

Cryptography The Art of Secret Keeping

Cryptography guarantees that breaking a cryptosystem is at least as hard as solving some difficult mathematical problem.

Case Study: Encryption

Functionality: Correctness of decryption Security: Ciphertext looks uniformly random

Walking the Fine Line

Want functionality together with security... Any one without the other is easy - how?

Functionality + Security

- Functionality requires structure
- Security requires randomness

Get both together from suitable hard problem in math

What is this course about?

-Study exciting recent progress in cryptography and mathematical assumptions that led to this progress.
-How do mathematical assumptions walk tightrope of structure and hardness?

- Are all assumptions "equal"? Yes and No!
- Study which assumption yields what cryptography
- In rare, fascinating examples, interplay/cooperation of assumptions
- Many open problems!

Pre-req: love for math and puzzles, working knowledge of algebra and probability. Prior experience in cryptography desirable but not necessary.

Course Requirements

- Assignments : 30\%. Assignments will be open ended in nature and collaboration is encouraged.
- Two Scribes: 20\%
- Class presentation : 20\%
- Final Project: 30\%

Highest ethical standards expected. Any dishonesty \rightarrow F grade.

What is a lattice?

A set of points with periodic arrangement

The simplest lattice in n-dimensional space is the integer lattice

Other lattices are obtained by applying a linear transformation

$$
\Lambda=\mathrm{B} \mathbb{Z}^{n} \quad\left(\mathrm{~B} \in \mathbb{R}^{d \times n}\right)
$$

$$
\Lambda=\mathbb{Z}^{n}
$$

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B x}$ (with $\mathbf{x} \in \mathbb{Z}^{k}$) of length (at most) $\|\mathbf{B} \mathbf{x}\| \leq \lambda_{1}$

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t}, find a lattice vector $\mathbf{B x}$ within distance $\|\mathbf{B x}-\mathbf{t}\| \leq \mu$ from the target

One Way Functions

$$
f: D \rightarrow R, \quad \text { One Way }
$$

Most basic "primitive" in cryptography!

Random Lattices in Cryptography

- Cryptography typically uses (random) lattices \wedge such that
- $\Lambda \subseteq \mathbb{Z}^{d}$ is an integer lattice
- $q \mathbb{Z}^{d} \subseteq \Lambda$ is periodic modulo a small integer q.
- Cryptographic functions based on q-ary lattices involve only arithmetic modulo q.

Definition (q-ary lattice)

Λ is a q-ary lattice if $q \mathbb{Z}^{n} \subseteq \Lambda \subseteq \mathbb{Z}^{n}$
Examples (for any $\mathbf{A} \in \mathbb{Z}_{q}^{n \times d}$)

- $\Lambda_{q}(\mathbf{A})=\left\{\mathbf{x} \mid \mathbf{x} \bmod q \in \mathbf{A}^{T} \mathbb{Z}_{q}^{n}\right\} \subseteq \mathbb{Z}^{d}$
- $\Lambda_{q}^{\perp}(\mathbf{A})=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0} \bmod q\} \subseteq \mathbb{Z}^{d}$

Ajtai's One Way Function

- Parameters: $m, n, q \in \mathbb{Z}$

- Key: $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$
- Input: $\mathbf{x} \in\{0,1\}^{m}$
- Output: $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q$
$\Lambda_{q}^{\perp}(\mathbf{A})=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0} \bmod q\}$

Ajtai 96: For $m>n \log q$, if lattice problems are hard to approximate in the worst case then $f_{A}(x)=A x \bmod q$ is a one way function.

Regev's One Way Function

- $\mathbf{A} \in \mathbb{Z}_{q}^{m \times k}, \mathbf{s} \in \mathbb{Z}_{q}^{k}, \mathbf{e} \in \mathcal{E}^{m}$.
- $g_{\mathbf{A}}(\mathbf{s})=$ As $\bmod q$

Regev's One Way Function

- $\mathbf{A} \in \mathbb{Z}_{q}^{m \times k}, \mathbf{s} \in \mathbb{Z}_{q}^{k}, \mathbf{e} \in \mathcal{E}^{m}$.
- $g_{\mathbf{A}}(\mathbf{s} ; \mathbf{e})=\mathbf{A s}+\mathbf{e} \bmod q$
- Learning with Errors: Given A and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s}.
$\Lambda_{q}(\mathbf{A})=\left\{\mathbf{x} \mid \mathbf{x} \bmod q \in \mathbf{A} * \mathbb{Z}_{q}^{\mathbf{k}}\right\}$

Regev 05: The function $g_{A}(s, e)$ is hard to invert on the average assuming lattice problems are hard to approximate in worst case

An Example Encryption Scheme

* Recall $A(e)=u \bmod q$ hard to invert for short e
* Secret: e, Public : A, u
* Encrypt (A, u) :
* Pick random vector s
* $c_{0}=A^{\top} s+$ noise
* $\mathrm{c}_{1}=\mathrm{u}^{\top} \mathrm{s}+$ noise' $^{\prime}+\mathrm{q} / 2 \mathrm{msg}$

* Decrypt (e) :

$$
\otimes e^{\top} c_{0}-c_{1}=q / 2 m s g+\text { noise }
$$

Dancing the Dance

All of cryptography is a jugalbandi between

- correctness \& security
- algorithms \& complexity
- structure \& randomness

Example Cryptographic Primitives

Fully Homomorphic Encryption (G09, BV11, BGV12, GSW13...)

Expressive
Functionality:
Supports
arbitrary circuits
Compact
ciphertext,
independent of

circuit size \quad| Encryption and |
| :---: |
| function evaluation |
| commute! |
| Enc(f(x)) $=* ~ f(\operatorname{Enc}(x))$ |

Deniable FHE

The notion of Deniable FHE

Deniable FHE (AGM21)

Deniable FHE

$$
c t_{0}=\operatorname{Enc}\left(p k, b_{0} ; r\right)=\operatorname{Enc}\left(p k \sigma_{b_{0} ; r^{\prime}}\right)
$$

"Fake" Distribution

Bob, for whom did you vote?

Deniable FHE

- A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake)
- (Gen, Enc, Eval, Dec) is an FHE scheme
- (Gen, Enc, Dec, Fake) is a Deniable Encryption scheme

Deniable FHE

A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake) syntax

- Gen $\rightarrow(p k, s k)$
- $\operatorname{Enc}(p k, m ; r)=c t$
- $\operatorname{Dec}(s k, c t)=b$
$\cdot \operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right)=c t^{*}$
- Fake $(p k, b, r, \bar{b}) \rightarrow r^{\prime}$

Broadcast Encryption

All users in the system
($\#$ of users = N)

Broadcast Encryption

All users in the system
($\#$ of users = N)

Hardness Assumptions

Sources of Hardness

- Algebra: eg SVP, CVP etc
- Number Theory: eg factoring, DOH etc
- Algebraic Geometry: Elliptic curve groups with pairings
- Complexity theoretic: one-way functions Indistinguishability Obfuscation
- Quantum computation: entanglement!
- Statistical Physics etc...

Will study some assumptions from perspective of how they yield crypto

The Many Worlds of Impagliazzo

The Many Worlds of Hardness

- World 1: Algorithmica $P=N P$ or $N P \subseteq B P P$
- World 2: Heuristica $P \neq N P$, but finding hard problems is hard. Average-case easy
- World 3: Pessiland $P \neq$ NP AND average-case hard. But, no one way functions (OWF)
- World 4: Minicrypt, OWF exist. SKE implied
- World 5: Cryptomania, PKE exists
- World 6: Obfustopia, iO exists Which world do we live in? We have no idea! ()

Indistinguishability Obfuscator iO [BGI+01]

Compile a circuit/TM C into one \hat{C} that preserves functionality, and is unintelligible (resistant to reverse engineering)

Indistinguishability Obfuscator iO [BGI+01]

Hard: "Which one of two equivalent circuits $C_{1} \equiv C_{2}$ is obfuscated?"
$\mathrm{C}_{1} \equiv \mathrm{C}_{2}$, meaning

- Same size $\left|\mathrm{C}_{1}\right|=\left|\mathrm{C}_{2}\right|$
- Same truth table $\mathrm{TB}\left(\mathrm{C}_{1}\right)=\mathrm{TB}\left(\mathrm{C}_{2}\right)$

Trivial, if efficiency is not an issue
Nontrivial, if efficiency is desired

Indistinguishability Obfuscator $i O[B G I+01]$

Hard: "Which one of two equivalent circuits $C_{1} \equiv C_{2}$ is obfuscated?"

$$
\mathrm{C}_{1} \equiv \mathrm{C}_{2} \text {, meaning }
$$

- Same size $\left|\mathrm{C}_{1}\right|=\left|\mathrm{C}_{2}\right|$
- Same truth table $\operatorname{TB}\left(\mathrm{C}_{1}\right)=\mathrm{TB}\left(\mathrm{C}_{2}\right)$

Quest: Finding an efficient compiler $i=$

We'll take scenic route!

- Ask interesting questions
- Different assumptions?
- Post-Quantum?
- More efficient?
- Explore relationships between assumptions
- New ways to co-operate
- Always open to topics/ideas/detours

