
CS6115: Structure versus Hardness in Cryptography Sept 02, 2021

Lecture 10 : Deniable Encryption from Indistinguishability Obfuscation

Lecturer: Shweta Agrawal Scribe: Aadityan Ganesh

1 Introduction

Prior to this lecture, we have looked at encryption schemes that base their security on the hard-
ness of the learning with errors (LWE) problem. We have looked at fully homomorphic encryption
schemes and deniable encryption schemes based on the LWE problem.

But, the deniable encryption scheme that we had seen previously supports only unidirectional
deniability. This barrier has not been breached yet. Hence, schemes that base their security on as-
sumptions other than LWE problem have been studied with the hope of solving challenges posed
when security is based on LWE.

2 Indistinguishability Obfuscation

Intuitively, we want to find a way to modify programs such that the functionality of the input pro-
gram is preserved but the details are lost. Hence, given two programs of the same functionality,
the obfuscated output should leave no clue as to which of the two programs was the input.

There exists an obvious way of achieving this- take a program as input and output its truth ta-
ble. We would want to look at more efficient ways of achieving this. We state the formal definition
below.

Definition 2.1. Indistinguishability Obfuscator: An indistinguishability obfuscator iO is a
PPT algorithm with

• Input: A program P

• Output: iO(P) satisfying

1. iO(P) can be computed in time polynomial in the description of P .

2. iO(P) preserves the functionality of P .

3. For any PPT adversary A and programs P1, P2 of equal complexity and function-
ality,

|Pr[A(iO(P1)) = 1]− Pr[A(iO(P2)) = 1]|

is negligible.

Certainly, any adversary with limited computing power will not be able to learn which of the two
programs was obfuscated with the help of the output. But, if that sufficient for cryptography? At
the end of the day, we want our programs to hide a piece of secret. Will obfuscating a program
help in hiding information? Yes and no!

raghu
Sticky Note
can state instead that it is a open problem

raghu
Sticky Note
Details are lost. Instead we can mention that the secret data or the internal working of the program isn't revealed.

raghu
Highlight
 "this" word used repeatedly in the following statement. Also it would be better if we explicitly state that truth table isn't a good choice because of exponential time.

raghu
Sticky Note
Each point can have a kind of heading with bold content like Functionality Preserving , Efficiency and Indistinguishability

raghu
Highlight

raghu
Sticky Note
I think the questions can come on separate line/para.

3 A Relative Viewpoint

Consider programs P and P ′ of the same functionality and complexity and the indistinguishabil-
ity obfuscator iO. The definition of indistinguishability obfuscation guarantees that anything that
can be learnt about P from iO(P) in polynomial time can also be learnt about P ′. We have suc-
ceeded in hiding information about the input program which is different from another program,
but this need not guarantee hiding some sensitive information about the input which is common
to all programs with the same functionality.

Thus, the security provided by an indistinguishability obfuscator need not be absolute. A de-
tail x of a program is hidden by an obfuscator if there exists another equivalent program whose
detail x is hidden by the obfuscator but, x need not be hidden otherwise. This relativistic notion
of security gives rise to the following theorem (which has some good and bad implications).

Theorem 1. [1] If iO is an efficient obfuscator for circuit family C, then iO is also an efficient
(computationally) best possible obfuscator for C.

Proof. Consider an indistinguishability obfuscator iO. Let BiO be a better obfuscator than iO (as
a running example, BiO might hide a detail x which iO does not).

Let P be a program. Note that BiO(P) has the same functionality of P . The description of BiO(P)
is polynomial in the description of P . Padding P or BiO(P) as required, assume without loss of
generality, that P and BiO(P) have the same complexity.

Thus, by the definition of indistinguishability obfuscation, any PPT adversary cannot differentiate
between iO(P) and iO(BiO(P)). Thus, iO performs as good as BiO (in the running example, the
detail x is hidden by iO too). Contradiction.

Thus, iO has to be as good as any other obfuscator.

Suppose we find an indistinguishability obfuscator for a class of programs. The above theorem
suggests that our obfuscator is the best in the market. But, if our obfuscator does not hide some
detail that we want to hide, the above theorem suggests it is futile to try to hide the information
with a different obfuscator.

Definition 3.1. Virtual Black-box Obfuscator: A virtual black-box obfuscator O is a PPT
algorithm with

• Input: A program P

• Output: iO(P) satisfying

1. iO(P) can be computed in time polynomial in the description of P .

2. iO(P) preserves the functionality of P .

3. For any PPT adversary A and program P ,

|Pr[A(iO(P)) = 1]− Pr[A(Q) = 1]|

Page 2

raghu
Highlight
referencing can be done in terms of authors name

raghu
Sticky Note
I might like to highlight the point that sensitive information hiding is not guaranteed by iO.

is negligible, where Q is an oracle that spits P (x) given an input x.

An adversary will not be able to differentiate between the obfuscated function O(P) and an oracle
that just gives the output and absolutely nothing else when O is a virtual black-box. Such virtual
black-boxes does not exist for all circuit complexity classes, but there are small classes for which
such a virtual black-box exists. In such cases, by theorem 1, any obfuscator is as good as a virtual
black-box.

4 Witness Encryption

Goal: Let L be a language and x be a string. We want to encrypt message m such that it can be
decrypted only by someone possessing a witness w for x ∈ L.

Encryption WEnc(x,m): encrypts m relative to statement x
Decryption WDec(w, c): output message if w is a witness for x ∈ L, output ⊥ otherwise.

Securing the Above Description:

Consider Px,m that outputs m on witness that x ∈ L and⊥ otherwise. Consider P that always out-
puts ⊥. Let iO be an obfuscator whose domain contains Px,m and P . If x 6∈ L, then iO(Pw,m) and
iO(P) are indistinguishable since both the programs have the same functionality and complexity
(after sufficient padding).

Thus, if x 6∈ L, the message m cannot be computed from iO(Px,m) and thus the above scheme
is secure.

5 A Possible Use of Obfuscation:

Consider a premium dashboard offering various features to its client. Suppose the firm decides
to roll out a free version with limited functionalities. The obvious way to do this is to rework all
the code and set up a new ’laborious dashboard’ allowing access only to the limited set of features.

Another lazy way to achieve the same is to just turn off these functionalities in the dashboard
rather than remove them completely to hide them. Even though the new dashboard offers the
limited features and achieves the goal, it does not really hide the other features and can easily be
reconstructed from this ’lazy dashboard’.

Suppose there is an obfuscator that obfuscates this class of dashboards. Obfuscate the lazy dash-
board. Since the lazy and the laborious dashboard have the same functionality and (after padding)
complexity, the obfuscations of the two dashboards are indistinguishable. Thus, anything that can
be learnt about the removed features from the obfuscation of the lazy dashboard can be learnt
from the obfuscation of the laborious dashboard. But, the laborious dashboard has been hard-
coded to not have any detail about the removed features.

Thus, nothing about the premium features can be learnt from the obfuscated lazy dashboard.

Page 3

raghu
Highlight

raghu
Highlight
easier to mention outputs.

6 From Relative to Absolute Guarantees

A central theme so far has been the fact that indistinguishability obfuscation gives only relative
guarantees. We would want to take a step forward and obtain absolute guarantees after obfusca-
tion.

One possible assumption is regarding the existence of one-way functions. Existence of one-way
functions imply the existence of secure obfuscators. Interestingly, if P = NP, even then, there exists
secure obfuscators.

We will look at such assumptions and their implications in the succeeding lectures.

References

[1] Goldwasser and Rothblum On Best-Possible Obfuscation. Proceedings of 4th Conference on
Theory of Cryptography. TCC’07, pages194-213.

Page 4

raghu
Sticky Note
Can mention explicitly why iO will exist when P=NP

raghu
Highlight
OWF does not imply iO. The following statement seems to be confusing. What is meant by secure obfuscators?

raghu
Sticky Note

