
Computer Vision –
Transformations,

Imaging Geometry
and

Stereo Vision

Dr. S. Das
IIT Madras, Chennai-36

BASICS
Representation of Points in the 3D world: a vector of length 3

[]TxX zy =

Right handed
coordinate system

z

x

y

P(x,y,z) P’(x’,y’,z’)

T

Transformations
of points in 3D

4 basic transformations

• Translation

• Rotation

• Scaling

• Shear

Affine
transformations

Basics 3D Transformation equations
• Translation : P’ = P + ∆P

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z
y
x

z
y
x

z
y
x

'

'

'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

S
S

S
S

00
00
00

α

β

γ

• Scaling: P’= SP

• Rotation : about an axis,
P’ = RP

Positive Rotations: counter clockwise about
the origin

ROTATION - 2D

In matrix form, this is :

For rotations, |R| = 1 and [R]T = [R]-1.
Rotation matrices are orthogonal.

⎥
⎦

⎤
⎢
⎣

⎡
=

)cos()sin(
)sin(-)cos(

θθ
θθ

R 0

5

4

3

2

1

1 2 3 4 5 X

Y

θ = 30°

θ

() ()
() ()θθ

θθ
 cos sin'
 sin cos'

yxy
yxx

+=
−=

• Translate by (-Px, -Py)

• Rotate

• Translate by (Px, Py)

Rotation about an arbitrary
point P in space

As we mentioned before, rotations are
applied about the origin. So to rotate about
any arbitrary point P in space, translate so
that P coincides with the origin, then rotate,
then translate back. Steps are:

P1

House at P1

Translation of
P1 to Origin

Rotation by θ

θ

Translation
back to P1

P1

Rotation about an arbitrary
point P in space

2D Transformation equations (revisited)
• Translation : P’ = P + ∆P

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

y
x

'
'

• Rotation : about an axis,
P’ = RP ⎥

⎦

⎤
⎢
⎣

⎡
=

)cos()sin(
)sin(-)cos(

θθ
θθ

R

??
10
01

'
'

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

=⎥
⎦

⎤
⎢
⎣

⎡
y
x

y
x

y
x T

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
'
'

cossin
sincos

"
"

y
x

y
x

θθ
θθ

Rgen = T1(-Px, -Py) * R2(θ) * T3(Px, Py)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=
100

10
01

*
100
0)cos()sin(
0)sin()cos(

*
100

10
01

y

x

y

x

P
P

P
P

θθ
θθ

Rotation about an arbitrary
point P in space

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−
−−−

=
100

)sin(*)1)(cos(*)cos()sin(
)(sin(*)1)(cos(*)sin()cos(

θθθθ
θθθθ

xy

yx

PP
PP

Using Homogeneous system

Homogeneous representation of a
point in 3D space:

point) 3D afor 1,w(
|w z yx | T

=
=P

Transformations will thus be
represented by 4x4 matrices:

P’ = A.P

Homogenous Coordinate systems
• In order to Apply a sequence of transformations to

produce composite transformations we introduce the
fourth coordinate

• Homogeneous representation of 3D point:
|x y z h|T (h=1 for a 3D point, dummy coordinate)

• Transformations will be represented by 4x4 matrices.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆

=

1000
100
010
001

z
y
x

T

Homogenous Translation
matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1 0 0 0
0
0
0

00

00
00

z

y

x

S
S

S

S

Homogenous Scaling
matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1 0 0 0
0
0
0

cossin0
sincos0
001

αα
αα

αR

Rotation about x axis by angle α

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1 0 0 0
0
0
0

100
0cossin
0sincos

γγ
γγ

γR

Rotation about z axis by angle γ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1 0 0 0
0
0
0

cos0sin

010
sin0cos

ββ

ββ

βR

Rotation about y axis by angle β

Change of
sign?

How can one do a Rotation about an arbitrary Axis in Space?

3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an
axis in space, passing through the point (x0, y0, z0)
with direction cosines (cx, cy, cz), by θ degrees.

1) First of all, translate by: - (x0, y0, z0) = |T|.
2) Next, we rotate the axis into one of the principle

axes. Let's pick, Z (|Rx|, |Ry|).
3) We rotate next by θ degrees in Z (|Rz(θ)|).
4) Then we undo the rotations to align the axis.
5) We undo the translation: translate by (x0, y0, z0)

The tricky part is (2) above.

This is going to take 2 rotations,
i) about x (to place the axis in the x-z plane)
and
ii) about y (to place the result coincident with the z
axis).

Rotation about x by α:
How do we determine α?

Project the unit vector, along
OP, into the y-z plane. The y
and z components are cy and
cz, the directions cosines of
the unit vector along the
arbitrary axis. It can be seen
from the diagram above, that :

α

x
y

z

0
P cz

cx

cy

d

d = sqrt(cy
2 + cz

2), cos(α) = cz /d
sin(α) = cy /d

x
y

z

0

P(cx, 0 ,d)

d

cx
β

Rotation by β about y:
How do we determine β?
Similar to above:

Determine the angle β to rotate the result into the Z axis:
The x component is cx and the z component is d.

cos(β) = d = d /(length of the unit vector)
sin(β) = cx = cx /(length of the unit vector).

Final Transformation:
M = |T|-1 |Rx|-1 |Ry|-1 |Rz| |Ry| |Rx| |T|

If you are given 2 points instead, you can calculate
the direction cosines as follows:

V = | (x1 -x0) (y1 -y0) (z1 -z0) |T

cx = (x1 -x0)/ |V|
cy = (y1 -y0)/ |V|
cz = (z1 -z0)/ |V|,

where |V| is the length of the vector V.

Inverse transformations

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆−
∆−
∆−

=−

1000
100
010
001

1

z
y
x

T

Inverse Translation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

1000
0100
0010
0001

1

z

y

x

S
S

S

S

Inverse scaling

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1 0 0 0
0
0
0

100
0cossin
0sincos

1 0 0 0
0
0
0

cos0sin

010
sin0cos

1 0 0 0
0
0
0

cossin0
sincos0

001
γγ
γγ

ββ

ββ

αα
αα

Rα
-1 Rγ

-1Rβ
-1

Inverse Rotation

Concatenation of transformations
• The 4 X 4 representation is used to perform a

sequence of transformations.
• Thus application of several transformations

in a particular sequence can be presented by
a single transformation matrix

TSAvTvSRv ..RA ;))((θθ ===∗

• The order of application is important… the
multiplication may not be commutable.

Cases where T1 * T2 = T2 * T1:

Commutivity of Transformations
If we scale, then translate to the origin,

and then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

When does T1 * T2 = T2 * T1?

rotationScale (uniform)
rotationrotation

scalescale
translationtranslation

T2T1

COMPOSITE TRANSFORMATIONS
If we want to apply a series of

transformations T1, T2, T3 to a set of points,
We can do it in two ways:

1) We can calculate p'=T1*p, p''= T2*p',
p'''=T3*p''

2) Calculate T= T1*T2*T3, then p'''= T*p.

Method 2, saves large number of additions
and multiplications (computational time) –
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the
matrices into one final transformation matrix,
and then apply that to the points.

Spaces
Object Space

definition of objects. Also called Modeling space.

World Space
where the scene and viewing specification is made

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z

axis.

3D Image Space
A 3D Perspected space.
Dimensions: -1:1 in x & y, 0:1 in Z.
Where Image space hidden surface algorithms work.

Screen Space (2D)
Coordinates 0:width, 0:height

Projections
We will look at several planar geometric 3D to 2D

projection:

-Parallel Projections
Orthographic
Oblique

-Perspective

Projection of a 3D object is defined by straight
projection rays (projectors) emanating from the
center of projection (COP) passing through each
point of the object and intersecting the projection
plane.

Perspective
Projection

Perspective Projections

Distance from COP to
projection plane is finite.
The projectors are not
parallel & we specify a
center of projection.

Center of Projection is
also called the
Perspective Reference
Point

COP = PRP

• Perspective foreshortening: the size of the perspective
projection of the object varies inversely with the
distance of the object from the center of projection.

• Vanishing Point: The perspective projections of any set
of parallel lines that are not parallel to the projection
plane converge to a vanishing point.

Example of Orthographic Projection

Projection
Plane
(front view)

Projectors for
front view

Projection
Plane
(side view)

Projectors for
top view

Projectors
for
side view

Projection
Plane
(top view)

Example of Isometric Projection:

Projection-
plane normal

Projection
plane

Projector

Example Oblique Projection

Projection
plane

Projection-plane normal

Projector
z

y

x

END OF BASICS

THE CAMERA MODEL:
perspective projection

p(x,y,z)

P (X,Y)

0

x,X

y,Y

z

I

f

COL

Camera lens

(x,y,z)- 3D world

(X,Y) - 2D Image plane

F P(X,Y,Z)

Z

X or Y

IP

(COL)

PP

X or Y

xp or yp

P(X,Y,Z)

ZO

Perspective Geometry and Camera Models

f
z

yY
f

z
xX

f-z
yfY,

zf
xfX

fz
y

f
Y

fz
x

f
X

−
=

−
=

=
−

=

−
−

=
−
−

=

1
 ,

1

 ,
• Image plane before the

camera lens

• Origin of coordinate
systems at the image
plane

• Image plane at origin of
coordinate system

CASE 1

(COL) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,y

By similarity of triangles

f
z
yY

f
z
xX

z
yfY,

z
xfX

z
y

f
Y

z
x

f
X

==

==

=
−
−

=
−
−

 ,

 ,

• Image plane before the
camera lens

• Origin of coordinate
systems at the camera lens

• Image plane at origin of
coordinate system

CASE 2

(COL) Z

x ,y

P(-X,-Y)

p(x,y,z)

PP

f

O

X,Y

By similarity of triangles

f
z
yY

f
z
xX

z
yfY,

z
xfX

z
y

f
Y

z
x

f
X

==

==

==

 ,

 ,

• Image plane after the
camera lens

• Origin of coordinate
systems at the camera lens

• Focal length f

CASE 3

(COL)
Z

x ,y

P(X,Y)

p(x,y,z)
PP

f
O

X, Y

By similarity of triangles

f
z

yY
f

z
xX

zf
yfY,

zf
xfX

zf
y

f
Y

zf
x

f
X

+
=

+
=

+
=

+
=

+
=

+
=

1
 ,

1

 ,
• Image plane after the

camera lens

• Origin of coordinate system
not at COP

• Image plane origin coincides
with 3D world origin

CASE 4

(COL) Z

X ,Y

P(X,Y)

p(x,y,z)

PP

f O

x,y

By similarity of triangles

(COP) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,y

f
z

yY
f

z
xX

−
=

−
=

1
 ,

1

Consider the first case ….

• Note that the equations
are non-linear

• We can develop a matrix
formulation of the
equations given below

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

k
kz
ky
kx

fk
Z
Y
X

1100
0100
0010
0001

'(Z is not important and is
eliminated)

Inverse perspective projection

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

1100
0100
0010
0001

1

f

P

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
000

1100
0100
0010
0001

1

0

0

0

0

0

0

0

0

0

Y
X

k

kY
kX

k

kY
kX

f
z
y
x

wh

p(x0,y0,z0)

P(X0,Y0)

Hence no 3D information can be retrieved with the inverse
transformation

)(),(0
0

00
0

0 zf
f

Yyzf
f

Xx −=−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

1100
0100
0010
0001

1

0

0

0

0

0

0

0

0

0

Zf
fZ

Zf
fY

Zf
fX

kf
Zk

kZ
kY
kX

k
kZ
kY
kX

f
z
y
x

wh

So we introduce the dummy variable i.e. the depth Z

Let the image point be represented as: TkkZkYkX] [00

0

0

zf
fzZ
−

= f
zf

Z
z

Zf
f 00 −

==
+Zf

fZz
+

=0

f
z

yY
f

z
xX

f-z
yfY,

zf
xfX

fz
y

f
Y

fz
x

f
X

−
=

−
=

=
−

=

−
−

=
−
−

=

1
 ,

1

 ,

CASE 1

(COL) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,y

)(),(0
0

00
0

0 zf
f

Yyzf
f

Xx −=−=

Forward: 3D to 2D

Inverse: 2D to 3D

f
z
yY

f
z
xX

z
yfY,

z
xfX

z
y

f
Y

z
x

f
X

==

==

==

 ,

 ,

CASE 3

(COL)
Z

x ,y

P(X,Y)

p(x,y,z)
PP

f
O

X, Y

Forward: 3D to 2D

Inverse: 2D to 3D

f
Yzy

f
Xzx 00

0
00

0
. ,.

==

Pinhole Camera schematic diagram

Camera Image formulation
Action of eye is simulated by an abstract camera model
(pinhole camera model)
3D real world is captured on the image plane. Image is
projection of 3D object on a 2D plane.

X
Y

Z

worldX

imagex
C

Π

f

),,(www ZYX=worldX

),(
w

w

w

w

Z
Yf

Z
Xf=imagex

),(),,(: iiwww yxZYXF →

Camera Geometry
Camera can be considered as a projection matrix,

A pinhole camera has the projection matrix as

Principal point offset

Camera with rotation and translation

Xx 4*3P=

[]0|)1,,(IffdiagP =

() ()TT /,/,, yx pZfYpZfXZYX ++→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

10

0

0
0 y

x

p
p

f
f

K []X0x |IK=

[]Xtx |RK=

p

camy

camx

),(yx pp=p

X

Y

Z

tR,

Camera Geometry

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
yy

xx

p
ps

K α
α

y

x

α
α

Aspect ratio

xα

yα

Scale factor in x- coordinate direction

Scale factor in y- coordinate direction
s Camera skew

Camera internal
parameters

Camera matrix,]|[tRKP = R Rotation
Translation vectort

X
Y

Zp

imgx
imgy),(yx pp=p

worldX

imagex
C

Π

Observations about Perspective
projection

• 3D scene to image plane is a one to one
transformation (unique correspondence)

• For every image point no unique world
coordinate can be found

• So depth information cannot be retrieved using a
single image ? What to do?

• Would two (2) images of the same object (from
different viewing angles) help?

• Termed - Stereo Vision

Stereo Vision

X
Y

X
Y

Image 1

Image 2
B

Lens center
Optical axis

p(x,y,z)

(X2,Y2)

(X1,Y1)

World point

Stereo Vision (2)
• Stereo imaging involves obtaining two separate image

views of an object (in this discussion the world point)
• The distance between the centers of the two lenses is

called the baseline width.
• The projection of the world point on the two image

planes is (X1, Y1) and (X2, Y2)
• The assumption is that the cameras are identical
• The coordinate system of both cameras are perfectly

aligned differing only in the x-coordinate location of the
origin.

• The world coordinate system is also bought into the
coincidence with one of the image X, Y planes (say
image plane 1) . So y, z coordinates are same for both
the camera coordinate systems.

O1

B

(X2,Y2)

(X1,Y1)

f

f

W(x, y, z)

X

z1

Image 1

Image 2

Top view of the stereo imaging system with origin
at center of first imaging plane.

O2

z2

)(),(2
2

21
1

1 zf
f

Xxzf
f

Xx −=−=

First bringing the first camera into coincidence with
the world coordinate system and then using the second
camera coordinate system and directly applying the
formula we get:

Because the separation between the two cameras is B

/* nowit Solve * /(?) , 2112 zzzBxx ==+=

)(
),()(

)(),(

12

12

2
1

1
1

XX
fBfzzf

f
XXB

zf
f

XBxzf
f

Xx

−
−=−

−
=

−=+−=

• The equation above gives the depth directly from
the coordinate of the two points

• The quantity given below is called the disparity

)(
)(12 zf

fBXXD
−

=−=

• The most difficult task is to find out the two
corresponding points in different images of the
same scene – the correspondence problem.

]1[
)(12

D
Bf

XX
fBfz −=
−

−=

• Once the correspondence problem is solved –
(non-analytical), we get D. Then obtain depth
using:

.(?) ; , 212112 zzzyyyBxx ====−=

D
fB

XX
fBz

f
zXXB

f
zXBxx

f
zXx

.
)(

 ,)(

 ,

21

21

2
12

1
1

=
−

=
−

=

=−==

f
Yzy,

f
Xzx

z
y

f
Y

z
x

f
X

==

==

 ,Alternate Model
– Case III

O1

B

(X2,Y2)

(X1,Y1)

f
W(x, y, z)

X

z1

IP 1

IP 2

Top view of the stereo imaging system with origin
at center of first camera lens.

O2

z2

]1[
)(12

D
Bf

XX
fBfz −=
−

−=

D
fB

XX
fBz .

)(21

=
−

=

Compare the two solutions

What do you think of D ?

)(
)(12 zf

fBXXD
−

=−=

z
fBXXD =−=)(21

The Correspondence Problem

X2

Y2Y1

X1

21 YY =
z
fBXXD =−=)(21

12 ;0 XXthenDIf <>

Image Plane - I Image Plane - II

D
fBz .=

EPIPOLAR Line

(X1, Y1) (X2, Y2)

Error in Depth Estimation

D
fBz .= 2

.
D

fB−=D
z
δ

δ)(

fB
z

D
z

D
fB

D
z

.
.)(2

2 −=−=−=δ
δ

Expressing in terms of depth (z), we have:

What is the maximum value of depth (z), you can
measure using a stereo setup ?

fBz .max =

Even if correspondence is solved correctly, the
computation of D may have an error, with an upper
bound of 0.5; i.e. (δD)max = 0.5.

That may cause an error of:
fB

zz
.2

)(
2

−=δ

Larger baseline width and Focal length (of the
camera) reduces the error and increases the maximum
value of depth that may be estimated.

What about the minimum value of depth (object
closest to the cameras) ?

maxmin /. DfBz =
What is Dmax ?

maxmax XD =
Xmax depends on f and image resolution
(in other words, angle of field-of-view or FOV).

General Stereo Views

Perfect Stereo Views

Perfect Stereo Views

Perfect Stereo Views

We can also have arbitrary pair of views from two
cameras.

• The baseline may not lie on any of the principle axis

• The viewing axes of the cameras may not be parallel

• Unequal focal lengths of the cameras

• The coordinate systems of the image planes may not be
aligned

In general we may have multiple views (2 or more) of
a scene. Typically used for 3D surveillance tasks.

Take home exercises/problems:

What about Epipolar line in cases above ?

How do you derive the equation of an epipolar line ?

In case of a set of arbitrary views used for 3-D
reconstruction (object structure, surface geometry,
modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker

- Bundle adjustment

- 8-point DLT algorithm

- Zhang’s homography

- Tri-focal tensors

- Cheriality and DIAC

- Auto-calibration

- Metric reconstruction

- RANSAC

Tri-focal tensors

End of Lectures on -

Transformations,
Imaging Geometry

and
Stereo Vision

