Optimal Broadcast Encryption from Pairings and LWE

<u>Shweta Agrawal (IIT Madras)</u> Shota Yamada (AIST)

Broadcast Encryption

Broadcast Encryption

	mpk	ct	sk	Assumption
Trivial	O(N)	O(N)	0(1)	Plain PKE
[BGW05]	O(N)	0(1)	0(1)	Bilinear map
[BGW05]	$O(\sqrt{N})$	$O(\sqrt{N})$	0(1)	Bilinear map

Many follow-ups [GW09, DPP07, Del07, SF, AL10, HWL+16, BZ13] achieving other nice properties (adaptive security, identity based, CCA, anonymity etc.) but not improving PK size, even from iO!

- Assume full collusion resistance
- Hide poly (λ) factors

	mpk	ct	sk	Assumption
Trivial	O(N)	O(N)	0(1)	Plain PKE
[BGW05]	O(N)	0(1)	0(1)	Bilinear map
[BGW05]	$O(\sqrt{N})$	$O(\sqrt{N})$	0(1)	Bilinear map
[BWZ14]	0(1)	0(1)	0(1)	log N-linear map

- Assume full collusion resistance
- Hide poly (λ) factors

	mpk	ct	sk	Assumption
Trivial	O(N)	O(N)	0(1)	Plain PKE
[BGW05]	O(N)	0(1)	0(1)	Bilinear map
[BGW05]	$O(\sqrt{N})$	$O(\sqrt{N})$	0(1)	Bilinear map
[BWZ14]	0(1)	0(1)	0(1)	log N-linear map
AY20	0(1)	0(1)	0(1)	Bilinear map & LWE

- Assume full collusion resistance
- Hide poly (λ) factors

Proof in generic group model

	mpk	ct	sk	Assumption
Trivial	O(N)	O(N)	0(1)	Plain PKE
[BGW05]	O(N)	0(1)	0(1)	Bilinear map
[BGW05]	$O(\sqrt{N})$	$O(\sqrt{N})$	0(1)	Bilinear map
[BWZ14]	0(1)	0(1)	0(1)	log N-linear map
AY20	0(1)	0(1)	0(1)	Bilinear map & LWE
AWY20	0(1)	0(1)	0(1)	Bilinear map & LWE

- Assume full collusion resistance
- Hide poly (λ) factors

Proof in standard model, from knowledge assumptions

7

Via Connection to Attribute Based Encryption

ABE Slides Credit: Monosij Maitra

Ciphertext-Policy ABE

Key-Policy ABE

BE via ABE: Solution Steps

Perspective

- Steps 1 and 2 independently observed by Brakerski-Vaikuntanathan, Yamada, Boneh-Kim, A, (others?) several years ago
- Main hurdle: Step 3, adding collusion resistance
- Using pairings to achieve step 3 is main technical contribution of our work
- Inspired by recent constructions of iO that combine LWE and pairings [A19, AJLMS19,..]

Step 1: BE as CP-ABE for NC₁

- SK attribute = $j \in [N]$ where j = user index
- CT policy = $F_S(\cdot)$ where $S \subseteq [N]$, recipients

Step 1: BE as CP-ABE for NC₁

- Short input ($\approx O(\log N)$) $j \stackrel{?}{=} s_1 \quad j \stackrel{?}{=} s_2 \quad \cdots \quad j \stackrel{?}{=} s_{|S|}$
- Shallow depth ($\approx O(\log N)$)
- But, wide width ($\approx O(N)$)

CP-ABE with <u>width-independent (succinct) parameters</u> is enough for optimal BE!

 $j \in \{0,1\}^{\log N}$

0/1

Step 2: Designing CP-ABE from LWE

- CP-ABE from LWE is itself a central open question (even without width ind.).
- ABE from LWE: KP-ABE for P [GVW13], and can be width-independent [BGG+14]

Convert BGG+ KP-ABE into CP-ABE?

Useful Structure: Decomposability of BGG+14

Decomposability:

BGG+. Enc(x, msg) can be divided into the following 2 steps:

2. To generate a ciphertext for attribute $x \in \{0,1\}^{\ell}$, output

$$BGG+.ct_{x} = \left\{ \mathbf{c}_{i, \mathbf{x}_{i}} \right\}_{i \in [\ell]}$$

CP-ABE First Attempt: Combining [SS10] and [BGG+14]

 $msk = corresponding secret keys {SK_{i,b}}_{i,b}$

Encryption for *F*

Sample fresh KP-ABE BGG+, compute $\mathrm{BGG+.sk}_F$, BGG+ CT for all possible $\mathcal X$

24

First Attempt: Combining [SS10] and [BGG+14]

Encryption for r .

Generate BGG+. mpk, BGG+. msk , BGG+. sk_{\it F} , and

$$ct_{F} = \left\{ \begin{array}{c} Enc_{PK_{1,0}}(\mathbf{c}_{1,0}) \\ Enc_{PK_{1,1}}(\mathbf{c}_{1,1}) \end{array} \cdots \begin{array}{c} Enc_{PK_{i,0}}(\mathbf{c}_{i,0}) \\ Enc_{PK_{i,1}}(\mathbf{c}_{i,1}) \end{array} \cdots \begin{array}{c} Enc_{PK_{\ell,0}}(\mathbf{c}_{\ell,0}) \\ Enc_{PK_{\ell,1}}(\mathbf{c}_{\ell,1}) \end{array} \right\} \\ \begin{array}{c} Enc_{PK_{\ell,1}}(\mathbf{c}_{\ell,1}) \\ Enc_{PK_{\ell,1}}(\mathbf{c}_{\ell,1}) \end{array} \\ BGG+. mpk \end{array} \right\}$$

 $sk_x = - \begin{bmatrix} SK_{1,x_1} & \cdots & SK_{i,x_i} & \cdots & SK_{\ell,x_\ell} \end{bmatrix}$

Decryption:

Recover BGG+. ct_x = $\{\mathbf{c}_{i,\mathbf{x}_i}\}_{i \in [\ell], b \in \{0,1\}}$ and use BGG+. sk_F to retrieve msg

Step 3: Add collusion resistance

Use Pairings in place of PKE to encrypt each LWE encoding

Pairings.

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$
$$e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$$

Idea: Can we provide all pairs $\{ \mathbf{c}_{i,b} \}_{i,b}$ in the exponent?

Bracket Notation.

 $q_2^b \leftrightarrow$ $[b]_2$

Q1: How to prevent collusion attacks?

- Standard trick in pairings: randomize keys for user u with fresh randomness δ_u
- Set up scheme so that decryptor recovers

• Cannot combine $\delta_{u'} c_{1,1}$ and $\delta_{u} c_{1,0}$

Q2: How to select exactly one of two encodings

Introduce position-wise randomness & use pairing to cancel one of two random terms per column

So Far...

- Randomize with user specific scalar in the exponent standard trick for collusion resistance
- Select one out of two encodings quadratic operation, can be done inside pairings.
- But testing whether input x ∈ S is in NC₁. Moreover, x is encoded using LWE (BGG+14) and placed in exponent!

Pairings can compute only quadratic polynomials. Why should this be possible?

The Happy Coincidence

 The structure of BGG+14 algorithm to compute NC₁ circuit on LWE encodings is linear.

 Compatible with pairings!

Q3: How to check set membership in exponent?

Structure of Decryption Algorithm in BGG+14:

- Can compute <u>a linear function L_F such that</u>

$$L_F\left(\left\{\mathbf{c}_{i,x_i}\right\}_{i\in[\ell]}\right) = m\left[\frac{q}{2}\right] + noise$$

In the exponent:

Assume that
$$m \in \{0,1\}$$

 $L_F\left(\left[\left[\delta \mathbf{c}_{i,x_i}\right]_T\right]_{i \in [\ell]}\right) = \left[\left[\delta\left(m\left[\frac{q}{2}\right] + noise\right)\right]_T\right]$

- <u>Remove the noise</u> to retrieve message $m \in \{0,1\}$ <u>In the exponent:</u>

$$\delta\left(m\left[\frac{q}{2}\right] + noise\right)$$
 is exponentially large.
How do we manage this? (Next slide)

Q4: How to compute circuit for membership check in exponent?

• Let decryptor learn

$$\left[\delta\left(m\left[\frac{q}{2}\right] + noise\right)\right]_T \text{ and } \left[\delta\right]_T$$

- If *noise* is polynomially small, one can learn *m* by brute force search:
 - Check all possible $m \in \{0,1\}$, $noise \in [-poly, poly]$

- How do we have polynomially small noise?
 - Use asymmetric noise growth in ciphertext evaluation [BV15,GV15]
 - Limits the circuit class to be NC₁, but suffices for BE

Bilinear Generic Group Model

- Security is proven in the bilinear generic group model (GGM).
- Intuition about bilinear GGM:
 - The only thing an adversary can do with group elements is to take pairings, take linear combinations, and test if equals zero.
 - If it doesn't equal zero, adversary learns nothing about the encoded value.

Security Proof (1)

What can the adversary see?

The challenge ciphertext

$$\mathbf{ct}_{F} = \left\{ \begin{array}{c} \left[w_{1,0} \mathbf{c}_{1,0} \right]_{1} \\ \left[w_{1,1} \mathbf{c}_{1,1} \right]_{1} \end{array} \cdots \begin{array}{c} \left[w_{i,0} \mathbf{c}_{i,0} \right]_{1} \\ \left[w_{i,1} \mathbf{c}_{i,1} \right]_{1} \end{array} \cdots \begin{array}{c} \left[w_{i,0} \mathbf{c}_{i,0} \right]_{1} \\ \left[w_{\ell,0} \mathbf{c}_{\ell,0} \right]_{1} \end{array} \right] \\ \left[w_{\ell,0} \mathbf{c}_{\ell,0} \right]_{1} \\ \left[w_{\ell,1} \mathbf{c}_{\ell,1} \right]_{1} \end{array} \right] \\ BGG+. \mathrm{sk}_{F} \end{array} \right\}$$

The secret keys

$$sk_{\chi(j)} = -\left[\left[\delta^{(j)} / w_{1,x_1^{(j)}} \right]_2 \cdots \left[\delta^{(j)} / w_{i,x_i^{(j)}} \right]_2 \cdots \left[\delta^{(j)} / w_{\ell,x_\ell^{(j)}} \right]_2 \left[\delta^{(j)} \right]_T \right]_T$$

where $j \in [Q], \ Q = \#$ of key queries, $F(x^{(j)}) = 0$

What can the adversary do?

To take pairings between above components to obtain:

$$\left[\left(\delta^{(j)}w_{i,b}/w_{i',b'}\right)\mathbf{c}_{i,b}\right]_T \text{ where } (i,b) \neq (i',b')$$

and take linear combination among the terms.

Security Proof (2)

What can the adversary do?

To take linear combination among the following terms

given BGG+. sk_F , BGG+. mpk

<u>Claim 1</u>

If the adversary puts a term of form (A) into the linear combination, the result is not 0 with overwhelming probability.

(Proof intuition) The term $\delta^{(j)} w_{i,b} / w_{i',b'}$ appears only when pairing

$$\begin{bmatrix} w_{i,1} \mathbf{c}_{i,1} \end{bmatrix}_1$$
 and $\begin{bmatrix} \delta^{(j)} / w_{i',b'} \end{bmatrix}_2$

Other terms are multiplied by $\delta^{(j)}w_{i,b}/w_{i',b'}$ with different (i, j, b, b'). Different monomials cannot cancel each other by linear combination.

Security Proof (3)

What can the adversary do?

To take linear combination among the following terms

given BGG+. sk_{*F*}, BGG+. mpk

<u>Claim 2</u>

If the adversary puts terms from (B) with different $\delta^{(j)}$ into the linear combination, the result is not 0 with overwhelming probability.

(Proof intuition) Different monomials cannot cancel each other by linear combination.

Recall that $\delta^{(j)}$ is user specific randomness.

- Collusion of different users is not useful.
- > We can focus on single-key setting.

(B)

Security Proof (4)

What can the adversary do?

To take linear combination among the following terms

From single key and single ciphertext security of BGG+:

 $(BGG+.sk_F, BGG+.mpk, \{ [\delta \mathbf{c}_{i,x_i}]_T \}_i)$

 \approx_c (BGG+.sk_F, BGG+.mpk, [random]_T]

Security Proof (4)

What can the adversary do?

To take linear combination among the following terms

From single key and single ciphertext security of BGG+:

 $(BGG+.sk_F, BGG+.mpk, \{ [\delta \mathbf{c}_{i,x_i}]_T \}_i)$

 $\approx_c (BGG+.sk_F, BGG+.mpk, [random]_T))$

No information about message revealed!

Follow-Up Work [AWY20]

 BE with optimal parameters (|mpk|=O(1), |ct|=O(1), |sk|=O(1)) from bilinear map and LWE in the standard model.

• Selective security of the scheme is shown from a variant of the "KOALA assumption [BW19]" on bilinear groups.

A knowledge type assumption

Follow-Up Work [AWY20]

 The KOALA assumption says that if an adversary distinguishes group elements whose exponents are on some Hyperplane from random group elements, then there exists another adversary that outputs a vector that is orthogonal to the Hyperplane.

 Intuitively says that the only way to distinguish group elements is to find an orthogonal vector to the hyperplane.

Summary

- Constructed CP-ABE for NC₁ circuits with compact parameters from LWE and bilinear GGM.
- Implies first Optimal BE without multilinear maps.
- Implies Identity Based BE with similar efficiency.
- Many Open Questions: Standard Model? New Applications? Support P (with proof)? From LWE?

Thank You

Images Credit: Hans Hoffman