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BASICS
Representation of Points in the 3D world:  a vector of length 3
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Transformations 
of points in 3D

4 basic transformations 

• Translation

• Rotation

• Scaling

• Shear

Affine 
transformations



Basics 3D Transformation equations
• Translation : P’ = P + ∆P
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• Scaling: P’= SP

• Rotation : about an axis,
P’ = RP



Positive Rotations: counter clockwise about
the origin            

ROTATION - 2D

In matrix form, this is :                  

For rotations, |R| = 1 and [R]T = [R]-1. 
Rotation matrices are orthogonal. 
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• Translate by (-Px, -Py)

• Rotate

• Translate by (Px, Py)

Rotation about an arbitrary
point P in space

As we mentioned before, rotations are 
applied about the origin. So to rotate about 
any arbitrary point P in space, translate so 
that  P coincides with the origin, then rotate, 
then translate back. Steps are: 



P1

House at P1

Translation of 
P1 to Origin

Rotation by θ

θ

Translation 
back to P1

P1

Rotation about an arbitrary
point P in space



2D Transformation equations (revisited)
• Translation : P’ = P + ∆P

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

y
x

'
'

• Rotation : about an axis,
P’ = RP ⎥
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Rgen = T1(-Px, -Py) * R2(θ) * T3(Px, Py) 
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Rotation about an arbitrary
point P in space
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Using Homogeneous system



Homogeneous representation of a 
point in 3D space:

point) 3D afor  1,w(
|w z yx | T

=
=P

Transformations will thus be 
represented by 4x4 matrices:

P’ = A.P



Homogenous Coordinate systems
• In order to Apply a sequence of transformations to 

produce composite transformations we introduce the 
fourth coordinate

• Homogeneous representation of 3D point: 
|x y z h|T (h=1 for a 3D point, dummy coordinate)

• Transformations will be represented by 4x4 matrices.
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Change of 
sign?

How can one do a Rotation about an arbitrary Axis in Space?



3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an 
axis in space, passing through the point (x0, y0, z0)
with direction cosines  (cx, cy, cz), by θ degrees. 

1) First of all, translate by:  - (x0, y0, z0) = |T|.
2) Next, we rotate the axis into one of the principle  

axes. Let's pick,  Z (|Rx|,  |Ry|).
3) We rotate next by θ degrees in Z ( |Rz(θ)|).
4) Then we undo the rotations to align the axis. 
5) We undo the translation: translate  by (x0, y0, z0)

The tricky part is (2) above.

This is going to take  2 rotations, 
i)  about x  (to place the axis in the x-z plane) 
and 
ii) about y  (to place the result coincident with the z 
axis).



Rotation about x by α:  
How do we determine α? 

Project  the unit vector, along 
OP, into the y-z plane. The y 
and z components are cy and 
cz, the directions cosines of 
the unit vector along the 
arbitrary axis.  It can be seen 
from the diagram above, that : 
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d = sqrt(cy
2 + cz

2), cos(α) = cz /d 
sin(α)  = cy /d
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0

P(cx, 0 ,d)

d

cx
β

Rotation by β about y:             
How do we determine β? 
Similar to above:



Determine the angle β to rotate the result into the Z axis: 
The x component is cx and the z component is d. 

cos(β) = d =  d /(length of the unit vector) 
sin(β)  = cx =  cx /(length of the unit vector). 

Final Transformation: 
M = |T|-1 |Rx|-1 |Ry|-1 |Rz| |Ry| |Rx| |T| 

If you are given 2 points instead, you can calculate 
the direction cosines as follows: 

V   =  | (x1 -x0)  (y1 -y0)  (z1 -z0) |T 

cx =  (x1 -x0)/ |V| 
cy =  (y1 -y0)/ |V| 
cz =  (z1 -z0)/ |V|,

where |V| is the length of the vector V. 



Inverse transformations
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Concatenation of transformations
• The 4 X 4 representation is used to perform a 

sequence of transformations. 
• Thus application of several transformations 

in a particular sequence can be presented by 
a single transformation matrix

TSAvTvSRv ..RA  ;))(( θθ ===∗

• The order of application is important… the 
multiplication may not be commutable.



Cases where T1 * T2 = T2 * T1:         

Commutivity of Transformations 
If we scale, then translate to the origin, 

and then translate back, is that equivalent to 
translate to origin, scale, translate back?

When is the order of matrix 
multiplication unimportant?

When does T1 * T2 = T2 * T1?

rotationScale (uniform)
rotationrotation

scalescale
translationtranslation

T2T1



COMPOSITE TRANSFORMATIONS
If we want to apply a series of 

transformations  T1, T2, T3 to a set of points, 
We can do it in two ways: 

1) We can calculate p'=T1*p, p''= T2*p',    
p'''=T3*p'' 

2) Calculate T= T1*T2*T3, then p'''= T*p. 

Method 2, saves large number of additions 
and multiplications (computational time) –
needs approximately 1/3 of as many operations. 
Therefore, we concatenate or compose the 
matrices into one final transformation matrix, 
and then apply that to the points. 



Spaces
Object Space

definition of objects. Also called Modeling space. 

World Space
where the scene and viewing specification is made 

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z 

axis. 

3D Image Space
A 3D Perspected space. 
Dimensions: -1:1 in x & y, 0:1 in Z. 
Where Image space hidden surface algorithms work. 

Screen Space (2D) 
Coordinates 0:width, 0:height



Projections
We will look at several planar geometric 3D to 2D

projection: 

-Parallel Projections
Orthographic 
Oblique

-Perspective 

Projection of a 3D object is defined  by  straight 
projection  rays (projectors) emanating from the 
center of projection (COP) passing through each 
point of the object and intersecting the  projection 
plane.



Perspective 
Projection

Perspective Projections

Distance from COP to 
projection plane is finite.  
The projectors are not 
parallel  & we specify a 
center of projection. 

Center of Projection is 
also called the 
Perspective Reference 
Point 

COP = PRP



• Perspective foreshortening: the size of the perspective 
projection of the object varies inversely with the 
distance of the object from the center of projection. 

• Vanishing Point: The perspective projections of any set 
of parallel lines that are not parallel to the projection 
plane converge to a vanishing point. 



Example of Orthographic Projection

Projection
Plane
(front view)

Projectors for 
front view

Projection
Plane
(side view)

Projectors for 
top view

Projectors
for 
side view

Projection
Plane
(top view)



Example of Isometric Projection: 

Projection-
plane normal

Projection
plane 

Projector



Example Oblique Projection 

Projection
plane

Projection-plane normal

Projector
z

y

x



END OF BASICS



THE CAMERA MODEL: 
perspective projection

p(x,y,z)
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(x,y,z)- 3D world

(X,Y) - 2D Image plane



F P(X,Y,Z)
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X or Y

IP

(COL)

PP

X or Y

xp or yp

P(X,Y,Z)

ZO

Perspective Geometry and Camera Models
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• Image plane before the 
camera lens

• Origin of coordinate 
systems at the camera lens 

• Image plane at origin of 
coordinate system
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• Image plane after the 
camera lens

• Origin of coordinate 
systems at the camera lens 

• Focal length f
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(COP) Z
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Consider the first case ….

• Note that the equations 
are non-linear

• We can develop a matrix 
formulation of the 
equations given below
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Inverse perspective projection
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Hence no 3D information can be retrieved with the inverse 
transformation
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Forward: 3D to 2D

Inverse: 2D to 3D
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Pinhole Camera schematic diagram



Camera Image formulation
Action of eye is simulated by an abstract camera model 
(pinhole camera model)
3D real world is captured on the image plane. Image is 
projection of 3D object on a 2D plane.
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Camera Geometry
Camera can be considered as a projection matrix,

A pinhole camera has the projection matrix as

Principal point offset

Camera with rotation and translation
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Camera Geometry
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Observations about Perspective 
projection

• 3D scene to image plane is a one to one 
transformation (unique correspondence) 

• For every image point no unique world 
coordinate can be found

• So depth information cannot be retrieved using a 
single image ? What to do?

• Would two (2) images of the same object (from 
different viewing angles) help? 

• Termed - Stereo Vision



Stereo Vision

X
Y

X
Y

Image 1

Image 2
B

Lens center
Optical axis

p(x,y,z)

(X2,Y2)

(X1,Y1)

World point



Stereo Vision (2)
• Stereo imaging involves obtaining two separate image 

views of an object  ( in this discussion the world point)
• The distance between the centers of the two lenses is 

called the baseline width.
• The projection of the world point on the two image 

planes is (X1, Y1) and (X2, Y2)
• The assumption is that the cameras are identical 
• The coordinate system of both cameras are perfectly 

aligned differing only in the x-coordinate location of the 
origin.

• The world coordinate system is also bought into the 
coincidence with one of the image X, Y planes (say 
image plane 1) . So y, z coordinates are same for both 
the camera coordinate systems.
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First bringing the first camera into coincidence with 
the world coordinate system and then using the second 
camera coordinate system and directly applying the 
formula we get:

Because the separation between the two cameras is B
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• The equation above gives the depth directly from 
the coordinate of the two points

• The quantity given below is called the disparity
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• The most difficult task is to find out the two 
corresponding points in different images of the 
same scene – the correspondence problem.
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• Once the correspondence problem is solved –
(non-analytical), we get D. Then obtain depth 
using:
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      ,Alternate Model 
– Case III



O1

B

(X2,Y2)

(X1,Y1)

f
W(x, y, z)

X

z1

IP 1

IP 2

Top view of the stereo imaging system with origin 
at center of first camera lens.

O2

z2
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Compare the two solutions

What do you think of D ?
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The Correspondence Problem
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Image Plane - I Image Plane - II

D
fBz .=

EPIPOLAR Line

(X1, Y1) (X2, Y2)



Error in Depth Estimation

D
fBz .= 2
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Expressing in terms of depth (z), we have:

What is the maximum value of depth (z), you can 
measure  using a stereo setup ?

fBz .max =



Even if correspondence is solved correctly, the 
computation of D may have an error, with an upper 
bound of 0.5;   i.e. (δD)max = 0.5.

That may cause an error of:
fB

zz
.2

)(
2

−=δ

Larger baseline width and Focal length (of the 
camera) reduces the error and increases the maximum 
value of depth that may be estimated.

What about the minimum value of depth (object 
closest to the cameras) ?

maxmin /. DfBz =
What is Dmax ?

maxmax XD =
Xmax depends on f and image resolution 
(in other words, angle of field-of-view or FOV).







General Stereo Views



Perfect Stereo Views



Perfect Stereo Views



Perfect Stereo Views





We can also have arbitrary pair of views from two 
cameras. 

• The baseline may not lie on any of the principle axis

• The viewing axes of the cameras may not be parallel

• Unequal focal lengths of the cameras

• The coordinate systems of the image planes may not be 
aligned

In general we may have multiple views ( 2 or more) of 
a scene. Typically used for 3D surveillance tasks.

Take home exercises/problems:

What about Epipolar line in cases above ?

How do you derive the equation of an epipolar line ?



In case of a set of arbitrary views used for 3-D 
reconstruction (object structure, surface geometry, 
modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker

- Bundle adjustment

- 8-point DLT algorithm

- Zhang’s homography

- Tri-focal tensors

- Cheriality and DIAC

- Auto-calibration 

- Metric reconstruction

- RANSAC



Tri-focal tensors



End of Lectures on -

Transformations, 
Imaging Geometry

and
Stereo Vision


