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Cryptography
The Art of Secret Keeping

Cryptography guarantees that breaking a cryptosystem is at least as hard
as solving some difficult mathematical problem.
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Case Study: Encryption
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Functionality: Correctness of decryption
Security: Ciphertext looks uniformly random



Walking the Fine Line
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Want functionality together with security…
Any one without the other is easy – how?



Functionality + Security
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- Functionality requires structure
- Security requires randomness 

Computational Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance kBx� tk  µ from the target

t
µ

b1

b2

Bx
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Get both together from suitable hard problem in math 

Closest Vector 
Problem on 

Lattices



What is this course about?
- Study exciting recent progress in cryptography and
mathematical assumptions that led to this progress.

-How do mathematical assumptions walk tightrope of
structure and hardness?

- Are all assumptions “equal”? Yes and No!
- Study which assumption yields what cryptography
- In rare, fascinating examples, interplay/cooperation of
assumptions

-Many open problems!
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Pre-req: love for math and puzzles, working knowledge of algebra and 
probability. Prior experience in cryptography desirable but not necessary. 



Course Requirements

• Assignments : 30%. Assignments will be open ended in 
nature and collaboration is encouraged.
• Two Scribes: 20%
• Class presentation : 20%
• Final Project: 30%
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Highest ethical standards expected. Any dishonesty è F grade.  



What is a lattice?
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Point Lattices and Lattice Parameters

Lattices: Definition

e1
e2

The simplest lattice in n-dimensional
space is the integer lattice

⇤ = Zn

b1
b2

Other lattices are obtained by
applying a linear transformation

⇤ = BZn (B 2 Rd⇥n)
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A set of points with periodic arrangement

Discrete subgroup of Rn
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Shortest Vector Problem
Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x 2 Zk) of
length (at most) kBxk  �1

b1

b2
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Closest Vector Problem
Computational Problems

Closest Vector Problem
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RD

One Way Functions
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x
y

Easy

Hard

𝑓:𝐷 → 𝑅, One Way 

𝑓

Most basic “primitive” in cryptography!



12

Q-ary Lattices and Cryptography

Random lattices in Cryptography

0

Cryptography typically uses (random) lattices ⇤
such that

⇤ ✓ Zd is an integer lattice
qZd ✓ ⇤ is periodic modulo a small integer q.

Cryptographic functions based on q-ary lattices
involve only arithmetic modulo q.

Definition (q-ary lattice)

⇤ is a q-ary lattice if qZn ✓ ⇤ ✓ Zn

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 36 / 43

Q-ary Lattices and Cryptography

Random lattices in Cryptography

0

Cryptography typically uses (random) lattices ⇤
such that

⇤ ✓ Zd is an integer lattice
qZd ✓ ⇤ is periodic modulo a small integer q.

Cryptographic functions based on q-ary lattices
involve only arithmetic modulo q.

Definition (q-ary lattice)

⇤ is a q-ary lattice if qZn ✓ ⇤ ✓ Zn

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 36 / 43

Q-ary Lattices and Cryptography

Random lattices in Cryptography

0

Cryptography typically uses (random) lattices ⇤
such that

⇤ ✓ Zd is an integer lattice
qZd ✓ ⇤ is periodic modulo a small integer q.

Cryptographic functions based on q-ary lattices
involve only arithmetic modulo q.

Definition (q-ary lattice)

⇤ is a q-ary lattice if qZn ✓ ⇤ ✓ Zn

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 36 / 43

Q-ary Lattices and Cryptography

Examples of q-ary lattices

Examples (for any A 2 Zn⇥d
q )

⇤q(A) = {x | x mod q 2 ATZn
q} ✓ Zd

⇤?
q (A) = {x | Ax = 0 mod q} ✓ Zd

Theorem
For any lattice ⇤ the following conditions are equivalent:

qZd ✓ ⇤ ✓ Zd

⇤ = ⇤q(A) for some A

⇤ = ⇤?
q (A) for some A

For any fixed A, the lattices ⇤q(A) and ⇤?
q (A) are di↵erent
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Random Lattices in Cryptography



13

Ajtai’s One Way Function
Q-ary Lattices and Cryptography

Ajtai’s one-way function (SIS)

Parameters: m, n, q 2 Z
Key: A 2 Zn⇥m

q

Input: x 2 {0, 1}m

Output: fA(x) = Ax mod q

m

xT

⇥

n A

f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the

worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .
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Ajtai 96: For m > n log q, if lattice problems are hard to 
approximate in the worst case then fA(x) = A x mod q is a 

one way function. 



14

Regev’s One Way Function
Q-ary Lattices and Cryptography

Regev’s Learning With Errors (LWE)

A 2 Zm⇥k
q , s 2 Zk

q , e 2 Em.

gA(s

; e

) = As

+ e

mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to

invert on the average, assuming

SIVP is hard to approximate in the

worst-case.

k

sT

⇥

m A

+ e

g

b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .
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k

sT

⇥

m A + e
g

b
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Regev 05: The function gA(s, e) is hard to invert on the 
average assuming lattice problems are hard to 

approximate in worst case

k*



An Example Encryption Scheme
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❖ Encrypt (A, u) : 

❖ Pick random vector s

❖ c0 = AT s + noise 

❖ c1 = uT s + noise’ + q/2 msg

❖ Recall A (e) = u mod q hard to invert for short e

❖ Secret: e, Public : A, u

AT

uT

s
e

+

❖ Decrypt (e) : 

❖ eT c0 – c1 = q/2 msg + noise Indistinguishable from random!

0

q-1

q/2



All of cryptography is a 
jugalbandi between

17

Dancing the Dance

- correctness & security
- algorithms & complexity 
- structure & randomness



Example Cryptographic Primitives



Fully Homomorphic Encryption 
(G09, BV11, BGV12, GSW13…)

19

Expressive 
Functionality: 

Supports 
arbitrary circuits 

Compact 
ciphertext, 

independent of 
circuit size

Encryption and 
function evaluation 

commute!
Enc(f(x)) =* f(Enc(x))

* : roughly



Deniable Fully Homomorphic 
Encryption 

Deniable FHE
The notion of Deniable FHE

Deniable 
Encryption 

Fully 
Homomorphic 
Encryption 

20



Deniable FHE (AGM21)

Vote 1 for me Vote 0 for me
10

𝑠𝑘, 𝑝𝑘 ← 𝐺𝑒𝑛

𝑠𝑘

𝑝𝑘

𝑐𝑡! = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟)

𝑐𝑡!

𝑐𝑡" 𝑐𝑡# 𝑐𝑡$

, 𝑐𝑡", … , 𝑐𝑡$

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(Σ#&!' , 𝑐𝑡!, … , 𝑐𝑡$)

𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡∗ = Σ#&!' 𝑏#

Bob, for whom 
did you vote?

21



10

𝑠𝑘

𝑝𝑘

𝑐𝑡! = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟)

𝑐𝑡!

𝑐𝑡" 𝑐𝑡# 𝑐𝑡$

, 𝑐𝑡", … , 𝑐𝑡$

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(Σ#&!' , 𝑐𝑡!, … , 𝑐𝑡$)

𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡∗ = Σ#&!' 𝑏#

Bob, for whom 
did you vote? 𝑟( ← 𝐹𝑎𝑘𝑒(𝑝𝑘, 𝑏!, 𝑟, 𝑏!)

𝑏!, 𝑟𝑏!, 𝑟′

𝑝𝑘, 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟), 𝑏!, 𝑟( ≈) {𝑝𝑘, 𝐸𝑛𝑐 𝑝𝑘, 𝑏!; 𝑟 , 𝑏!, 𝑟}

𝑐𝑡! = 𝐸𝑛𝑐 𝑝𝑘, 𝑏!; 𝑟 = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟()

“Fake” Distribution “Honest” Distribution

Deniable FHE

22



Deniable FHE

• A Deniable FHE scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒)

• (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐) is an FHE scheme

• (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒) is a Deniable Encryption scheme

Deniable 
Encryption 

Fully 
Homomorphic 
Encryption 

23



Deniable FHE

A Deniable FHE scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒) syntax

• 𝐺𝑒𝑛 → 𝑝𝑘, 𝑠𝑘

• 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝑟 = 𝑐𝑡

• 𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡 = 𝑏

• 𝐸𝑣𝑎𝑙 𝑝𝑘, 𝑓, 𝑐𝑡", … , 𝑐𝑡* = 𝑐𝑡∗

• 𝐹𝑎𝑘𝑒 𝑝𝑘, 𝑏, 𝑟, @𝑏 → 𝑟′
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Broadcast Encryption 

All users in the system 
( # of users = N )

Collusion 
resistance

25



Broadcast Encryption 

All users in the system 
( # of users = N )

Collusion 
resistance
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Trivial solution:
Encrypt message to each user using PKE.

O(N) ciphertext!
⇒Shorter ciphertext possible?



Hardness Assumptions



Sources of Hardness
- Algebra: eg SVP, CVP etc
-Number Theory: eg factoring, DDH etc
-Algebraic Geometry: Elliptic curve groups with pairings
-Complexity theoretic: one-way functions …
Indistinguishability Obfuscation

-Quantum computation: entanglement!
- Statistical Physics etc…
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Will study some assumptions from perspective of how they yield crypto

What about NP Hardness?



The Many Worlds of Impagliazzo

29



The Many Worlds of Hardness
•World 1: Algorithmica P=NP or NP⊆BPP
•World 2: Heuristica P≠NP, but finding hard problems is 
hard. Average-case easy
•World 3: Pessiland P≠NP AND average-case hard. 

But, no one way functions (OWF)
•World 4: Minicrypt, OWF exist. SKE implied
•World 5: Cryptomania, PKE exists
•World 6: Obfustopia, iO exists
Which world do we live in? We have no idea! J

30We conjecture: Obfustopia



y = C(x)

x

y = Ĉ(x)

x

Compile a circuit/TM C into one Ĉ that preserves functionality,
and is unintelligible (resistant to reverse engineering)

C ĈO

Obfuscator

31

Indistinguishability Obfuscator iO [BGI+01]



Indistinguishability Obfuscator iO [BGI+01]

C1 ≡ C2, meaning 
• Same size |C1|=|C2| 
• Same truth table TB(C1) = TB(C2)

Trivial, if efficiency is not an issue

Hard: “Which one of two equivalent circuits C1 ≡ C2 is obfuscated?”

Nontrivial, if efficiency is desired

32

} {≈iO (C1) iO (C2){ }



Indistinguishability Obfuscator iO [BGI+01]

C1 ≡ C2, meaning 
• Same size |C1|=|C2| 
• Same truth table TB(C1) = TB(C2)

} {≈iO (C1) iO (C2){ }
Quest: Finding an efficient compiler iO

33

Hard: “Which one of two equivalent circuits C1 ≡ C2 is obfuscated?”



We’ll take 
scenic route!
• Ask interesting questions

• Different assumptions?
• Post-Quantum?
• More efficient?

• Explore relationships between 
assumptions
• New ways to co-operate

• Always open to 
topics/ideas/detours 
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