
CS6115: Structure versus Hardness in Cryptography Sep 08, 2021

Lecture 11 : Deniable Encryption from iO

Lecturer: Shweta Agrawal Scribe: Amik Raj Behera

1 Review of iO

In the last class, we defined iO. Recall that, we get “as good as” type of guarantee from iO i.e.
a relative guarantee. In particular, we saw that any iO is atleast as good as any other iO. It is not
giving us an absolute guarantee.

Suppose we want to obfuscate functionality f . Intuitively, we wanted that an obfuscation converts
f into a black box B, such that on input x, B should return f(x). iO does not capture this intuitive
notion of obfuscation, and thus it gives us a “weak relative guarantee”.

1.1 Non-Falsifiable assumption

Let us recall the game based security of Public-Key Encryption.

• Let Π = (PKE.SecretKeyGen,PKE.PublicKeyGen,PKE.Enc,PKE.Dec) be a public-key encryp-
tion. λ denotes the security parameter.

• Challenger runs sk ← PKE.SecretKeyGen(1λ), pk ← PKE.PublicKeyGen(1λ). sk is the secret
key and pk is the corresponding public key. Challenger sends pk to the Adversary.

• Adversary chooses two distinct plaintext messages m0 and m1 from the message space. Ad-
versary sends m0 and m1 to the Challenger.

• Challenger flips a fair coin and gets bit b ∈ {0, 1}.

• Challenger runs c ← PKE.Enc(mb, pk) i.e. encrypted mb. Challenger sends c to the Adver-
sary.

• Adversary guesses the bit b, and sends b̃.

We say that Π is a secure Public-key encryption if the probability of b̃ = b (i.e. adversary correctly
guesses b) is only negligibly better than 1/2 (i.e. random guess).

Now let us look a similar game based security of iO.

• Challenger sends public parameters to the Adversary. (In case of iO, there are no public-keys
or secret-keys. In some cases, there may not be any public parameters, so the Challenger can
send an empty message.)

• Adversary chooses two circuits C0 and C1 of same size (size of a circuit is the number of gates
in the circuit). Adversary sends C0 and C1 to the Challenger.

• Challenger flips a fair coin and gets bit b ∈ {0, 1}.

http://www.cse.iitm.ac.in/~shwetaag/6115/Lec10.pdf

• Challenger runs C ← iO(Cb), i.e. obfuscation of Cb. Challenger sends C to the Adversary.

• Adversary guesses the bit b, and sends b̃.

The security of iO makes sense only if C0 ≡ C1, i.e. both C0 and C1 have the same truth table.
If C0 and C1 don’t have the same truth table, then the Adversary can query C at any of the
points where C0 and C1 differ, and always correctly guess b.

More precisely, say the adversary sends C0 and C1 such that C0(0) 6= C1(0), i.e. C0 gives a different
output than C1 on input 0. The adversary knows this fact since he is choosing C0 and C1. Now
when the Challenger sends C, the Adversary can simply check whether C(0) is equal to C0(0) or
C1(0). Hence with probability 1, b̃ = b.

To be secure against this cheating trick of Adversary, the Challenger needs to verify whether the
truth table of C0 and C1 are same or not. If the circuits take n inputs, then the truth table has 2n

values (assuming the circuits are Boolean). Since the Challenger runs in polynomial time, it is not
possible for it to check the equivalence of the circuits. Thus in iO it is assumed that C0 ≡ C1. This
assumption is known as Non-Falsifiable Assumption.

2 Publicly Deniable Encryption

Definition 2.1 (Publicly Deniable Encryption). A publicly deniable encryption scheme over a mes-
sage spaceM consists of four polynomial time algorithms: KeyGen,Encrypt,Decrypt,Explain. λ is
the security parameter.

• KeyGen(1λ): It outputs a secret key sk and a corresponding public key pk.

• Encrypt(pk,m;u): It takes the public key pk, message m ∈ M, randomness u, and outputs a
ciphertext c.

• Decrypt(sk, c): It outputs the message m.

• Explain(pk, c,m; r): It takes the public key pk, ciphertext c, any message m, and randomness
r as input. It outputs a string e, that has the same length as the randomness u used in Encrypt.

A publicly deniable encryption scheme is correct if for all messages, the decryption algorithm
outputs the correct message with high probability. Formally, for all messages m ∈M:

Pr
[
(sk, pk)← KeyGen(1λ); Decrypt(sk,Encrypt(pk,m;u)) = m

]
≥ 1− negl(λ),

where negl is a negligible function.

Recall that in a traditional deniable encryption scheme ([CDNO97]), the sender must re-
member his actual randomness and use it to construct fake randomness for other messages.
In a publicly deniable encryption scheme, we do not require a sender to know the random-
ness that was used to generate any particular ciphertext in order to be able to generate fake
randomness for it. Thus, even a third party that had nothing to do with the actual hon-
est generation of a ciphertext can nonetheless produce fake randomness for that ciphertext
corresponding to any message of his choice.

Page 2

2.1 Security

Since publicly deniable encryption scheme is a public-key encryption scheme, it must satisfy the
standard security definition, i.e. Indistinguishability under Chosen Plaintext Attack. This is the
same game-based security which we reviewed in the previous section.

Publicly deniable encryption scheme also satisfies a new security property - Indistinguishability
of explanation. We will define it using the following game:

• The Challenger runs (sk, pk)← KeyGen(1λ), and sends pk to the Adversary A.

• A sends a single message m ∈M.

• The Challenger runs c← Encrypt(pk,m;u) for random string u. It also runs e← Explain(pk, c,m; r).
The Challenger flips a fair coin and gets bit b ∈ {0, 1}.

• If b = 0, the Challenger sends (c, u), otherwise sends (c, e).

• Adversary A guesses the bit b, and sends b̃.

The Advantage of the Adversary A is the probability of guessing b correctly better than a random
guess. Formally,

AdvA = |Pr[b̃ = b]− 1/2|.

A publicly deniable encryption scheme has Indistinguishability of explanation if for all polyno-
mial time A, AdvA is negligible in λ.

The explanation algorithm Explain takes as input a ciphertext c, a message m, and some
randomness. This explanation algorithm does not care what c is “really” encrypting. It
simply outputs a random string which “explains” the c for message m. Note that c could
have encrypted m′ 6= m, but Explain gives a randomness which explains c with m! Thus,
the explanation mode can be used (by anyone) to create fake randomness that can explain
any ciphertext as any desired message. Isn’t this amazing!!

Remark 1. In their work, [SW14] showed that a publicly deniable encryption scheme implies a
deniable encryption scheme as defined by [CDNO97].

3 Variants of Pseudorandom functions (PRFs)

Definition 3.1 (Pseudorandom Function). Pseudorandom functions is a family of family of functions
- {Fn} := {fs : {0, 1}n → {0, 1}k | s ∈ {0, 1}k}, where s is a k-bit seed, Fn is the set of functions
from n bits to k bits, x is a n-bit input to fs, satisfying the following properties:

• (Efficiently computable): Given s ← {0, 1}k and x ← {0, 1}n, fs(x) should be computable
in poly(n, k) time.

• (Security): Let Advf denote a PPT algorithm using f as an adaptive oracle (running in
poly(k) time). Fix any n. Let H denote the set of all functions from mapping inputs of
n-bits to k-bits. Fn is said to be secure if for every PPT algo Adv:

|Pr[s← {0, 1}k, fs ∈ Fn; Advfs = 1] − Pr[f ← H; Advf = 1]| ≤ negl(λ)

Page 3

Theorem 1 (Existence of PRFs [GGM84]). Given any pseudorandom generator (PRG), we can
construct a pseudorandom function (Since it is known that PRGs can be constructed from One-
way functions (OWFs), this theorem implies that PRFs can be constructed from OWFs. Thus
existence of OWFs implies existence of PRFs). This construction is known as GGM construction.

The naive way to compute PRFs takes exponential time. The GGM construction uses binary tree to
bring down this exponential time to log of exponential time i.e. poly time, providing the required
efficiency. It uses PRGs to construct the binary tree, and thus security is guaranteed.

Definition 3.2 (Puncturable PRFs [SW14]). A puncturable family of PRFs F is described by three al-
gorithms, KeyF , PunctureF , and EvalF , and a pair of computable functions n(·) andm(·), satisfying
the following conditions:

• (Functionality preserved under puncturing): For every PPT adversary Adv such that Adv(1λ)
outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) and x /∈ S, we have that:

Pr[K ← KeyF (1λ),KS = PunctureF (K,S); EvalF (K,x) = EvalF (KS , x)] = 1.

• (Pseudorandom at punctured points): For every pair of PPT adversaries (Adv1,Adv2) such
that Adv1(1

λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, let K ← KeyF (1λ) and KS =
PunctureF (K,S). Then we have

|Pr[Adv2(S, σ,KS ,Eval(KS , S)) = 1]− Pr[Adv2(S, σ,KS ,Um(λ)·|S|) = 1]| ≤ negl(λ)

where EvalF (KS , S) is the concatenation of EvalF (KS , x1), . . . ,EvalF (KS , xt), where S =
{x1, . . . , xt}. Note that x1, . . . , xt in S is the enumeration of elements in S according to the
lexicographic order. Un denotes the uniform distribution over n bits.

Puncturable PRFs can be understood through the following game. Alice has a PRF F and a
key K. Bob gives Alice a subset S of inputs to F . Now Alice can generate a “new’ key KS

(depends on original key K and subset S) such that two properties are satisfied: On any in-
put outside S, evaluation of F under both the keys returns the same value. Secondly, on any
input inside S, evaluation of F under both the keys is computationally indistinguishable.

For ease of notation, we will write F(K,x) to denote EvalF (K,x). We also represent the punctured
key PunctureF (K,S) by K(S).

Theorem 2 (Existence of Puncturable PRFs [GGM84, BW13, BGI13, KPTZ13]). If OWFs exist,
then for all efficiently computable functions n(λ) and m(λ), there exists a puncturable PRF family
that maps n(λ) bits to m(λ) bits.

The GGM construction with some modifications can yield puncturable PRFs from OWFs, ob-
served by the above-mentioned results.

Definition 3.3 (Statistically injective (puncturable) PRFs [SW14]). A statistically injective (punc-
turable) PRF family with failure probability ε(·) is a family of (puncturable) PRFs F such that with
the probability 1− ε(λ) over the random choice of key K ← KeyF (1λ), F (K, ·) is injective.
If the failure probability ε(·) is not specified, then ε(·) is a negligible function.

Page 4

Theorem 3 (Existence of statistically injective (puncturable) PRFs [SW14]). If OWFs exist, then
for all efficiently computable functions n(λ),m(λ), and e(λ) such that m(λ) ≥ 2n(λ) + e(λ), there
exists a puncturable statistically injective PRF family with failure probability 2−e(λ) that maps n(λ)
bits to m(λ) bits.

Proof. For sake of writing, we will hide the dependence of n,m, and e on λ. We first 2-universal
hash family and pairwise independent hash family.

A family H of functions from universe U to T is 2-universal hash functions if for all x, y ∈ U
where x 6= y, we have

Prh←H [h(x) = h(y)] ≤ 1

|T |
.

A family H of functions from universe U to T is pairwise independent hash functions if for all
x1, x2 ∈ U where x1 6= x2, and any y1, y2 ∈ T (y1 may be equal to y2), we have

Prh←H [h(x1) = y1 and h(x2) = y2] =
1

|T |2
.

A union bound shows that

Prh←H [h(x1) = y1] =
1

|T |
.

Setup Let H be a family of 2-universal hash functions mapping n-bits to m-bits. Let F be family
of puncturable PRFs mapping n-bits to m-bits (we know F exists because of Theorem 2).

Defining the function We define the family F ′ as follows: The key space of F ′ consists of a key K
for F and a hash function h chosen fromH. Then

F ′((K,h), x) = F(K,x)⊕ h(x).

Observation If F were a truly random function, then for an independent random choice of h from
H, F(x)⊕ h(x) would be truly random function (intuitively one can can think of it this way: XOR
operation preserves the randomness). Note that we wrote F(x) instead of F(K,x) because a truly
random function needs no key.

Is the function puncturable PRF? First, is F ′ a PRF? F is a PRF, and thus F(K,x) is computation-
ally indistinguishable from truly random function. Adding h(x) doesn’t affect the distribution of
F , and thus F ′ is a PRF. From this, one can immediately deduce that since F is a puncturable PRF,
F ′ is also a puncturable PRF.

Is the function statistically injective? Consider x1 6= x2 ∈ {0, 1}n. Fix any key K. By pairwise
independence, we have

Prh [h(x1) = h(x2)⊕F(K,x1)⊕F(K,x2)] =
1

2m
.

Taking a union bound over all distinct pairs (x1, x2) gives us that:

Prh [∃x1 6= x2 : F ′((K,h), x1) = F ′((K,h), x2)] ≤
2n

2m
.

Averaging over the choice of K, finishes the proof, by the choice m ≥ 2n+ e.

Page 5

Definition 3.4 (Min-Entropy). For a random variable X with support Supp(X) (support of a ran-
dom variable is the set of all points on which X has non-zero probability). H∞(X) is the min-
entropy of X :

H∞(X) = min
x∈Supp(X)

log

(
1

Pr[X = x]

)
Definition 3.5 (Extracting (puncturable) PRFs [SW14]). An extracting (puncturable) PRF family
with error ε(·) for min-entropy k(·) is a family of (puncturable) PRFs F mapping n(λ)-bits to
m(λ)-bits such that for all λ, if X is any probability distribution with min-entropy greater than
k(λ), then the statistical distance between (K ← KeyF (1λ), F(K,X)) and (K ← KeyF (1λ), Um(λ))
is at most ε(λ).

Theorem 4 (Existence of extracting (puncturable) PRFs [SW14]). If OWFs exist, then for all effi-
ciently computable functions n(λ),m(λ), k(λ), and e(λ) such that n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2,
there exists an extracting puncturable PRF family that maps n(λ) bits to m(λ) bits with error prob-
ability 2−e(λ) for min-entropy k(λ).

Proof. For sake of writing, we will hide the dependence of n,m, and e on λ.

Setup Let H be a family of 2-universal hash functions mapping 2n + e + 1 bits to m bits. Let F
be family of puncturable statistically injective PRFs mapping n bits to 2n + e + 1 bits with error
probability 2−(e+1)(we know F exists because of Theorem 3).

Defining the function We define the family F ′ as follows: The key space of F ′ consists of a key K
for F and a hash function h chosen fromH. Then

F ′((K,h), x) = h(F(K,x).

Observation If F were a truly random function, then for an independent random choice of h from
H, h(F(x)) would be truly random function, by the Leftover Hash Lemma. Note that we wrote F(x)
instead of F(K,x) because a truly random function needs no key.

Is the function puncturable PRF? First, is F ′ a PRF? F is a PRF, and thus F(K,x) is computa-
tionally indistinguishable from truly random function. Applying h(x) on doesn’t affect the dis-
tribution of F , and thus F ′ is a PRF. From this, one can immediately deduce that since F is a
puncturable PRF, F ′ is also a puncturable PRF.

How close is the function to uniform? Now suppose X is a distribution over {0, 1}n such that
H∞(X) = k ≥ m+2e−2. Fix anyK such that F(K, ·) is injective. Then the Leftover Hash Lemma
implies that the statistical distance between (h ← H, h(F(K,X))) and (h ← H,Um) is at most
2−(e+1).

The probability that K gives a non-injective F(K, ·) is also at most 2−(e+1). By union bound, we
get that the statistical distance between ((K,h), F ′((K,h), X)) and ((K,h), Um) is at most 2−e, as
desired.

Page 6

References

BW13 Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. IACR Cryptology ePrint Archive, 2013:352, 2013.

BGI13 Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. IACR Cryptology ePrint Archive, 2013:401, 2013.

CDNO97 Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption.
In CRYPTO, pages 90–104, 1997.

GGM84 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the Cryptographic Applica-
tions of Random Functions. In CRYPTO 1984.

KPTZ13 Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. IACR Cryptology ePrint Archive,
2013:379, 2013.

SW14 Amit Sahai and Brent Waters. How to Use Indistinguishability Obfuscation: Deniable En-
cryption, and More. In STOC 2014.

Page 7

	Review of iO
	Non-Falsifiable assumption

	Publicly Deniable Encryption
	Security

	Variants of Pseudorandom functions (PRFs)

