
CS6115: Structure versus Hardness in Cryptography Sep 16, 2021

Lecture 13 : Deniable Encryption from iO

Lecturer: Shweta Agrawal Scribe: Ratnakar M

1 Introduction

In the last lecture, we saw the Deniable Encryption scheme presented in [SW13] and the idea behind the
proof of its security. In today’s lecture, we will finish the proof of IND-CPA Security of the scheme and
see the high level overview of the proof strategy for the indistinguishability of explanation.

1.1 Review of the Deniable Encryption scheme

The Encrypt program takes as input, a message bit m and randomness u = (u[1], u[2]) where
|u[1]| = l1 = 5λ+ 2lc + le and |u[2]| = l2 = 5λ+ lc + 1.
The Explain program takes as input, a message bit m, ciphertext c of length lc, and randomness r ∈
{0, 1}λ where λ is the security parameter.
The scheme makes use of the following ingredients:

• A public key encryption schemeEncryptPKE(PK, ·) that accepts a message bitm and randomness
of length le and outputs a ciphertext of length lc

• A PRG that maps {0, 1}λ to {0, 1}2λ

• A puncturable extracting PRF F1(K1, ·) that accepts an input of length l1 + l2 + 1 and outputs a
string of length le

• A puncturable statistically injective PRF F2(K2, ·) that accepts an input of length 2λ + lc + 1 and
outputs strings of length l1

• A puncturable PRF F3(K3, ·) that accepts an input of length l1 and outputs strings of length l2

The public key builds the indistinguishability obfuscation of the Encrypt and Explain programs be-
low:

Encrypt

Hardwired: Public Key PK, PRF Keys K1,K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

2. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))



Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

2 IND-CPA Security

Proof Idea: To prove IND-CPA security, we start with the original IND-CPA experiment and proceed
through a sequence of hybrid experiments, each of which is indistinguishable from the previous one. If
we can argue that the output of the ”Explain” program is indistinguishable from a random string, the
game will reduce to the IND-CPA security game of EncryptPKE and we are done. However we can’t
directly argue that since the obfuscation of Explain which has the PRF keys hardwired into it is pub-
lic. We are working with indistinguishability obfuscation and not a virtual black-box obfuscation, and
therefore it is possible that the hardwired keys are revealed. We get around this by using the technique
of punctured programs wherein we show, using the properties of punctured PRFs, that the obfuscation
of the program punctured at key points is indistinguishable from the obfuscation of the original program.

IND-CPA Security Game: The adversary must be able to guess the bit g with probability p = (12 + ε) for
some non-negligible ε

1. Sample keys K1,K2, andK3 at random.
2. Let (PK,SK) ← SetupPKE(1

λ).
3. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
4. Sample g ∈ {0, 1} at random .
5. Sample u ∈ {0, 1}l1+l2 at random.
6. Set c = Penc(g;u).
7. Output (u, c)

Hybrid 1:
1. Sample keys K1,K2,K3 at random.
2. Let (PK,SK) ← SetupPKE(1

λ).
3. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
4. Sample at random g ∈ {0, 1}.
5. Sample at random u ∈ {0, 1}l1+l2 at random.
6. Set c = EncryptPKE(PK, g;x) where x = F1(K1, (g, u)).
7. Output (u, c)

We have replaced Step 6 - ”Set c = Penc(g;u).” with ”Set c = EncryptPKE(PK, g;x) where x = F1(K1, (g, u))”
Effectively, we have removed the check for the hidden sparse trigger in the original Encrypt program.

From the Lemma we proved in the last lecture [12], we know that with overwhelming probability, the
Step 1 check will not be satisfied when we use true randomness u and therefore, with overwhelming
probability Hybrid 1 and the original game are indistinguishable.

Hybrid 2:
1. Sample keys K1,K2, andK3 at random.

Page 2



2. Let (PK,SK) ← SetupPKE(1
λ).

3. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
4. Sample g ∈ {0, 1} at random.
5. Set c = EncryptPKE(PK, g;x) where x is sampled at random from {0, 1}le .
6. Output (u, c)

We have removed step 5 and modified Step 6 by replacing it with ”Set c = EncryptPKE(PK, g;x) where
x is sampled randomly from {0, 1}le .”
F1 is an extracting PPRF, therefore F1(K1, (g, u)) cannot be distinguished from random and by extension,
Hybrids 1 and 2 are indistinguishable

Now, observe that Hybrid 2 is the same as the indistinguishability game for EncryptPKE which we
know is secure. Therefore, our original deniable encryption scheme is IND-CPA secure.

3 Indistinguishability of Explainability

Like the IND-CPA security proof, this proof also follows a sequence of hybrid experiments. For the rest
of the lecture, we will see the sequence of hybrid experiments used to argue indistinguishability of ex-
plainability of the scheme. We will argue the correctness more formally in the next lecture.

Explainability Game: As in the IND-CPA game, the adversary wins if (s)he can guess g with non-
negligible advantage over 1

2 .
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r∗ at random.
4. Set x∗ = F1(K1, (m

∗, u∗)), c∗ = Encrypt(PK,m∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, PRG(r∗))), β∗ = F3(K3, α
∗)⊕ (m∗, c∗, PRG(r∗)), and e∗ = (α∗, β∗).

6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random .
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: Public Key PK, PRF Keys K1,K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

2. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Page 3



Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

Page 4



Hybrid 0:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r∗ at random.
4. Set x∗ = F1(K1, (m

∗, u∗)), c∗ = EncryptPKE(PK,m
∗;x∗).

5. Set α∗ = F2(K2, (m
∗, c∗, PRG(r∗))), β∗ = F3(K3, α

∗)⊕ (m∗, c∗, PRG(r∗)), and e∗ = (α∗, β∗).
6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: Public Key PK, PRF Keys K1,K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

2. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

The only change from the original experiment here is the replacement of Encrypt with EncryptPKE .
Using the same argument we employed in the IND-CPA security proof, we can conclude that with over-
whelming property, Step 1 check fails and therefore, EncryptPKE and Encrypt are indistinguishable.

Page 5



Hybrid 1
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r∗ at random.
4. Set x∗ = F1(K1, (m

∗, u∗)), c∗ = EncryptPKE(PK,m
∗;x∗).

5. Set α∗ = F2(K2, (m
∗, c∗, PRG(r∗))), β∗ = F3(K3, α

∗)⊕ (m∗, c∗, PRG(r∗)), and e∗ = (α∗, β∗).
6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗, Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

In this hybrid, we hardwire m∗, u∗, e∗, c∗ in addition to the public and the PRF keys. We add another
check to the encrypt program where we output c∗ when (m,u) = (m∗, e∗) or (m∗, u∗). We can now safely
puncture the PRF key K1 at points (m∗, e∗) and (m∗, u∗) without affecting the functionality of Encrypt.

Page 6



Hybrid 2:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r∗ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, PRG(r∗))), β∗ = F3(K3, α
∗)⊕ (m∗, c∗, PRG(r∗)), and e∗ = (α∗, β∗).

6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

The only change in this experiment is that x is sampled at random from {0, 1}le rather than the out-
put of F1(K1, (m

∗, u∗)).

Page 7



Hybrid 3:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r̃ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, r̃)), β∗ = F3(K3, α
∗)⊕ (m∗, c∗, r̃), and e∗ = (α∗, β∗).

6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2, and K3

Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′ and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3

Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r)).
Output e = (α, β)

In this hybrid, we replace the output of the PRG with a random value r̃ ∈ {0, 1}2λ.

Page 8



Hybrid 4:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r̃ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, r̃)), β∗ = F3(K3, α
∗)⊕ (m∗, c∗, r̃), and e∗ = (α∗, β∗).

6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2, and
K3({u∗[1], e∗[1]})
Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If u[1] = e∗[1] or u[1] = u∗[1], go to Step 3.
If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3({u∗[1], e∗[1]})
Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

We add a check in Step 2 of the Encrypt program to skip the step ”if u[1] = e∗[1] or u[1] = u∗[1]”. We
then puncture K3 on those points.

Page 9



Hybrid 5:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r̃ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, r̃)), β∗ = random, e∗ = (α∗, β∗).
6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2, and
K3({u∗[1], e∗[1]})
Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If u[1] = e∗[1] or u[1] = u∗[1], go to Step 3.
If F3(K3, u[1])⊕ u[2] = (m′, c′, r′), m = m′, and u[1] = F2(K2, (m

′, c′, r′)), then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2,K3({u∗[1], e∗[1]})
Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

In this hybrid, we set β∗ to be random instead of F3(K3, α
∗)⊕ (m∗, c∗, r̃).

Page 10



Hybrid 6:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r̃ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗ = F2(K2, (m

∗, c∗, r̃)), β∗ = random, e∗ = (α∗, β∗).
6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗, r̃ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2({(m∗, c∗, r̃)}),
and K3({u∗[1], e∗[1]})
Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If u[1] = e∗[1] or u[1] = u∗[1], go to Step 3.
If F3(K3, u[1]) ⊕ u[2] = (m′, c′, r′), m = m′, (m′, c′, r′) 6= (m∗, c∗, r̃), and u[1] = F2(K2, (m

′, c′, r′)),
then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2({(m∗, c∗, r̃)}),K3({u∗[1], e∗[1]})
Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

In this hybrid, we modify the Step 2 check of Encrypt to skip this step if the decrypted (m′, c′, r′) =
(m∗, c∗, r̃). We can then puncture the key K2 at (m∗, c∗, r̃).

Page 11



Hybrid 7:
1. Sample K1,K2, and K3 at random.
2. Let (PK,SK) = SetupPKE
3. Sample u∗, r̃ at random.
4. Sample x∗ ∈ {0, 1}le . Set c∗ = EncryptPKE(PK,m

∗;x∗).
5. Set α∗, β∗ to be random, e∗ = (α∗, β∗).
6. Let Penc = iO(Encrypt). Let Pexplain = iO(Explain).
7. Select g ∈ {0, 1} at random.
8. If g = 0, output (Penc, Pexplain, u∗, c∗). Else, output (Penc, Pexplain, e∗, c∗).

Encrypt

Hardwired: m∗, u∗, e∗, c∗, r̃ , Public Key PK, PRF Keys K1({(m∗, u∗), (m∗, e∗)}),K2({(m∗, c∗, r̃)}),
and K3({u∗[1], e∗[1]})
Input: Message m, randomness u = (u[1], u[2])
1. If (m,u) = (m∗, e∗) or (m,u) = (m∗, u∗), output c∗.
2. If u[1] = e∗[1] or u[1] = u∗[1], go to Step 3.
If F3(K3, u[1]) ⊕ u[2] = (m′, c′, r′), m = m′, (m′, c′, r′) 6= (m∗, c∗, r̃), and u[1] = F2(K2, (m

′, c′, r′)),
then output c = c′

3. Else, output c = EncryptPKE(PK,m;x) where x = F1(K1, (m,u))

Explain

Hardwired: PRF Keys K2({(m∗, c∗, r̃)}),K3({u∗[1], e∗[1]})
Input: Message m, ciphertext c, and randomness r ∈ {0, 1}λ
1. Set α = F2(K2, (m, c, PRG(r))), β = F3(K3, α)⊕ (m, c, PRG(r))
Output e = (α, β)

In the final hybrid, we replace α∗ with random. We can directly argue indistinguishability since both
e∗ and u∗ are now random strings and therefore, their distributions are indistinguishable.

References

[1] CS6115 Lecture 12. URL: http://www.cse.iitm.ac.in/ shwetaag/6115/Lec12.pdf.

[2] Amit Sahai and Brent Waters. “How to Use Indistinguishability Obfuscation: Deniable Encryption,
and More”. In: ACM Symposium on Theory of Computing (STOC) (2014)

Page 12


