

## Broadcast Encryption



## Broadcast Encryption



All users in the system
( $\#$ of users = N )

## Prior Work

|  | $\|\mathbf{m p k}\|$ | $\|\mathbf{c t}\|$ | $\|\mathbf{s k}\|$ | Assumption |
| :--- | :---: | :---: | :---: | :--- |
| Trivial | $O(N)$ | $O(N)$ | $O(1)$ | Plain PKE |
| [BGW05] | $O(N)$ | $O(1)$ | $O(1)$ | Bilinear map |
| [BGW05] | $O(\sqrt{ } N)$ | $O(\sqrt{N})$ | $O(1)$ | Bilinear map |

Many follow-ups [GW09, DPP07, Del07, SF, AL10, HWL+16, Bz13] achieving other nice properties (adaptive security, identity based, CCA, anonymity etc.) but not improving PK size, even from iO!

- Assume full collusion resistance
- Hide poly ( $\lambda$ ) factors


## Prior Work

|  | $\|\mathbf{m p k}\|$ | $\|\mathbf{c t}\|$ | $\mid \mathbf{s k} \mathbf{\|}$ | Assumption |
| :--- | :---: | :---: | :---: | :--- |
| Trivial | $O(N)$ | $O(N)$ | $O(1)$ | Plain PKE |
| [BGW05] | $O(N)$ | $O(1)$ | $O(1)$ | Bilinear map |
| [BGW05] | $O(\sqrt{ } N)$ | $O(\sqrt{ } N)$ | $O(1)$ | Bilinear map |
| [BWZ14] | $O(1)$ | $O(1)$ | $O(1)$ | log N-linear map |

- Assume full collusion resistance
- Hide poly ( $\lambda$ ) factors


## Prior Work

|  | $\|\mathbf{m p k}\|$ | $\mid$ ct $\mid$ | \|sk $\mid$ | Assumption |
| :--- | :---: | :---: | :---: | :--- |
| Trivial | $O(N)$ | $O(N)$ | $O(1)$ | Plain PKE |
| [BGW05] | $O(N)$ | $O(1)$ | $O(1)$ | Bilinear map |
| [BGW05] | $O(\sqrt{N})$ | $O(\sqrt{N})$ | $O(1)$ | Bilinear map |
| [BWZ14] | $O(1)$ | $O(1)$ | $O(1)$ | log N-linear map |
| AY20 | $O(1)$ | $O(1)$ | $O(1)$ | Bilinear map \& LWE |

- Assume full collusion resistance
- Hide poly ( $\lambda$ ) factors

Proof in generic group model

## Prior Work

|  | \|mpk $\mid$ | $\|\mathbf{c t}\|$ | \|sk| | Assumption |
| :--- | :---: | :---: | :---: | :--- |
| Trivial | $O(N)$ | $O(N)$ | $O(1)$ | Plain PKE |
| [BGW05] | $O(N)$ | $O(1)$ | $O(1)$ | Bilinear map |
| [BGW05] | $O(\sqrt{ } N)$ | $O(\sqrt{ } N)$ | $O(1)$ | Bilinear map |
| [BWZ14] | $O(1)$ | $O(1)$ | $O(1)$ | log N-linear map |
| AY20 | $O(1)$ | $O(1)$ | $O(1)$ | Bilinear map \& LWE |
| AWY20 | $O(1)$ | $O(1)$ | $O(1)$ | Bilinear map \& LWE |

- Assume full collusion resistance
- Hide poly ( $\lambda$ ) factors

Proof in standard model, from knowledge assumptions

## Via Connection to Attribute Based Encryption

## Attribute based Encryption (ABE) [swos, GPSwo6]



## Ciphertext-Policy ABE



## Key-Policy ABE



## BE via ABE: Solution Steps



## Perspective

- Steps 1 and 2 independently observed by Brakerski-Vaikuntanathan, Yamada, BonehKim, A, (others?) several years ago
- Main hurdle: Step 3, adding collusion resistance
- Using pairings to achieve step 3 is main technical contribution of our work

- Inspired by recent constructions of $i O$ that combine LWE and pairings [A19, AJLMS19,..]


## Step 1: BE as CP-ABE for $\mathrm{NC}_{1}$

- SK attribute $=j \in[N]$ where $j=$ user index
- CT policy $=F_{S}(\cdot) \quad$ where $S \subseteq[N]$, recipients

$$
F_{S}(j)= \begin{cases}1 & \text { if } j \in S \\ 0 & \text { if } j \notin S\end{cases}
$$

$$
j \stackrel{?}{=} s_{1} j \stackrel{?}{=} s_{2} \ldots \quad j \stackrel{?}{=} s_{|S|}
$$

## Step 1: BE as CP-ABE for $\mathrm{NC}_{1}$

## $F_{S}$ has

- Short input $(\approx O(\log N)) \quad j \stackrel{?}{=} s_{1} j \stackrel{?}{=} s_{2} \cdots \quad j \stackrel{?}{=} s_{|S|}$
- Shallow depth $(\approx O(\log N))$
- But, wide width $(\approx O(N))$


## CP-ABE with width-independent (succinct) parameters is enough for optimal BE!

## Step 2: Designing CP-ABE from LWE

- CP-ABE from LWE is itself a central open question (even without width ind.).
- ABE from LWE: KP-ABE for $P$ [GVW13], and can be width-independent [BGG+14]

$$
\begin{aligned}
|\mathrm{mpk}| & =\operatorname{poly}(\lambda, \ell, d) \\
\left|\mathrm{ct}_{x}\right| & =\operatorname{poly}(\lambda, \ell, d) \\
\left|\mathrm{sk}_{F}\right| & =\operatorname{poly}(\lambda, d)
\end{aligned}
$$



Convert BGG+ KP-ABE into CP-ABE?

## Useful Structure: Decomposability of BGG+14

## Decomposability:

BGG+. $\operatorname{Enc}(x, m s g)$ can be divided into the following 2 steps:

1. First generate encodings


Where $\ell=$ length of $x$
2. To generate a ciphertext for attribute $x \in\{0,1\}^{\ell}$, output

$$
\text { BGG+. } \mathrm{ct}_{x}=\left\{\mathbf{c}_{i, x_{i}}\right\}_{i \in[\ell]}
$$

CP-ABE First Attempt: Combining [SS10] and [BGG+14]

$$
\operatorname{mpk}=\left\{\begin{array}{lllll}
P K_{1,0} & & P K_{i, 0} & & P K_{\ell, 0} \\
\hline P K_{1,1} & \cdots & P K_{i, 1} & \cdots & P K_{\ell, 1}
\end{array}\right\}
$$

$$
\mathrm{msk}=\text { corresponding secret keys }\left\{S K_{i, b}\right\}_{i, b}
$$

## Encryption for $F$

Sample fresh KP-ABE BGG+, compute BGG+. $\mathrm{sk}_{F}, \mathrm{BGG}+\mathrm{CT}$ for all possible $X$

## First Attempt: Combining [SS10] and [BGG+14]

$$
\begin{aligned}
& \mathrm{mpk}=\text { Collusion of only } 2 \text { users breaks security: } \\
& \text { E.g., } 00000000 \text { and } 11111111
\end{aligned}
$$

## Encryptiontion.

Generate BGG+.mpk, BGG+.msk, BGG+. $\mathrm{sk}_{F}$, and

$$
\operatorname{ct}_{F}=\left\{\begin{array}{cccccc}
\operatorname{Enc}_{P K_{1,0}}\left(\mathbf{c}_{1,0}\right) & & \operatorname{Enc}_{P K_{i, 0}}\left(\mathbf{c}_{i, 0}\right) & \ldots & \operatorname{Enc}_{P K_{\ell, 0}}\left(\mathbf{c}_{\ell, 0}\right) & \text { BGG+.sk } \\
\operatorname{Enc}_{P K_{1,1}}\left(\mathbf{c}_{1,1}\right) & \cdots & \operatorname{Enc}_{P K_{i, 1}}\left(\mathbf{c}_{i, 1}\right) & \cdots & \operatorname{Enc}_{P K_{\ell, 1}}\left(\mathbf{c}_{\ell, 1}\right) & \text { BGG+.mpk}
\end{array}\right\}
$$

## KeyGen for $\boldsymbol{x}$ :

$$
\mathrm{sk}_{x}=\left\{\begin{array}{lllll}
\mathrm{s} K_{1, x_{1}} & \cdots & \mathrm{~s} K_{i, x_{i}} & \ldots & \mathrm{~s} K_{\ell, x_{\ell}}
\end{array}\right\}
$$

## Decryption:

Recover BGG+. $\mathrm{ct}_{x}=\left\{\mathbf{c}_{i, x_{i}}\right\}_{i \in[\ell], b \in\{0,1\}}$ and use BGG+. sk ${ }_{F}$ to retrieve msg

## Step 3: Add collusion resistance

Use Pairings in place of PKE to encrypt each LWE encoding

Pairings.

$$
\begin{gathered}
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T} \\
e\left(g_{1}^{a}, g_{2}^{b}\right)=e\left(g_{1}, g_{2}\right)^{a b}
\end{gathered}
$$



Idea: Can we provide all pairs $\left\{\mathbf{c}_{i, b}\right\}_{i, b}$ in the exponent?

Bracket Notation.
$g_{1}^{a} \leftrightarrow[a]_{1}$
$g_{2}^{b} \leftrightarrow[b]_{2}$
$g_{T}^{c} \leftrightarrow[c]_{T}$

## Q1: How to prevent collusion attacks?

- Standard trick in pairings: randomize keys for user u with fresh randomness $\delta_{u}$
- Set up scheme so that decryptor recovers

User specific

## randomness

$$
\left.\left[\delta_{u} \mathbf{c}_{i, x_{i}}\right]_{T}\right\}_{i}
$$

- Cannot combine $\boldsymbol{\delta}_{u^{\prime}} \mathbf{c}_{1,1}$ and $\boldsymbol{\delta}_{u} \mathbf{c}_{1,0}$


## Q2: How to select exactly one of two encodings

Introduce position-wise randomness \& use pairing to cancel one of two random terms per column

$$
\begin{aligned}
& \mathrm{mpk}=\left\{\begin{array}{llll}
{\left[w_{1,0}\right]_{1}} & & {\left[w_{i, 0}\right]_{1}} & \\
\hline\left[w_{1,1}\right]_{1} & \cdots & \ldots & {\left[w_{\ell, 0}\right]_{1}} \\
\hline\left[w_{i, 1}\right]_{1} & & {\left[w_{\ell, 1}\right]_{1}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sk}_{x}=\left\{\left[\delta / w_{1, x_{1}}\right]_{2} \cdot\left[\delta / w_{i, x_{i}}\right]_{2} \cdot\left[\delta / w_{\ell, x_{e}}\right]_{2} \quad[\delta]_{T}\right\} \\
& \text { Can recover } \left.\left[\delta \mathbf{c}_{\left.i, x_{i}\right]_{T}}\right]=e\left(\left[w_{i, x_{i}} \mathbf{c}_{i, x_{i}}\right]_{1}\right],\left[\delta / w_{i, x_{i}}\right]_{2}\right)
\end{aligned}
$$

## So Far...

- Randomize with user specific scalar in the exponent - standard trick for collusion resistance
- Select one out of two encodings - quadratic operation, can be done inside pairings.
- But testing whether input $x \in S$ is in $N C_{1}$. Moreover, $x$ is encoded using LWE (BGG+14) and placed in exponent!

Pairings can compute only quadratic polynomials. Why should this be possible?

## The Happy Coincidence

- The structure of BGG+14 algorithm to compute $\mathrm{NC}_{1}$ circuit on LWE encodings is linear.
- Compatible with pairings!

Q3: How to check set membership in exponent?
Structure of Decryption Algorithm in BGG+14:

- Can compute a linear function $L_{F}$ such that

$$
L_{F}\left(\left\{\mathbf{c}_{i, x_{i}}\right\}_{i \in[\ell]}\right)=m\left\lceil\frac{q}{2}\right\rceil+\text { noise }
$$

In the exponent:

$$
\begin{aligned}
& \quad L_{F}(\underbrace{}_{\left.\left[\delta \mathbf{c}_{i, x_{i}}\right]_{T}\right]}\}_{i \in[\ell]})=\left[\begin{array}{l}
{\left[\delta\left(m\left\lceil\frac{q}{2}\right\rceil+\text { noise }\right)\right]_{T}} \\
-
\end{array} \text { Remove the noise to retrieve message } m \in\{0,1\}\right.
\end{aligned}
$$ In the exponent:

$\delta\left(m\left\lceil\frac{q}{2}\right\rceil+\right.$ noise $)$ is exponentially large.
How do we manage this? (Next slide)

## Q4: How to compute circuit for membership check in exponent?

- Let decryptor learn

$$
\left[\delta\left(m\left[\frac{q}{2}\right]+\text { noise }\right)\right]_{T} \text { and }[\delta]_{T}
$$

- If noise is polynomially small, one can learn $m$ by brute force search:
- Check all possible $m \in\{0,1\}$, noise $\in[-$ poly, poly]
- How do we have polynomially small noise?
- Use asymmetric noise growth in ciphertext evaluation [BV15,GV15]
- Limits the circuit class to be $\mathrm{NC}_{1}$, but suffices for BE



## Bilinear Generic Group Model

- Security is proven in the bilinear generic group model (GGM).
- Intuition about bilinear GGM:
- The only thing an adversary can do with group elements is to take pairings, take linear combinations, and test if equals zero.
- If it doesn't equal zero, adversary learns nothing about the encoded value.


 $\square)=\square$

$\square$ ) $=$ $\square$

$$
\square^{a} \square^{b} \square^{c}=0 ?
$$



## Security Proof (1)

## What can the adversary see?

The challenge ciphertext

The secret keys

$$
\mathbf{s k}_{x}(j)=\left\{\left[\delta^{(j)} / w_{1, x_{1}^{(j)}}\right]_{2} \cdots\left[\delta^{(j)} / w_{i, x_{i}^{(j)}}\right]_{2} \cdots\left[\delta^{(j)} / w_{\ell, x_{\ell}^{(j)}}\right]_{2}\left[\delta^{(j)}\right]_{T}\right\}
$$

where $j \in[Q], Q=\#$ of key queries, $F\left(x^{(j)}\right)=0$

## What can the adversary do?

To take pairings between above components to obtain:

$$
\left[\left(\delta^{(j)} w_{i, b} / w_{i^{\prime}, b^{\prime}}\right) \mathbf{c}_{i, b}\right]_{T} \text { where }(i, b) \neq\left(i^{\prime}, b^{\prime}\right)
$$

$$
\left[\delta^{(j)} \mathbf{c}_{i, x_{i}^{(j)}}\right]_{T}
$$

and take linear combination among the terms.

## Security Proof (2)

## What can the adversary do?

To take linear combination among the following terms

given $\mathrm{BGG}+\mathrm{sk}_{F}, \mathrm{BGG}+$. mpk

## Claim 1

If the adversary puts a term of form (A) into the linear combination, the result is not 0 with overwhelming probability.
(Proof intuition) The term $\delta^{(j)} w_{i, b} / w_{i^{\prime}, b^{\prime}}$ appears only when pairing

$$
\left[w_{i, 1} \mathbf{c}_{i, 1}\right]_{1} \quad \text { and } \quad\left[\delta^{(j)} / w_{i^{\prime}, b^{\prime}}\right]_{2}
$$

Other terms are multiplied by $\delta^{(j)} w_{i, b} / w_{i^{\prime}, b^{\prime}}$ with different $\left(i, j, b, b^{\prime}\right)$. Different monomials cannot cancel each other by linear combination.

## Security Proof (3)

## What can the adversary do?

To take linear combination among the following terms


$$
\text { given } \mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+. \mathrm{mpk}
$$

## Claim 2

If the adversary puts terms from (B) with different $\delta^{(j)}$ into the linear combination, the result is not 0 with overwhelming probability.
(Proof intuition) Different monomials cannot cancel each other by linear combination.

Recall that $\delta^{(j)}$ is user specific randomness.
$>$ Collusion of different users is not useful.
$>$ We can focus on single-key setting.

## Security Proof (4)

## What can the adversary do?

To take linear combination among the following terms

given BGG+. $\mathrm{sk}_{F}$, BGG+. mpk

From single key and single ciphertext security of BGG+:

$$
\begin{aligned}
&\left.\left(\mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+. \mathrm{mpk},\left\{\left[\delta \mathbf{c}_{i, x_{i}}\right]_{T}\right]\right\}_{i}\right) \\
& \approx_{c}\left(\mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+. \mathrm{mpk},[\text { random] }]_{T}\right)
\end{aligned}
$$

## Security Proof (4)

## What can the adversary do?

To take linear combination among the following terms

given $\mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+$. mpk

From single key and single ciphertext security of BGG+:

$$
\left(\mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+. \mathrm{mpk}, \quad\left\{\left[\delta \mathbf{c}_{i, x_{i}}\right]_{T}\right\}_{i}\right)
$$

$$
\approx_{c}\left(\mathrm{BGG}+. \mathrm{sk}_{F}, \mathrm{BGG}+. \mathrm{mpk},{\text { [random }]_{T}}\right)
$$

No information about message revealed!

## Follow-Up Work [AWY20]

- BE with optimal parameters (|mpk|=O(1), $|c t|=O(1)$, |sk|=O(1)) from bilinear map and LWE in the standard model.
- Selective security of the scheme is shown from a variant of the "KOALA assumption [BW19]" on bilinear groups.
- A knowledge type assumption

If $\exists$ distinguishes $g^{\mathbf{V r}}$ from random $g^{\mathbf{w}}$,
then $\exists$ that outputs a vector $\mathbf{x}$ such that $\mathbf{x V}=\mathbf{0}$.

## Follow-Up Work [AWY20]

- The KOALA assumption says that if an adversary distinguishes group elements whose exponents are on some Hyperplane from random group elements, then there exists another adversary that outputs a vector that is orthogonal to the Hyperplane.
- Intuitively says that the only way to distinguish group elements is to find an orthogonal vector to the hyperplane.


## Summary

- Constructed CP-ABE for $\mathrm{NC}_{1}$ circuits with compact parameters from LWE and bilinear GGM.
- Implies first Optimal BE without multilinear maps.
- Implies Identity Based BE with similar efficiency.
- Many Open Questions: Standard Model? New Applications? Support P (with proof)? From LWE?



## Thank You

