic

floorplan block 2 must be above block 3, which indeed is the case in the given floorplan.

The permutation thus obtained is called the Abe-label of the corresponding floorplan.

Ackerman et al. (2006) also proved that the family of permutations produced by the

algorithm is the class of Baxter permutations. Intuitively this is because the mosaic
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Figure 1.5: Non-Mosaic floorplan producing 3142, a non Baxter permutation
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Figure 1.6: Non-Mosaic floorplan producing 2413, a non Baxter permutation

floorplan by definition cannot have any cross junctions and if there are cross junctions

in the floorplans then the algorithm will produce a permutation having a pattern which is

forbidden for Baxter permutations. To see this let us take a simple non-mosaic floorplan

with 4 rooms. This floorplan has two permutations corresponding to it (illustrated in

figure 1.5 and figure 1.6). These permutations are 2413 and 3142 respectively, which are

also the forbidden patterns of Baxter permutations. Hence intuitively it must be the case

that wherever there is a cross junction in the floorplan in the corresponding permutation

either 2413 or 3142 must appear as a pattern in the corresponding sub-sequence. For a

more formal proof of equivalence between mosaic floorplans and Baxter permutations

see Ackerman et al. (2006).

1.3.5 Slicing Floorplans

A floorplan is called a slicing floorplan if it can be obtained from a rectangle by dissect-

ing it recursively horizontally or vertically. All the floorplans in Figure 1.9 are slicing

floorplans.

Figure 1.7: FP2BP Labeling Phase
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Figure 1.8: FP2BP Extraction of permutation Phase

Figure 1.9: Slicing Floorplans

1.3.6 Slicing Tree

A slicing floorplan can be represented by a rooted tree called slicing tree( Wong and

Liu (1986) ). A slicing tree is a rooted binary tree with the following properties:

• Every internal node is labeled either V or H representing the vertical and hori-
zontal slice respectively.

• Each leaf node corresponds to a basic room in the final floorplan.

• The sub-tree rooted at left child(resp., right child) of of a V node represents the
floorplan contained in the left half(resp., right half) of the room which was cut
vertically into two.

• The sub-tree rooted at left child(resp., right child) of of an H node represents the
floorplan contained in the lower half(resp., upper half) of the room which was cut
vertically into two.

A slicing tree captures the order in which the basic rectangle was divided recursively

to obtain the final floorplan. But as shown in figure 1.10 there can be multiple slicing

trees corresponding to the same floorplan. To avoid this problem we define a sub-class

of slicing trees called skewed slicing trees which are essentially slicing trees which

also obey the following rule:

• An internal node (labeled from {V,H}) and its left child cannot have the same
label.

This rule produces a unique tree corresponding to slicing floorplan by eliminating

symmetry associated with horizontal and vertical cuts by ensuring that always the first

operation from left to right and top to bottom is the parent node at that level. This is

achieved by the extra rule above as it says that a V node has to have an H node or a

11



Figure 1.10: Slicing Trees and Skewed Slicing Trees

Figure 1.11: Wheels

leaf as the right child, because if the V was not the first one from left to right then V

ought to have another V as its right child. Similarly symmetry associated withH is also

removed by skewness.

1.3.7 HFO5 floorplans

A floorplan is said to be hierarchical of order 5 if it can be obtained from a rectangle by

recursively sub-dividing each rectangle into either two parts by a horizontal or a vertical

line segment or into five parts by a wheel ( which can be of two types as shown in the

Figure 1.11 ).

1.3.8 Hierarchical Floorplans of Order k

We can generalize the concept of hierarchical floorplans of order 5 to any k by defining

hierarchical floorplans of order k as all mosaic floorplans which can be obtained from a

rectangle by recursively sub-dividing each rectangle into l parts (l ≤ k) by embedding

a mosaic floorplan with l rooms. It is easy to observe that when k = 2 this becomes the

class of slicing floorplans and when k = 5 it becomes HFO5. All floorplans in Figure

1.12 are HFO7 floorplans by this definition.
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Figure 1.12: HFO7 floorplans

Figure 1.13: Example of a simple permutation

1.3.9 Simple Permutations

A block in a permutation is a set of consecutive positions (called segments) which is

mapped to a range of values. The trivial block of a permutation are singleton blocks and

the block 1 . . . n. For example in the permutation π = 3421 segment 1 . . . 3 is a block

as π maps 1 . . . 3 to {2, 3, 4} which is a range but the segment 2 . . . 4 is not a block as

it is mapped to {1, 2, 4} which is not a range as 3 is missing. A permutation is called

simple when all its blocks are trivial blocks. An example of a simple permutation is

π = 41352. Also note that π above is the Abe-label of right rotating wheel. A one point

deletion on a simple permutation π ∈ Snis deletion of a single element at some index i

and getting a new permutation π′ ∈ Sn−1 by decreasing each element of π greater than

π[i] by one. For example one-point deletion at index 3 of 41352 gives the permutation

3142. Because after deletion of 3 from 41352 we get 4152, then decreasing the numbers

which are greater than 3 in 4152 by one we obtain 3142. Figure 1.13 shows a simple a

permutation and Figure 1.14 shows a permutation which is not simple.

Figure 1.14: A non-simple permutation
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1.3.10 Block Decomposition of a permutation

Simple permutations are an interesting class of permutations for the reason that arbitrary

permutations can be built just using simple permutations. A block decomposition (

Albert and Atkinson (2005) ) of a permutation σ is a partition of the set of positions

of σ into blocks. A block decomposition is non-trivial if there is at least one block

which is non-trivial. Given the block decomposition of σ, its pattern is the permutation

defined by the relative order of the blocks. For example 451362 has the non-trivial

decomposition (45)(1)(3)(6)(2) with the pattern of decomposition being 41352. We

can think of 453162 being constructed from 41352 by inflating each of the elements

12, 1, 1, 1 and 1 into blocks. This can be represented as wreath product of permutations

as 451362 = 41352 [12, 1, 1, 1, 1].

1.3.11 Exceptionally Simple Permutations

The following simple permutations are called exceptional :

246 . . . (2m)135 . . . (2m− 1) (1.1)

(2m− 1)(2m− 3) . . . 1(2m)(2m− 2) . . . 2 (1.2)

(m+ 1)1(m+ 2)2 . . . (2m)m (1.3)

m(2m)(m− 1)(2m− 2) . . . 1(m+ 1) (1.4)

They are called exceptionally simple because no one-point deletion of an excep-

tionally simple permutation can give a simple permutation. For example 246135 is an

exceptionally simple permutation of length 6. If we delete 2 from our example we get

35124 which is not simple as the segment 3 . . . 4 is mapped to 12 hence is non-trivial

block. It can be easily verified that every one point deletion from above permutation

results in a non-trivial block. Figure 1.15 shows an exceptionally simple permutation

and also illustrates all single point deletions of this permutation. You can verify from

the figure that all of these single point deletions result in permutations which are not

simple. The interesting thing about exceptionally simple permutations is that there is

always a two point deletion which yields a simple permutation of length n− 2 ( Albert

14



Figure 1.15: An exceptionally simple permutation

and Atkinson (2005) ). For example upon deleting 1, 2 from 246135 we get 2413, a sim-

ple permutation. Shmerl and Trotter(Schmerl and Trotter, 1993, 197) proved that there

are no exceptionally simple permutations of odd length and also there are exceptionally

simple permutations of even length for any even number greater than or equal to 4.

1.4 Contribution of the Thesis

We have obtained the following results related to HFOk floorplans:

1. We have proved that there exists an HFOk floorplan which is not an HFOj floor-
plan for any j < k, thus proving that they form an infinite hierarchy.

2. We obtained that the permutations corresponding to Abe-labeling of HFOk floor-
plans are those Baxter permutations which avoid patterns from Simple permuta-
tion of length k + 1 and exceptionally simple permutations of length k + 2.

3. We prove that HFOk floorplans are in bijective correspondence with skewed gen-
erating trees of order k.

4. We provide a linear-time algorithm for recognizing a permutation corresponding
to an HFOk floorplan.

5. We prove that there are exponentially many HFOk floorplans with n rooms than
there are HFOk−1 floorplans for sufficiently large values of n.

6. We give a recurrence relation for the exact number of distinct HFO5 floorplans
with n rooms which can be easily extended to any k.

7. We give an O(nk+1) time algorithm for generating the count of HFOk floorplans
with n rooms.

Using the results 2, 3 and/or the linear time algorithm for recognition one can design

moves for the family of HFOk floorplans and build stochastic search algorithms on the

family of HFOk floorplans.

We have obtained the following interesting results on Baxter permutations:
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1. Baxter permutations are closed under inverse.

2. The floorplan corresponding to the inverse of a Baxter permutation is the floorplan
obtained by taking the vertical flip of the floorplan corresponding to the original
permutation.

1.5 Organization of Thesis

The thesis is organized into five chapters. The first and current chapter defines the prob-

lem then details existing literature related to this problem and explain the notations and

definitions needed to explain our results. The rest of the thesis is organized as follows.

Chapter 2 presents the work we have done on HFOk Floorplans, mainly characteriza-

tion, counting and algorithm for recognition. Chapter 3 focuses on a special class of

HFOk hierarchy, that is HFO5 floorplans. We prove that they are in bijective correspon-

dence with a class of trees (similar to the trees defined by Wong and The (1989) ) and

give a non-linear recurrence relation for the exact number of distinct HFO5 floorplans

using the bijection. Based on this recurrence we obtain a polynomial algorithm for gen-

erating the count. And then we generalizes these results for any k. Chapter 4 details

some interesting properties of Baxter permutations that we have obtained which also

relates to the properties of the mosaic floorplans corresponding to them. Finally, we

conclude with future directions and open problems for further discussions on Hierar-

chical Floorplans of Order k.
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CHAPTER 2

HFOk Floorplans

In this chapter we focus on the characterization, counting and algorithm for recognition

for HFOk family of floorplans. We first prove that HFOk floorplans form a non-trivial

hierarchy, that is there is an HFOk floorplan which is not HFOj for any j < k. Then we

characterize floorplans of this type, that is HFOk floorplans with k rooms which are not

HFOj for any j < k. We call such floorplans Uniquely HFOk. Using this characteriza-

tion we also characterize HFOk floorplans. Next we prove that HFOk floorplans are in

bijective correspondence with a family of trees which we call skewed generating trees

of order k. This bijection leads to a linear time algorithm for recognizing permutations

corresponding to HFOk floorplans. We provide the algorithm and analysis of running

time. For a floorplan family it is interesting to know the number of distinct floorplans in

the family having n rooms. We prove that there are at least 3n−k HFOk floorplans which

are not HFOj for any j < k. But we were not able to obtain a closed form expression

for the number of distinct HFOk floorplans with n rooms.

2.1 An Infinite Hierarchy

Hierarchical floorplans form an infinite hierarchy whose levels are HFOk floorplans for

a specific value of k and it is such that each level has at least one floorplan which is not

contained in the level below.

Theorem 3. For any k ≥ 7, HFOk \ HFOk−1 6= φ.

Proof. An HFOk floorplan which is not HFOj for j < k by definition should be such

that no proper subset of basic rectangles are contained in an enveloping rectangle, be-

cause if such a set of rectangles exist then it will be possible to construct this floorplan

hierarchically by starting with the floorplan with such a set of rectangles removed.

We will first show that for any odd number k ≥ 7 there is a hierarchical floorplan of

order k which is not hierarchical floorplan of order j for any j < k. The proof is evident



from the geometric construction given in Figure:2.1. The procedure is to start with an

HFO7 floorplan which is not HFOj for any j < 7 shown in the left half of the figure 2.1

and take the vertical line segment supporting the left bottom basic rectangle then cut it

half-way through as shown in the figure and insert a T-junction. It is easy to verify that

the newly introduced basic rectangles do not create with its neighbouring rectangles

a proper subset of basic rectangles which are contained in an enveloping rectangle.

Hence the resulting floorplan is not contained in any lower levels of Hierarchy. The

procedure increases the number of rooms in the floorplan by 2. Note that the in the

floorplan obtained using the above procedure there exists a line-segment which touches

the bounding box of all rectangles so that there are no parallel line-segments to its left.

Hence the above procedure can be applied inductively to get an HFOk having the above

mentioned properties for k odd where the base case is the floorplan in figure 2.1.

We will show for the odd case how to transform this geometric construction into a

proof by induction.

Induction Hypothesis For any 2k + 1 ≥ 7 there exists an HFO2k+1 floorplan such

that it bottom-left corner has three rooms as shown in figure 2.3 and also it is not con-

tained in any lower levels of the hierarchy.

Base Case :2k + 1 = 7 Floorplan in figure 2.1 serves as the base case as it satisfies

both the properties.

Induction Step : We are guaranteed existence of an HFO2k−1 which satisfies the

desired properties by induction hypothesis. Now will show to how to construct an

HFO2k+1 satisfying the desired properties from the floorplan on 2k − 1 rooms guar-

anteed by the induction hypothesis. As shown in figure 2.4 we transform the bottom

left corner. This increases the number of rooms by 2, so the total number of rooms is

2k − 1 + 2 = 2k + 1. It remains to prove that the floorplan thus obtained is not con-

tained in any lower levels of the hierarchy. Since we are changing only the three rooms

near bottom left corner, if at all there is an enveloping rectangle containing a proper

set of basic rectangles then they must involve the newly introduced two rooms. It is

easy to verify that these two rooms does not form such a rectangle with neighbouring

three rectangles, hence if such an enveloping rectangle exists then other than these two

rooms it must involve these neighbouring three rooms but this would imply that such

an enveloping rectangle is there in the HFO2k−1 floorplan guaranteed by the induction
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Figure 2.1: Constructing HFO9 from HFO7

Figure 2.2: Constructing HFO10 from HFO8

Figure 2.3: Bottom-left corner of an HFO2k+1 which is not contained in any HFOj, j <
2k + 1

hypothesis. But this is impossible. Hence the newly obtained floorplan is not contained

in any lower levels of the hierarchy.

For an even k ≥ 8 we use the same proof technique but we start from an HFO8

which is not an HFOj for any j < 8. Figure:2.2 demonstrates the construction. The

construction can applied recursively to prove the existence of an HFOk which not HFOj

for any j < k and k even.

Figure 2.4: Obtaining HFO2k+1 from HFO2k−1
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2.2 Characterization of HFOk permutations

2.2.1 Uniquely HFOk

We call an HFOk floorplan with k-rooms which is not a HFOj floorplan for any j < k,

Uniquely HFOk. We will prove that they are in bijective correspondence with those

Baxter permutations of length k which are simple permutations of length k. Given an

HFOk floorplan with k rooms if there is a set of j, 1 < j < k basic blocks which

are contained in an enveloping rectangle then it is possible to generate this floorplan in

the following way. Consider the floorplan obtained by replacing these j basic blocks

by just the enveloping rectangle and then place the HFOj floorplan formed by these

basic rectangles inside that room. Hence it is clear that the resulting floorplan belongs

to HFOmax{k−j,j}, and since both k − j and j are strictly greater than one we get that

the resulting floorplan is not Uniquely HFOk. If a non-trivial set of at most k − 1 basic

rectangles cannot be found in the mosaic floorplan then it is a Uniquely HFOk floorplan.

We need the following crucial observation for formal proof of the characterization.

Observation 1. In the permutation π produced by the FP2BP algorithm run on a floor-

plan f if there exists block1 then there is an enveloping rectangle containing the rooms

labeled by the numbers in the block and nothing else, in f .

Figure 2.5 illustrates the intuition behind the observation. In the floorplan of Fig-

ure 2.5 rooms 1 and 5 together does not form a rectangular shape. The values 1 and 5

appear in the corresponding Abe-label in contiguous positions. But the {1, 5} does not

form a block of the permutation because values 2, 3 and 4 are missing between 1 and

5. The positions 2 . . . 4 contain values from 3 . . . 5 and hence constitutes a block of the

permutation. The rooms corresponding to the elements of this block, 3, 4 and 5 together

form a rectangular shape in the floorplan.

Proof. Let π be the Baxter permutation produced by algorithm FP2BP when run on the

mosaic floorplan f . Suppose there is a block at consecutive positions i, . . . , j in π. If

the block is a trivial block, then the observation is correct as there will be either just

one number in the block or all the numbers from 1 . . . n and in both cases rectangles

labeled by the numbers in the block are contained inside trivial enveloping rectangles.
1See 1.3.9 for the definition of a block
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Figure 2.5: Blocks of the permutation and corresponding rooms in the floorplan

The remaining case is that the block is a non-trivial block. That is there is at least

one number in [n] which is not contained in the block. Since the basic blocks in a

mosaic floorplan are rectangular in shape, if the rooms which are labeled by the numbers

in the block do not form an enveloping rectangle it must be forming a shape with at

least one T shaped corner or they form disconnected clusters. If the rectangles form

disconnected clusters and if there is at at least one cluster with a T shaped corner then

this reduces to the case that the shape formed by the basic rectangle has one T shaped

corner. Hence all of them must be forming clusters which are rectangular in shape. Take

any two such disconnected clusters and take all the basic rectangles between them, it is

obvious that after labeling the top cluster the basic rectangles between two clusters will

be labeled before reaching the second cluster since it is not connected to the first. Hence

it contradicts our assumption that the basic rectangles in consideration where labeled

by elements in a block of a permutation as they do not form a range together. Hence

it remains to prove that if there is T shaped corner in the shape formed by the basic

rectangles labeled by the numbers in the block, it also leads to a contradiction. Since

there are no empty rooms in a mosaic floorplan and the block is a non-trivial block

there should be at least one basic rectangle adjacent to this T shaped corner which is

labeled with a number not contained in the block. Let us consider case 1 in Figure 2.6

where basic rectangles ‘a’ and ‘b’ are part of the block in the permutation π whereas

‘c’ is not. In this case it is clear that among these three the algorithm will label ‘a’ first,

‘c’ second and label ‘b’ the last. Hence it contradicts our assumption that there exists

a block in π containing labels of ‘a’ and ‘b’ but not ‘c’ as the label corresponding to

‘c’ will be a number between the labels of ‘a’ and ‘b’. Hence this case is not possible.

Let us consider case 2 in Figure 2.6, again ‘a’ and ‘b’ are part of the assumed block

in π whereas ‘c’ is not. Here the order in which the basic rectangles ‘a’,‘b’,‘c’ will be

deleted is: ‘b’ first, ‘c’ the second and ‘a’ the last. Hence it contradicts our assumption
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Figure 2.6: T-shaped corners

that there is a block in π containing ‘a’ and ‘b’ but not ‘c’ as in π label of ‘c’ will appear

in between labels of ‘a’ and ‘b’. Similarly it can be proved that any such T-corner

configuration will result in a contradiction to our assumption that there is a block in

π, such that the rooms labeled by the numbers in that block is not contained inside an

enveloping rectangle in the corresponding mosaic floorplan. Hence the observation.

Now we will prove the characterization of Uniquely HFOk floorplans based on the

permutations corresponding to them.

Theorem 4. Uniquely HFOk floorplans are in bijective correspondence with permuta-

tions of length k which are both Baxter and Simple.

Proof. The bijection is the bijection described by Ackerman et al. (2006) from mo-

saic floorplans to Baxter permutations, restricted to Uniquely HFOk floorplans. Since

Uniquely HFOk permutations are a subclass of HFOk permutations which are in-turn a

subclass of mosaic floorplans we know that Uniquely HFOk floorplans correspond to a

sub-family of Baxter permutations. So it remains to prove that they are also a sub-family

of simple permutations of length k. Suppose π is the Abe-label of a Uniquely HFOk

floorplan which is not a simple permutation, then there exists a non-trivial block in π

consisting of j, 1 < j < k numbers. By observation 1 there is an enveloping rectangle

containing just the rooms which are labeled by the numbers in the non-trivial block.

Now we can obtain the HFOk floorplan corresponding to π, by removing the rooms

labeled by numbers in the non-trivial block and then placing the mosaic floorplan con-

stituted by the rooms labeled by the numbers in the non-trivial block of π. Thus the

floorplan is in HFOmax{k−j,j} contradicting our assumption that it is Uniquely HFOk.
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Hence the Abe-label corresponding to a Uniquely HFOk permutation has to be a simple

permutation of length k.

2.2.2 Generating trees of Order k

A generating tree for a mosaic floorplan is a rooted tree which represents how the basic

rectangle was embedded with successive mosaic floorplans to obtain the final floor-

plan. A generating tree is called a generating tree of order k if it satisfies the following

properties:

• All internal nodes are of degree at most k.

• Each internal node is labeled by a Uniquely HFOl permutation(l ≤ k), represent-
ing the mosaic floorplan which was embedded.

• Out degree of a node whose label is a permutation of length l is l.

• Each leaf node represents a basic room in the final floorplan and is labeled by the
Abe-label of that room in the floorplan.

The internal nodes are labeled by permutations corresponding to Uniquely HFOl

floorplans because they are the only HFOl floorplans which cannot be constructed hi-

erarchically with HFOj floorplans for j < l. By this definition there is at least one

generating tree of order k for any HFOk floorplan. But the problem is that due to the

symmetry associated with vertical and horizontal cut operations there could be multi-

ple generating trees representing the same floorplan. To avoid this problem we define

skewed generating trees. An order k generating tree is called a skewed generating tree

of order k if it satisfies additional to the above rules the following rule:

• The right child of a node cannot be labeled the same as parent if the parent is
labeled from {12, 21}.

Theorem 5. HFOk floorplans with n rooms are in bijective correspondence with skewed

generating trees of order k with n leaves.

Clearly the additional rule introduced above removes the symmetry associated with

vertical(permutation 21) and horizontal(permutation 12) cut operations as we have seen

in Slicing trees. Hence it remains to prove that for any other embedding such a symme-

try doesn’t exist thus making the skewed generating tree unique for an HFOk floorplan.
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Figure 2.7: Generating Trees of Order k

Note that the generating tree provides a hierarchical decomposition of the permutation

corresponding to the floorplan into blocks as illustrated by the figure 2.7. Albert and

Atkinson Albert and Atkinson (2005)proved the following :

Theorem 6 (M.H Albert, M.D Atkinson). For every non-singleton permutation π there

exists a unique simple non-singleton permutation σ and permutations α1, α2, α3, α4, . . . , αn

such that

π = σ[α1, α2, α3, α4, . . . , αn]

Moreover if σ 6= 12, 21 then α1, α2, α3, α4, . . . , αn are also uniquely determined.

If σ = 12(respectively 21) then α1 and α2 are also uniquely determined subject to the

additional condition that α1 cannot be written as (12)[β, γ](respectively as (21)[β, γ].

The proof is completed by noting that the decomposition obtained by skewed gener-

ating tree of order k satisfies the properties of their decomposition, that is if σ = 12/21

its right child cannot be 12/21 hence the block corresponding to the right child, α1

cannot be (12)[β, γ]/(21)[β, γ]. Since such a decomposition is unique the skewed gen-

erating tree also must be unique. Hence the theorem. This bijection between HFOk

floorplans is very crucial for the characterization of HFOk floorplans in terms of per-

mutations corresponding to it and also for getting a coded representation of HFOk floor-

plans for stochastic search methods.
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2.2.3 Characterization of HFOk

Theorem 7. HFOk floorplans with n rooms is in bijective correspondence with Baxter

permutations of length nwhich avoids patterns from Simple permutations of length k+1

and Exceptionally simple permutations of length k + 2.

Proof. The bijection is the bijection defined by Ackerman et al. (2006) from mosaic

floorplans to Baxter permutations restricted to HFOk floorplans. Since HFOk is sub-

class of mosaic floorplans the bijection will map them to a sub-class of Baxter per-

mutations. It is easy to prove that if a permutation corresponds to an HFOk floor-

plan then it cannot contain text which matches patterns from Simple permutations of

length k + 1 and exceptionally simple permutation of length k + 2. Suppose in the

permutation π corresponding to an HFOk floorplan there is text at comprising of points

(i1, i2, i3, i4, . . . , ij) which matches a simple permutation σ of length j, j > k. Then

in the generating-tree of order k of the HFOk floorplan corresponding to the given per-

mutation π, it is clear that no proper subset of {π[im]|1 ≤ m ≤ j} could be inside a

single sub-tree because in the generating tree the elements of the sub-tree will always

form a range(root of node of the subtree corresponds to the enveloping rectangle of

all leaf nodes in the subtree) and no proper subset of a simple permutation can form

a range. Consider the smallest(in the number of vertices) subtree which contains all

of {π[im]|1 ≤ m ≤ j}. In this subtree let the root node be r and let its children be

{r1, r2, r3, . . . , rl} . None of the subtrees rooted at ri, 1 ≤ i ≤ l can contain all

of {π[im]|1 ≤ m ≤ j} because then ri will be the smallest subtree containing all of

{π[im]|1 ≤ m ≤ j}. And for the above mentioned reason no ri, 1 ≤ i ≤ l can contain a

proper subset of {π[im]|1 ≤ m ≤ j}. Hence there should be j children of r, each con-

taining exactly one node from {π[im]|1 ≤ m ≤ j}. Hence there are at least j children

for the root. Since j > k this leads to a contradiction to our assumption that the permu-

tation corresponds to an HFOk floorplan because there can no internal node of degree

strictly greater than k in a generating tree of order k. . So it remains to prove that any

HFOl, l > k floorplan which is not HFOk will contain a text matching the patterns from

either Simple permutations of length k+1 or k+2. Let the floorplan be HFOl for l > k

and which is not HFOk, and l be the smallest such integer that the floorplan is HFOl.

That is in the floorplan tree for this floorplan there is an internal node with out-degree

l. This node will correspond to a Uniquely HFOl permutation and the ranges formed
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by subtrees rooted at the children of this node will be form the pattern which is the

Uniquely HFOl permutation corresponding to the root node. Hence to obtain the text

matching the pattern in the permutation corresponding to the floorplan we can pick

one arbitrary leaf node from each subtree and then choose the Abe-label of that node.

Hence every simple permutation of length l contains a pattern from either simple per-

mutations of length l − 1 when the original permutation is not exceptionally simple or

simple permutations of length l−2 when the original permutation is exceptionally sim-

ple as deletion of an element from a permutation preserves the relative ordering among

the other elements of the permutation. So we can find in an HFOl, l > k permutation a

pattern which is a simple permutation of length k + 1 or k + 2 by applying the above

observation recursively.

2.3 Algorithm for Recognition

The algorithm is based on the bijection we obtained above. If a given permutation is

Baxter then it is HFOj for some j. Suppose it is HFOk then we know that there exits

an order k generating tree corresponding to the permutation. And in a generating tree

of order k the label of leaves of any sub-tree will always form a range as the root of the

sub-tree is an enveloping rectangle which contains all the rooms corresponding to the

leaves. The algorithm 2 tries to iteratively reduce the sub-trees of the generating tree to

nodes, level by level.

We will prove the correctness of the algorithm by use of the following loop invariant.

Loop Invariant: At the end of each iteration of the for loop of lines 2-13, all

sub-trees of the generating tree containing leaf nodes which are labeled only from

{π[j]|1 ≤ j ≤ i} are replaced with a single node(correspondingly pushed onto the stack

as a range of numbers which are labels of the leaf nodes of the sub-tree).

Initialization: When i = 1, {π[j]|1 ≤ j ≤ i} is equal to π[1]. Since all internal

nodes are of out-degree 2 or more the only sub-tree containing only π[1] is the leaf node

itself so there is nothing to be reduced hence the condition is trivially met.

Maintenance: We will assume that all the sub-trees whose leaves are labeled from

{π[j]|1 ≤ j ≤ i} is reduced to a node before iteration i + 1 and then prove that at
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iteration i+ 1 the condition is maintained by the for loop for all sub-trees whose leaves

are labeled from {π[j]|1 ≤ j ≤ i+ 1}. Suppose if there is a sub-tree whose leaves

are labeled only from {π[j]|1 ≤ j ≤ i+ 1} and does not contain π[i + 1] then by the

induction hypothesis it has been reduced to a node. Suppose there exists sub-trees

which also contains π[i+ 1] as a leaf node then choose the sub-tree which has π[i+ 1]

as an immediate child node. In this sub-tree all its other children are reduced to nodes

by induction hypothesis, so at iteration i + 1 there must exist j ≤ k elements at the

top of the stack corresponding to the children of this sub-tree as it has π[i + 1] as the

right most leaf node which also is the current stack top. Now the algorithm will reduce

those j elements to a range and then try to reduce the tree further by scanning the top k

elements of the stack.

Termination: When i = n the tree itself is a sub-tree containing leaf nodes labeled

from [n] hence it must be reduced to a single node. Hence if at the end of the algorithm

the stack contains just one element that would mean that the given permutation is HFOk.

Suppose the algorithm is able to reduce it to a single element on the stack then by

retracing the stack operations carried out by the algorithm we can build an order k

generating tree as at any point of time we merged at most k elements together which

together formed a range and was a Baxter permutation(thus correspond to a mosaic

floorplan). Hence upon acceptance by the algorithm for a given permutation it is clear

that there is an order k generating tree corresponding to the given permutation. If the

permutation is not HFOk algorithm would not be able to find a generating tree of order

k. Hence it would reject such a permutation.

Figure 2.8 illustrates the working of the algorithm on an HFO5 permutation. The

figure shows the generating tree of order 5 corresponding to the floorplan, and trace

of the stack used by the algorithm (to be read from left). The permutation is scanned

from left to right and each time an insertion takes place in the stack, the top 5 elements

are searched to see if they form a range. In the example shown in the figure until 3 is

inserted onto the stack this doesn’t happen. At the instant 3 is inserted it is combined

with the other four elements to a range corresponding to the internal node labeled 41352

in the generating tree. Then this is combined with 1 to form another range and finally

it is reduced to a single node by combining with 7. This final node corresponds to the

root node of the generating tree.
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Input: A permutation π of length n

Stack S← φ;1

for i = 1 to n do2

S.push(Range(π[i]));3

while There exists a j, j ≤k such that j is the least such number for which top j4

elements of S form a range do
if S [top . . . (top− j)] is a Baxter permutation then5

R = Range(S [top . . . (top-j )]);6

for l =j downto 1 do7

S.pop();8

end9

S.push(R);10

end11

end12

end13

if S.size()= 1 then14

Accept;15

else16

Reject;17

end18

Algorithm 2: Algorithm for checking if a permutation is HFOk

Figure 2.8: Example : HFO5 recognition algorithm
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2.3.1 Analysis of the recognition algorithm

The algorithm runs in both linear time and space for a fixed predetermined value of k

which does not change with the input length. Linear space is easy to observe as the

stack at any point of the execution of the algorithm contains no more than n elements.

To prove that the algorithm runs in linear time we assign an amortized cost of k2-units

to each node(including leaf nodes) in the generating tree. We also use the observation

that in a tree of n nodes there can not be more than n−1 internal nodes. Hence the total

nodes of the generating tree is bounded by 2n − 1. So if the algorithm spends at most

k2 units of time with each node then the total time taken by the algorithm is O(n).

Now we will prove that the algorithm spends at most k2 units of time with each

node in the skewed generating tree of order k corresponding to the permutation, if the

permutation is HFOk. The key operation in the algorithm is scanning the top k elements

of the stack to find a set of elements which form a range. It is easy to observe that the

stack is scanned only when a new element is inserted onto the top of the stack. The

newly inserted element can either be a number in the permutation(which corresponds

to a leaf node in the order k generating tree) or a range of elements(which corresponds

to an internal node in the order k generating tree). Also, observe that a node is inserted

only once into the stack. And when a range corresponding to a node is inserted to

the stack, it is either merged with the top j, j < k elements of the stack to become

another node or the top k elements of the stack are searched unsuccessfully and the

node remains on the top of the stack. In both cases, at most k2 units of time is spend.

Because to check whether top i elements form a range, i units of time is needed, so

doing this for all 1 ≤ i ≤ k we need k(k+1)
2

time which is clearly upper bounded by

k2. Thus distributing the costs this way, we get that for each node in the tree at most

k2-units of time is spend. Since there are only O(n) nodes in the tree the total time

spend by the algorithm is O(n).

If the permutation is not Baxter then at some point during the execution of the algo-

rithm it will find a set of ranges on stack top which does not form a Baxter permutation,

or the algorithm would not be able to merge the elements of the permutation to a single

node. Even in this case the number of nodes in the partial tree which the algorithm can

find with the given permutation is bounded by 2n, and with each node at most k2 units

of computation will be spend. Hence in this case also the algorithm runs in linear time.

29



If the permutation is Baxter and is HFOj for some j > k and is not HFOk then again the

same cost analysis is valid and hence the algorithm runs in linear time for all possible

types of input permutations.

Note that checking if a set of k elements form a range can be checked in constant

time for a fixed value of k by writing conditional statements to check if the elements

follow any of the k! arrangements. We can also check if a set of k elements form a

Baxter permutation for a fixed k in constant time by writing conditional statements

to check if their rank ordering is equivalent to any one of the Baxter permutations of

length k(whose number is bounded by number of permutations, k!). Hence the above

algorithm runs in linear time for a predetermined value of k.

If the value k is unknown the same algorithm can be made to run in O(n2 log2 n)

time to find out the minimum k for which the input permutation is HFOk with some sim-

ple modifications in the implementation. The first modification we have to implement

is to make the algorithm checks if the input permutation π is Baxter permutation. If it is

not it cannot be HFOj for any j hence is rejected. If it is a Baxter permutation then we

know that it is HFOk for some k ≤ n. And also at each time a new element is inserted

onto the stack we have to check if that forms a range with any of the top j, j ≤ |S| ele-

ments of the stack where |S| denotes the current size of the stack. Implementing these

changes alone we obtain the modified Algorithm 3. The increase in running time comes

from the fact that we don’t know the value of the k, thus forcing us to scan the entire

stack at the insertion of a new element on top of the stack costing us cn log2 n time to

sort the elements of the stack and see if there exists a j, j ≤ |S| such that the current

element forms a range along with S[top, . . . , (top − j)]. Checking if a permutation is

Baxter takes O(n2) time. And we use the same amortized cost analysis as above but

with each node(internal or leaf) in the tree we associate the cost of cn log2 n which is

spent at the time it is first inserted on to the stack for sorting the current elements of

the stack. The number of nodes in the tree is again bounded by 2n. Hence the stack

reduction part of the algorithm runs in O(n2 log2 n) time and checking if a permutation

is Baxter part runs in time O(n2). So the total time taken is O(n2 log2 n).
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Input: A permutation π of length n

Stack S← φ;1

if π is not a Baxter permutation then2

Reject;3

end4

for i = 1 to n do5

S.push(Range (π[i]));6

mergedNodes←true;7

repeat8

Array← sort(S [top . . . , 1)]) ;9

/*Find the longest range containing stack top */
for i = 1 to n do10

if Array [i] =S [top ] then11

Break;12

end13

end14

for j =i to n do15

/*This loop will run until Array [i , . . . ,j ] cease
to become a range of contiguous elements */

if Array [j].end()+1 6=Array [j + 1].start() then16

Break;17

end18

end19

for l =i downto 2 do20

/*This loop will run until Array [l , . . . ,i ] cease
to become a range of contiguous elements */

if Array [l].start()−1 6=Array [l− 1].end() then21

Break;22

end23

end24

/*Array [l, . . . , j] forms a range containing stack top,
hence S [top, . . . , (top− (j− l))] forms a range */

if j 6=l then25

R←Range(S [top, . . . , top− (j− l)]) ;26

for m = 1 to (j− l) do27

S.pop();28

end29

S.push(R);30

else31

mergedNodes←false;32

end33

until mergedNodes =false ;34

end35

if S.size()= 1 then36

Accept;37

else38

Reject;39

end40

Algorithm 3: Algorithm for finding the minimum k for which π is HFOk
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2.4 Counting

Given an n, it is interesting to know the number of distinct HFOk floorplans with n

rooms. We call two HFOk floorplans distinct in the same way Sakanushi et al. (2003)

defines it. Given a floorplan f , a segment s supports a room r in f if s contains one of

the edges of r. We say that s and r hold a top-,left-,right-, or bottom-seg-room relation

if s supports r from the respective direction. Two floorplans are equivalent if there

is a labeling of their rectangles and segments such that they hold the same seg-room

relations, otherwise they are distinct. This is the same definition of equivalent floorplans

Ackerman et al. (2006) used. Since we are considering a restriction of the bijection they

gave between mosaic floorplans and Baxter permutations to HFOk floorplans, we can

say that two HFOk floorplans are distinct if they are mapped to different permutations

by this bijection. And by theorem-7 there is a bijection between HFOk floorplans and

Baxter permutations which avoid patterns from simple permutations of length k + 1

and exceptionally simple permutations of length k + 2. Hence we give a lower bound

on number of distinct HFOk floorplans on n rooms by giving a lower bound(resp., an

upper bound) on the number of HFOk permutations.

Theorem 8. There are at least 3n−k HFOk permutations of length n which are not

HFOj for j < k.

Proof. The proof is inspired by the insertion vector scheme introduced by Chung et al.

(1978) to enumerate the admissible arrangements for Baxter permutations. The idea is

to start with a Uniquely HFOk permutation which is of length k say πk and successively

insert (k + 1, k + 2, k + 3, k + 4, . . . , n) onto it such a way that we are guaranteed

that it remains both Baxter and no patterns from simple k + 1 or exceptionally simple

k + 2 is introduced so the final permutation πn is of the desired property. It is very

clear that inserting k + 1 onto two different positions of πk will result in two different

permutations. It is also not hard to see that by starting with two different permutations π′i

and π′′i there is no sequence of indices to which insertion of (i+1, i+2, i+3, i+4, . . . , n)

will make the resulting permutations the same. Hence by counting the number of ways

to insert (k+1, k+2, k+3, k+4, . . . , n) successively, a lower bound on the number of

HFOk permutations is obtained. So the problem boils down to counting the number of

ways to insert i+ 1 given a permutation πi which is HFOk but not HFOj for j < k. We
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do not have an exact count for this but it is easy to observe that in such a permutation πi

there are always four locations which are safe for insertion of i+1 irrespective of relative

order of elements of πi. By safe we mean that insertion of i + 1 to πi would neither

make the resulting permutation non-Baxter nor will it make a non-simple permutation.

The four safe locations are :

1. Before the first element of πi.

2. After the last element of πi.

3. Before i in πi.

4. After i in πi.

Let us prove that these sites are actually safe for insertion of i + 1. We will first

prove that insertion of i + 1 onto these sites cannot introduce a pattern which matches

a simple permutation of length j, j > k. Suppose i + 1 is inserted before or after i in

πi and the newly obtained permutation has a text which matches a simple permutation

of length j, j > k .The text must be involving i + 1 as otherwise πi will also contain

the same pattern. The text matching the pattern cannot involve i also, as if it does then

the pattern will have two consecutive integers corresponding to the location of i and

i+ 1 in the text making it not a simple permutation . Thus the text matching the pattern

must involve i + 1 and it must not involve i, but then replacing i by i + 1 we get a text

in πi matching the same pattern contradicting our assumption that πi is HFOk. Now

it remains to prove that inserting i + 1 before or after πi is safe. Suppose insertion of

i+ 1 before or after π introduces a text matching a simple permutation of length j > k,

then the text must involve i + 1. But since i + 1 is greater than any other element in

πi in the pattern of length j, i + 1 will be matched with the number j. But then it

would mean that pattern is a permutation σ on [j] which has j as its first/last element

as i + 1 is placed after or before πi. This contradicts our assumption that the pattern is

a simple permutation as σ maps either {2, . . . , j} to {1, . . . , j − 1} or {1, . . . , j − 1}

to {1, . . . , j − 1} which is a proper sub-range. Hence it is not possible that insertion

of i + 1 onto any of these locations introduces a text matching a pattern from simple

permutations of length j, j > k. Now it remains to prove that the insertion of i + 1

cannot introduce any text which matches 3142/2413 with absolute difference between

first and last being one. Suppose it did, then it has to involve i + 1 since πi is Baxter,

and if it involves i + 1, i + 1 will have to match 4 in 3142/2413 as there is no element
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greater than (i + 1) in πi. But i + 1 matching 4 is not possible because in the first case

there is nothing to the left of i + 1, in the second case there is nothing to the right of

i + 1, and in third and fourth cases this is not possible for the reason that if 2413/3142

involves both i and i + 1 then i has to match 3 and i + 1 has to match 4 as they are

the second largest and largest elements in the new permutation but this is not possible

in these cases as i is adjacent to i + 1 and there cannot be any element matching 1 in

between them. Hence in these cases the only possibility left is that i+ 1 is matched to 4

in 3142/2413 but the text matching the pattern does not involve i and since i is adjacent

to i+ 1 and greater than any element of πi it can be replaced for i+ 1 to get 3142/2413

in πi with the absolute difference between first and last being one, contradicting the fact

that πi is Baxter. Hence we have proved that introduction of i+ 1 in these sites are safe.

Note that even though we have identified four safe locations for insertion of i + 1

into a πi sometimes i could be the first element of the permutation πi thus making the

location before i and location before πi one and the same. Similarly if i is the last

element the location after i and location after πi also coincides. But for any permu-

tation πi only one of the above two conditions can occur, so there are always three

distinct locations to insert i + 1. Now by starting from a Uniquely HFOk permu-

tation we can get 3n−k different permutations by inserting successive elements from

{k + 1, k + 2, k + 3, k + 4, . . . , n}. Hence the theorem.
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CHAPTER 3

Simulated Annealing for HFOk family of floorplans

In this chapter we describe moves for stochastic search methods like simulated anneal-

ing, to define a neighbourhood relation on the family of corresponding codes. Wong and

Liu (1986) designed a set moves for HFO2 floorplans based on the post-order traversal

of the the corresponding skewed order 2 generating tree. Later Wong and The (1989)

extended this idea to HFO5 floorplans. Now based on our result which unified the way

HFOk floorplans are represented using generating trees we can easily extend the moves

defined by Wong and The (1989) to HFOk floorplans. We also prove that the solution

space thus obtained is connected and is of diameter O(n2). We also prove that our

solution space is P-admissible except for the last property which requires the search

space to include the optimal floorplan for a given floorplanning problem. Almost all of

the solution spaces for floorplanning problem cannot guarantee this property. This is

because the optimal solution to floorplanning problem may contain empty rooms and

finding the number of optimal empty rooms for an instance of floorplanning problem is

in itself an open problem.

3.1 Simulated Annealing moves for HFO5 floorplans

Wong and The (1989) extended the idea of skewed slicing trees to skewed trees of or-

der 5, which correspond to hierarchical floorplans of order 5. Skewed order 5 trees are

essentially rooted trees with internal nodes having out-degree 2 or 5. The leaf nodes

represents the rooms in the floorplan and are labeled from {1, . . . , n}. Since the only

non-slicing structures with at most 5 rooms are the two wheels(Figure 1.11) , the inter-

nal nodes are of four types. Internal nodes labeled by ∗,+ represent the vertical cut and

horizontal cut respectively. Internal nodes labeled by ρ, σ represent the right rotating

wheel and left rotating wheel respectively. It is called skewed because the left child

of a node labeled from ∗,+ can not have the same label as the parent. The post-order

traversal of the skewed order 5 tree is used to represent an HFO5 floorplan. The polish



Figure 3.1: normalized 2-5 polish expression

expression thus obtained is called normalized 2− 5 polish expression. It is normalized

because the skewness rule in the tree(that is left child of node labeled ∗,+ can not have

the same label as the parent) will get reflected in the post-order traversal as a rule which

disallows two consecutive operators in the corresponding polish expression to have the

same label from ∗,+. Formally defined a normalized 2 − 5 polish expression is a se-

quence α = α1, α2, α3, . . . , αm of elements from {1, 2, 3, . . . , n, ∗,+, ρ, σ} satisfying

the following conditions. Let xi, yi and zi represent the number of slicing operators

(∗,+), the number of wheel operators(ρ, σ) and the number of operands respectively, in

the sequence α1, α2, α3, . . . , αi.

• for each j ≤ n there exists a unique index k such that αk = j.

• xi + 4yi < zi, for all i = 1, 2, 3, . . . ,m.

• αiαi+1 6= ∗∗ and αiαi+1 6= ++ for each i in 1, 2, 3, . . . ,m− 1.

Figure 3.1 shows the normalized 2−5 polish expression corresponding to the HFO5

floorplan in the figure.

The neighbourhood set for a normalized 2 − 5 expression is given by defining the

following set of moves on it.

1. M1: Swap two adjacent elements
(a) operand←→ operand

e.g. 45312 ∗ 2 + 687ρ∗ → 4531 ∗ 2678ρ∗
Two elements are adjacent if they are adjacent in the sequence obtained by
removing all operators from the normalized 2− 5 expression.

(b) operand←→ operator
e.g. 45312 ∗ 2 + 687ρ∗ → 4531 ∗ 268ρ7∗
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Figure 3.2: Destroying a wheel

(c) operator←→ operator
e.g. 45312 ∗ 2 + 687ρ∗ → 4531 ∗ 2687ρ∗
In this case it is required that at least one operator is a wheel operator.

2. M2: Complimenting
(a) Complement a maximal chain

e.g. 67812345ρ+ ∗+→ 67812345ρ ∗+∗
A maximal chain is a sequence of slicing operators αi, αi+1, αi+2, . . . , αj
in the given normalized 2 − 5 expression α such that αi−1 and αj+1 if they
exists should not be slicing operators.

(b) Complement a single wheel operator
e.g. 67812345ρ+ ∗+→ 67812345σ + ∗+

3. M3: Create a wheel

e.g. 678145 + 3 ∗ 2 + ∗+ ∗+ ∗ → 67814532ρ+ ∗+
Select a composite rectangle that can be partitioned into five basic/composite
rectangles which are not arranged into a wheel from and re-arrange the five com-
ponents into a wheel.

4. M4: Destroy a wheel

e.g. 67812345ρ+ ∗+→ 678145 + 3 ∗ 2 + ∗+ ∗+
For each wheel, consider eight slicing floorplans that are close to the wheel. The
eight slicing floorplans are obtained by two different ways of modifying the wheel
at each of the four T-junctions. Figure 3.2 illustrates the process.

The moves M2,M3 and M4 always produces a normalized 2− 5 polish expression.

It is not the case for M1, M1(b) and M2(c) might produce a sequence that violates

condition 2 in the set of conditions for normalized 2−5 polish expressions. But whether

resulting expression is normalized or not can be checked efficiently.
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Two normalized 2 − 5 polish expressions are said to be neighbours if one can be

obtained from the other via one of these four types of moves. While designing a simu-

lated annealing algorithm one can select a neighbour by randomly choosing of one the

four moves and then choosing the locations in the expression to apply the move.

3.2 Simulated Annealing Moves for HFOk floorplans

The moves described above can be easily generalized to any HFOk provided that it

is possible to capture the floorplan using a floorplan tree , find out Uniquely HFOl

floorplans for l ≤ k - the internal nodes of the tree and a nice representation of these

floorplans to serve as operators in the normalized polish expression. We have already

proved that HFOk floorplans are in bijective correspondence with skewed generating

trees of order k. We also provided an algorithm (Algorithm 3) to find the minimum

value of k for which a given Baxter permutation is also a permutation corresponding

to an HFOk floorplan. Hence we can run this algorithm on all Baxter permutations

of length k and find out permutations corresponding to Uniquely HFOk permutations

because Uniquely HFOk are HFOk floorplans such that k is the minimum such integer

for which they are HFOk. The bijection given by Ackerman et al. (2006) can be used to

represent a Uniquely HFOk floorplan as permutation of length k. We assume an implicit

left-to-right ordering among the children of internal nodes in generating trees of order k

and then use the post-order traversal of the tree to represent corresponding floorplan. To

distinguish operators from operands we enclose permutation corresponding to Uniquely

HFOk in set of [] parenthesis.

We will now formally define normalized polish expressions of length k which

corresponds to postorder traversal of a skewed generating tree of order k. A normalized

polish expression of length k is a sequence α = α1, α2, α3, . . . , αm of elements from

{1, 2, 3, . . . , n, {[π]|π ∈ Sj, j ≤ k}} satisfying the following conditions. Let xji rep-

resent the number of operators which are permutations of length j enclosed within []

brackets in the sequence α1, α2, α3, . . . , αi. And yi represents the number of operands

in the sequence α1, α2, α3, . . . , αi.

• for each j ≤ n there exists a unique index k such that αk = j.

•
∑k

j=2(j − 1)xji < yi, for all i = 1, 2, 3, . . . ,m.
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Figure 3.3: Example normalized polish expression of order k and corresponding floor-
plan

• αiαi+1 6= [12][12] and αiαi+1 6= [21][21] for each i in 1, 2, 3, . . . ,m− 1.

Figure 3.3 shows the normalized 2−5 polish expression corresponding to the HFO7

floorplan in the figure.

Now we will define moves on the Normalized Polish Expressions of order k to

define the neighbourhood relationship amongst HFOk floorplans.

1. M1: Swap two adjacent elements
(a) operand←→ operand

e.g. 45312[21]2[12]687[41352][21]→ 4531[21]2678[41352][21]

Two elements are adjacent if they are adjacent in the sequence obtained by
removing all operators from the normalized 2− 5 expression.

(b) operand←→ operator
e.g. 45312[21]2[12]687[41352][21]→ 4531[21]268[41352]7[21]

(c) operator←→ operator
e.g. 45312[21]2[12]687[41352][21]→ 4531[21]2687[41352][21]

In this case it is required that at most one operator is slicing([12]/[21]).

2. M2: Complimenting
(a) Complement a maximal chain

e.g. 67812345[25314][12][21][12]→ 67812345[25314][21][12][21]

A maximal chain is a sequence of slicing operators αi, αi+1, αi+2, . . . , αj
in the given normalized expression α such that αi−1 and αj+1 if they exists
should not be slicing operators.

(b) Complement an HFOj operator
In this operation take Uniquely HFOj operator in the given normalized pol-
ish expression and replace it with another Uniquely HFOj operator.
e.g. 67812345[41352][12][21][12]→ 67812345[25314][12][21][12]
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3. M3: Create an HFOj operator

e.g. 678145[12]3[12]2[12][21][12][21][12][21]→ 67814532[41352][12][21][12]

Select a composite rectangle that can be partitioned into j basic/composite rect-
angles which are not arranged into a Uniquely HFOj floorplan and re-arrange the
j components into an Uniquely HFOj floorplan.

4. M4: Destroy an HFOj operator

e.g. 32[21]586427[2475316]9[12]→ 32[21]586427[41352][12][21]9[12]

Here we differ slightly from Wong and The (1989). Since j can vary from 2
to k, the replacement policy is uniform. We replace a wheel operator like they
do. But for destroying an HFOj operator for j > 5, we replace it with a wheel
operator in the beginning and a chain of alternating slicing operators such that the
normalization property is not violated.

The moves M1, M1(b) and M2(c) might produce a sequence that violates condition

2 in the set of conditions for normalized polish expressions expression of order k. But

here also, checking whether resulting expression is normalized can be done efficiently.

Given a normalized polish expression of order k, it neighbours are all valid normal-

ized polish expression which can be obtained by a single move from the list of moves

above. It can be proved that the diameter of the solution space, that is the maximum

distance between two valid normalized polish expressions of order k of length n, is

O(n2). We prove this by observing that within O(n)-destroy HFOj operator moves, all

the operators in the given expression can be made slicing operators. For each operator,

with O(n) operand-operator swap moves, it can be moved to the end of the expres-

sion. Hence within O(n2) steps any normalized expression of order k of length n can

be transformed into an expression where all the operands are at the beginning and all

the operators are at the end, and are slicing operators. The moves are defined such

that if an expression can be obtained from another using a single move, there exists

another moves which returns it back to the original. Hence we have proved existence of

a normalized polish expression of order k which is a distance of O(n2) from any other

expression. Hence between two normalized polish expressions of order k, there is a

path of length O(n2) through this special node.
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CHAPTER 4

Special Families - HFO5

4.1 Introduction

Hierarchical Floorplans of Order 5 is the only HFOk other than slicing floorplans which

have been studied in the literature to the best of our knowledge. Wong and The (1989)

proved that they are in bijective correspondence with skewed order 5 trees and provided

moves for simulated annealing based search on normalized 2 − 5 polish expressions

which are expressions which correspond to the post-order traversal of skewed order 5

trees. Similar to the way Shen and Chu (2003) obtained bounds on number of slicing

floorplan by counting the number of skewed slicing trees we obtained a recurrence re-

lation for the number of distinct HFO5 floorplans with n rooms. Based on our result

which proved that HFOk floorplans are in one-one correspondence with skewed gener-

ating trees of order k we claim that such a recurrence can be easily extended to HFOk

floorplans for an arbitrary k.

4.2 Recurrence relation for the number HFO5 floorplans

Since we have proved that the number of distinct HFO5 floorplans with n rooms is equal

to the number of distinct skewed generating trees of order 5 with n leaves(also proved

by Wong and The (1989)) it suffices to count such trees . Let tn denote the number

of distinct skewed generating trees of order k with n leaves and t1 = 1 representing a

tree with a single node. Let an denote such trees whose root is labeled 12, bn denote

trees whose root is labeled 21, cn denote trees whose root is labeled 41352 and dn

denote the trees whose root is labeled 25314. Since these are the only Uniquely HFOk

permutations for k ≤ 5 the root has to labeled by one of these. Hence

tn = an + bn + cn + dn



Since it is a skewed tree if the root is labeled 12, its left child cannot be 12 but it

can be 12,41352 ,25314 or a leaf node. Similarly if the root is labeled 21 its left child

cannot be 21 but it can be 12,41352 ,25314 or a leaf node. But for trees whose roots are

labeled 41352/25314 can have any label for any of the five children. Hence we get,

an = tn−1.1 + Σn−1
i=2 tn−i(bi + ci + di)

bn = tn−1.1 + Σn−1
i=2 tn−i(ai + ci + di)

cn = Σ{i,j,k,l,m≥1|i+j+k+l+m=n}titjtktltm

dn = Σ{i,j,k,l,m≥1|i+j+k+l+m=n}titjtktltm

So cn = dn. Also note that since a node labeled 41352/25314 ought to have five

children, cn,dn = 0 for n < 5. Summing up an and bn and using the identity ti =

ai + bi + ci + di we get

an + bn = tn−1 + tn−1t1 + Σn−1
i=2 tn−i(ai + bi + ci + di + ci + di)

= tn−1 + Σn−1
i=1 tn−iti + 2Σn−1

i=2 tn−ici

If we substitute for ci in Σn−1
g=1 tn−gcg, we will get

Σ{h,i,j,k,l,m≥1|h+i+j+k+l+m=n}thtitjtktltm

because tn−g runs from 1 to n − 1 and i, j, k, l,m in the expansion of ci sums up to g,

hence if we let h = n − g then we get h + i + j + k + l + m = n. Thus we get the

following recurrence for tn

tn = tn−1 + Σn−1
i=1 tn−iti+

2Σ{h,i,j,k,l,m≥1|h+i+j+k+l+m=n}thtitjtktltm+

2Σ{i,j,k,l,m≥1|i+j+k+l+m=n}titjtktltm

We were not able to solve the recurrence using the ordinary generating function

T (z) associated with the sequence tn defined below.
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T (z) = Σ∞n=1tnz
n−1

We multiplied the recurrence with Σ∞n=1z
n−1, to get,

T (z) = zT (z) + zT 2(z) + z4T 5(z) + z5T 6(z) + t1

Substituting t1 = 1, we get the following polynomial equation in T (z)

z5T 6(z) + z4T 5(z) + zT 2(z) + (z − 1)T (z) + 1 = 0

Unfortunately this is a polynomial of sixth degree. Hence no general solution is avail-

able for its roots, which are needed to obtain the closed form expression for the above

recurrence relation.

Note that in a similar way recurrence relation for any HFOk can be constructed by

counting the skewed generating trees of order k where the roots can be any Uniquely

HFOl permutation for l ≤ k. With our characterization of HFOl and the algorithm for

checking whether a permutation is HFOl, we can easily find out the number of Uniquely

HFOl permutations for any l and easily get the recurrence for any HFOk using the above

mentioned method.

4.3 Poly-time Algorithm for counting HFO5 permuta-

tions

Note that the recurrence obtained above can be used to construct a polynomial time

algorithm for finding tn thus the number of distinct HFO5 floorplans with n rooms.

We are going to use dynamic programming to compute the value of tn using the above

recurrence relation. The algorithm is fairly straight forward.

The table T is used to store the values of ti, 1 ≤ i ≤ n. The for loop of lines 3-29,

computes successive values of ti using the recurrence relation we obtained earlier. The

algorithm runs in time O(n6). In general the algorithm for HFOk based on a recurrence

obtained using the above method will run in time O(nk+1).
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T←new Array(n);1

T [1]← 1;2

for m = 2 to n do3

x←0,y←0,z←0;4

for i = 1 to m −1 do5

x←x +T [i][m− i];6

end7

for i = 1 to m− 4 do8

for j = 1 to min(m-i,m −4) do9

for k = 1 to min(m-(i + j),m −4) do10

for l = 1 to min(m-(i + j + k),m-4) do11

y← y + T[i] ∗ T[j] ∗ T[k] ∗ T[l] ∗ T[m− (i + j + k + l)];12

end13

end14

end15

end16

for h = 1 to m− 5 do17

for i = 1 to min(m− h,m− 5) do18

for j = 1 to min(m− (h + i),m− 5) do19

for k = 1 to min(m− (h + i + j),m− 5) do20

for l = 1 to min(m− (h + i + j + k,m− 5) do21

z← z+T[h]∗T[i]∗T[j]∗T[k]∗T[l]∗T[m−(h+i+j+k+l)];22

end23

end24

end25

end26

end27

T [m]← x + 2y + 2z + T [m− 1];28

end29

Output T [n];30

Algorithm 4: Algorithm for producing the count of number of distinct HFO5

floorplans of n rooms
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CHAPTER 5

Properties of Baxter Permutations

Baxter permutations are an interesting family of permutations combinatorially. They

were first introduced to solve a conjecture about fixed points of commutative functions

by G. BaxterBaxter (1964). They are interesting from the VLSI perspective because of

their bijective correspondence to mosaic floorplans. In this chapter we explore some

properties of Baxter permutation which can be easily associated with properties of cor-

responding mosaic floorplans. The first such property is that Baxter permutations are

closed under inverse. We give a direct proof for this by the method of contradiction.

Then we prove that the mosaic floorplan corresponding to the inverse is obtained by

taking a mirror image of the floorplan corresponding to the permutation about the hori-

zontal axis. Another such result is that reverse of a Baxter permutation is also a Baxter

permutation. This is a straight forward observation from the definition of Baxter per-

mutations itself. But this result becomes interesting when the connection to geometry

is made. The geometric operation on a mosaic floorplan corresponding to reverse on

a Baxter permutation, is rotating the mosaic floorplan first by 90◦s clockwise and then

taking a mirror image along the horizontal axis.

5.1 Closure Under Inverse

Theorem 9. If a permutation π ∈ Sn is Baxter then so is π−1.

We prove this by giving a direct prove using the method of contradiction.

Proof. Suppose it is not, then there is a text matching 3142/2413 with absolute dif-

ference of first and last being exactly one. Let this text be at locations i, j, k, l with

i < j < k < l. Suppose π−1[i], π−1[j], π−1[k], π−1[l] forms the pattern 2413, the we

know that π−1[i]+1 = π−1[l] and π−1[k] < π−1[i] < π−1[l] < π−1[j]. Hence {i, j, k, l}

appears in the order (k, i, l, j) in π with i, l appearing in consecutive locations so they



form the pattern 3142. If k = j+ 1 then this violates the assumption that π is Baxter. If

k > j+1 then j+1 has to appear before i or after l in π as i and l appear in consecutive

positions. If j + 1 appears before i in π then j + 1, i, l, j forms the pattern 3142 with

absolute difference of first and last being one thus violating the assumption that π is

Baxter. So the only place j + 1 could be is after l, now consider k, i, l, j + 1, this forms

the pattern 3142 and |k − (j + 1)| < |k − j|, so if still |k − (j + 1)| > 1 then we could

apply the same argument as above and include j + 2. This process cannot go on for

ever as each time |k− (j + i)| is decreasing in value. So after |k− j| − 1 steps we get a

text matching the pattern 3142 with absolute difference of first and last being one thus

contradicting the assumption that π is Baxter. Since we have exhausted all the cases and

arrived at a contradiction in each one our assumption that π−1 contained a text matching

2413 with absolute difference of first and last being one is wrong. Similarly it can be

proved that π−1 does not contain any text matching 3142 with absolute difference of

first and last being one. Hence the theorem.

We know prove that equivalent operation on a mosaic floorplan corresponding to

the inverse, is taking the mirror image about vertical axis.

Theorem 10. Let fπ denote the mosaic floorplan corresponding to a Baxter permuta-

tion. For any given Baxter permutation π, the floorplan corresponding to inverse, fπ−1

can be obtained from fπ by taking a mirror image about the horizontal axis.

Proof. Let π be a Baxter permutation of length n. Let us take two indices i and j such

that i < j. Consider π[i] and π[j], either π[i] < π[j] or π[i] > π[j].

Case I:π[i] < π[j]

Since π[i] < π[j] and π[i] appears before π[j] by Lemma 1, π[i] is to the left of

π[j] in the mosaic floorplan corresponding to π, denoted by fπ. In the inverse of π,

π−1 indices π[i] and π[j] will be mapped to i and j respectively. Hence in fπ−1 , the

basic rectangles labeled by i and j will be such that i precedes j in the top-left deletion

ordering(as i < j) and also in bottom left deletion ordering(as π[i] < π[j]). Hence i is

to the left of j in fπ−1 .

Case II:π[i] > π[j]

Since π[i] > π[j] and π[i] appears before π[j] by Lemma 2, π[i] is below π[j] in
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Figure 5.1: Obtaining a mosaic floorplan corresponding to the inverse of a Baxter per-
mutation

fπ. In the inverse of π, π−1 indices π[i] and π[j] will be mapped to i and j respectively.

Hence in fπ−1 , the basic rectangles labeled by i and j will be such that i precedes j in

the top-left deletion ordering(as i < j) but in bottom left deletion ordering j precedes

i(as π[i] < π[j]). Hence i is above j in fπ−1 .

Hence we get a mapping between the basic rectangles of fπ and basic rectangles of

fπ−1 , such that whenever π[i] is below π[j], their images i, j will be such that i will be

above j. And whenever π[i] is to the left of π[j] so is i and j. The geometrical operation

which flips the above/below relation but does not affect the left/right relation is flipping

the object about the horizontal axis. Hence the theorem. Figure 5.1 illustrates the above

mentioned link between inverse and the geometry.

5.2 Closure under reverse

Theorem 11. If π is a Baxter permutation then so is its reverse, more over the mosaic

floorplan corresponding to reverse of π can be obtained from mosaic floorplan corre-

sponding to π by applying clockwise rotation by 90◦s and then applying reflection about

the vertical axis.

Proof. By definition Baxter permutations itself it is clear that the reverse of a Baxter

permutation is also a Baxter permutation. But let us find out what is the equivalent oper-

ation on the mosaic floorplan corresponding to the Baxter permutation which produces

the mosaic floorplan corresponding to the reverse of the given Baxter permutation. Let

π be a Baxter permutation and as above let fπ represent the mosaic floorplan corre-

sponding to π. Let us take two indices i and j in π such that i < j. If π[i] < π[j] in π

we know from the above analysis that π[i] is to the left of π[j] in fπ. Let πr represent the
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Figure 5.2: Obtaining a mosaic floorplan corresponding to the reverse of a Baxter per-
mutation

reverse of the permutation π and let fπr represent the mosaic floorplan corresponding

to the reverse of π, πr. In πr the order of numbers π[i] and π[j] will be reversed, and

they will be at locations k = n− i+ 1 and l = n− j+ 1 respectively. That is l < k and

πr[l] > πr[k] π[j] > π[i] we get that in fπr π[j] is below π[i]. If π[i] > π[j] in π then

we know from the proof of the earlier theorem that π[i] is below π[j]. In the reverse

πr the order of numbers π[i] and π[j] will be reversed. Hence they will be at locations

k = n − i + 1 and l = n − j + 1 respectively. That is l < k and πr[l] < πr[k] as

π[j] < π[i]. This implies that π[j] is to the left of π[i] in fπr . Summarizing this, if the

room labeled π[i] is to the left of π[j] in fπ then the operation which obtains the floor-

plan corresponding to the reverse of π will change the relative ordering of these blocks

such that π[i] will be below π[j]. And similarly if the room labeled π[i] is below π[j]

in fπ then the operation corresponding to the reverse will change their relative ordering

such that π[i] is to the left of π[j]. This corresponds to the rotation by 90◦ clock-wise

and then taking mirror image along the horizontal axis. Figure 5.2 illustrates the above

mentioned link between reverse and the geometry.
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CHAPTER 6

Discussions and Open Questions

6.1 Summary of Results

We characterized permutations corresponding to the Abe-label of HFOk floorplans. We

also proved that HFOk floorplans are in bijective correspondence with skewed generat-

ing trees of Order k. This gave us a recurrence relation for the exact number of HFOk

floorplans with n rooms and thus a polynomial time algorithm for generating the count

for any given n. We obtained a linear time algorithm for checking if a given permu-

tation is HFOk for a particular value of k. The same algorithm can be used to check

whether a permutation is HFOk for some unknown k in O(n2 log n) time. We extended

the neighbourhood moves on HFOk floorplans for stochastic search methods like simu-

lated annealing on these family of floorplans. We also proved that Baxter permutations

are closed under inverse and reverse.

6.2 Open Questions

Even though we were able to obtain a recurrence relation for the exact number of HFOk

floorplans with n rooms and thus a polynomial time algorithm for generating the count

for any given n, we were not able to find a closed form expression for the number of

distinct HFOk floorplans with n rooms. Even for a particular value of k (especially 5)

it would be interesting to see a closed form expression for the number of distinct HFOk

floorplans. Another open question arising from our research is the number of distinct

Uniquely HFOk floorplans. We were able to obtain some trivial lower bounds based on

the construction method described in the proof of Infinite hierarchy. But no closed form

expression for the number of Uniquely HFOk floorplans were obtained.
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