
CS6115: Structure versus Hardness in Cryptography Sep 09, 2021

Lecture 12 : Deniable Encryption from iO

Lecturer: Shweta Agrawal Scribe: Rishi Garg

1. Introduction
In the previous lecture, we discussed three types of pseudo-random functions (PRF) to be
used for encryption schemes. These were namely ”Puncturable PRF (PPRF)”, ”an Injective
PPRF”, and ”an Extracting PPRF”.

In this lecture, we are going to construct the Deniable Encryption Scheme that we talked
about in the previous lecture and also prove the security.

2. Notations

(a) Pseudo-Random Generator (PRG): PRG is a function that takes as input a key of length
n randomly generated bits and gives an output of length 2n pseudo-random bits.

3. Deniable Encryption
Following are the pre-requisites for Deniable Encryption:

• A regular Public Key Encryption Scheme

• Assumption thatEncPKE accepts 1 bit message, a randomness of length le and outputs
a cipher text of length lc

• A pseudo-random generator (PRG) that maps {0, 1}λ to {0, 1}2λ

• An extracting PPRF F1(K1, ·) that accepts an input of length l1 + l2 + 1 and outputs a
string of length le

• A puncturable, statistically injective, PRF F2(K2, ·) that accepts an input of length 2λ+
lc + 1 and outputs strings of length l1.

• A PPRF F3(K3, ·) that accepts an input of length l1 and outputs strings of length l2

Before, we construct the deniable encryption scheme, we consider that the encryption algo-
rithm EncDE takes 1 bit message m and randomness u = (u[1], u[2]) where the lengths of
u[1] and u[2] are l1 = 5λ+ 2lc + le and l2 = 2λ+ lc + 1 respectively.

4. Construction of Deniable Encryption (DE) Scheme
The main idea is to encrypt using the Regular Public Key Encryption scheme and use obfus-
cation to get the deniability.

Remember from the previous lecture that the Explain algorithm takes two inputs, a message ’m’ and
a cipher text ’ct’ and outputs a randomness ’r’

Now, the intuition for the construction is as follows:



• First, we want the explain algorithm to output, for any input message m and cipher text
CT , a randomness r such that

EncDN (m, r) = CT

• For this, obfuscate the explain algorithm along with some extra (, secret) elements such
that some pseudo-random decodable function/encryption along with these extra ele-
ments encrypts CT , m and outputs the desired randomness r.

• We will use this r as a ”Hidden Sparse Trigger”
• Now, we want that the scheme to take m and r as the inputs and output CT .

Note that the Public Key Encryption scheme, if encrypts m and r, is unlikely to output
the desired CT .

• For this, obfuscate the EncDE program along with the (secret) key (let’s say, DK) of the
above-used pseudo-random decodable encryption.

• Now, on inputs m and r to this obfuscated program, perform the following operations:
– Using the key DK , check whether r is an encoding for some m0 and CT0.
– If r is an encoding for some m0 and CT0:

* Check whether m0 = m.

* Output CT0 if m0 = m.

* Output EncPKE otherwise.
– If r is not an encoding for any m0 and CT0:

* Output EncPKE .

4.1 Deniable Encryption (DE) Using iO

The public key builds the iO of the two programs as follows:
• iO of the Encrypt program i.e., EncDE :

This has hardwired the public key PK (of the public key encryption scheme) and
the three PRF’s keys namely K1, K2, and K3.
The message m and the randomness u = (u[1], u[2]) are given as the input.
Step-1: Check for the the hidden sparse trigger and if

F3(K3, u[1])⊕ u[2] = (m′, c′, r′) for proper lengths m’, c’, and r’,
m = m′, and

u[1] = F2(K2, (m
′, c′, r′))

then output c = c′ and the program ends.
Step-2: If the above trigger test fails, then encrypt as usual. Consider F1(K1, (m,u))
to be x and output c = EncPKE(PK,m, x).

• iO of the Explain algorithm:
This has hardwired PRF’s keys K2 and K3

The messagem, the cipher text c (i.e., the output ofEncDE), and a new randomness
r ∈ {0, 1}λ are given as the input.
Step-1: Set α = F2(K2, (m, c, PRG(r)))
Step-2: Set β = F3(K3, α)⊕ (m, c, PRG(r))
Step-3: Output e = (α, β)

Page 2



4.2 Correctness of DE using iO

To check: If the message m′ along with the output e = (α, β) of the obfuscated explain
program is input to the program, the output is c.

We have

e = (α, β) = (F2(K2, (m
′, c, PRG(r))), F3(K3, α)⊕ (m′, c, PRG(r)))

Checking the sparse trigger, with the above usual notations, we have,

F3(K3, u[1])⊕ u[2] = F3(K3, α)⊕ β
= F3(K3, α)⊕ F3(K3, α)⊕ (m′, c, PRG(r))

= (m′, c, PRG(r))

Since the input message wasm′, we now havem′ = m′ and u[1] = α = F2(K2, (m
′, c, PRG(r))).

Note that all the conditions for the hidden sparse trigger are followed, therefore, we get
the output to be c′ = c as required.
This proves the correctness of the scheme.

4.3 Proofs of security of DE
Following are the two proofs for the security of DE:

4.3.1 IND-CPA Security
This ensures that the output cipher text of this scheme is secure, in the sense that
it does not reveal anything about the message bit. Intuitively, this is true because
the cipher text of this scheme is using the public key encryption and the security of
PKE will imply the security of this cipher text.

Lemma: For a fixed u[1] = α, ∃ at most one pair (m,β) such that the ’Sparse
Trigger Condition’ for input m and randomness (α, β) is satisfied.
Proof: Note that the lengths of m, c, and u are 1, lc, and 2λ respectively. There-
fore, it follows that there exist at most 22λ+lc+1 input strings for F2 and thus,
the same number of outputs by F2.
Note that the F2 is injective, it follows that the output of F2 determines the
input and therefore, fixes m′.
We have a fixed u[1] = α. The ”Sparse Trigger Condition” also verifies u[2] =
F3(K3, u[1])⊕ (m′, c′, r′) and thus, fixes u[2] = β.
Therefore, it follows that the m′ and β are fixed.
To be noted that fixing m′ and u[2] implies that (u1, u2) is highly structured. This
further implies that upon sampling some u′ = (u′1, u

′
2) at (uniformaly) random, it

satisfies the above structure only with negligible probability.
Hence, fixing u[1] = α implies that there exist at most one pair (m,β) for which
the ’Sparse Trigger Condition’ is satisfied.

Lemma: There are at most 22λ+lc+1 values of randomness u for which the
’Sparse Trigger Condition’ is satisfied.

Page 3



Proof: Follows from the previous lemma as the total maximum number of pos-
sibilities for u[1] are 22λ+lc+1 and from the previous lemma, for every fixed u[1],
there exist at most one pair (m,β) implying that there exist at most 22λ+lc+1

number of u = (u[1], u[2]).
Hence, the maximum number of randomness for which the ’Sparse Trigger
Condition’ is satisfied is 22λ+lc+1.

In the below setup by the challenger, if the attacker guess the bit g with a non-
negligible advantage over a random guessing, we say that the scheme is not secure.
Setup by the challenger:

1 Choose K1, K2, and K3 randomly.
2 Take (PK,SK)← PKE.setup

3 Write Penc = iO(Encrypt) and Pexp = iO(Explain)

4 Take a random g ∈ {0, 1} and choose randomness u = (u[1], u[2])

5 Set c = Penc(g, u) and output c.
In the next lecture, we will use ’Hybrids’ to complete this proof.

4.3.2 Explainability
This ensures that the actual randomness and the fake (pseudo) randomness are
indistinguishable.
We will see this in detail in the further lectures.

References

[1] CS6115 Lecture 3. URL: http://cse.iitm.ac.in/ shwetaag/6115/Lec3.pdf.

[2] Amit Sahai and Brent Waters. “How to Use Indistinguishability Obfuscation: Deniable En-
cryption, and More”. In: ACM Symposium on Theory of Computing (STOC) (2014)

[3] CS6115 Lecture 11. URL: http://cse.iitm.ac.in/ shwetaag/6115/Lec11.pdf.

Page 4


