CS6115: Structure versus Hardness in Cryptography Sep 22,2021

Lecture 14 : Deniable Encryption from iO

Lecturer: Shweta Agrawal Scribe: Senjuti Dutta

1 Introduction

We have been studying O and Deniable Encryption from iO for the past three lectures (from
[SW14]). We have seen iO, Witness Encryption, pseudorandom functions(PRF), variants of PRFs
namely Puncturable PREF, injecting PPRF, extracting PPRF, construction of Deniable Encryption
Scheme using O with “hidden sparse trigger” and the proof structure for indistinguishabily of
explanation.

In the following lecture, we go through the concepts and ideas again in order to answer any
recurring gaps and questions.

2 Review of Deniable Encryption from iO

1. What assumptions is O usually based on? How strong of an assumption is 0 in comparison
to say OWF or DDH?

The ¢O is considered an extremely strong assumption. It is considered a non-falsifiable assumption
[Lec11]. More precisely, the adversary gives the challenger two circuits Cy and C with the same
size and the same truth table. Now the challenger gives the iO of any of the two circuits, chosen
at random and the adversary has to guess the bit b. However, as the challenger, in order to check
whether the guess was made in a fair manner, it needs to check whether the two circuits that
the adversary proposed are functionally equivalent. That is, it needs to check whether both the
circuits output the same answer for any given input. If the circuits take n inputs, then the truth
table has 2" values (assuming the circuits are Boolean). So for arbitrary polynomial size circuits,
this task is not efficient and it is not possible for it to check the equivalence of the circuits.

So constructing ¢O from more standard number theoretic assumptions like DDH or LWE
would result in an exponential loss in the reduction. Due to the exponential loss, since the chal-
lenger has to check for the equivalence, the assumption of iO is very strong. Another reason
is, scientifically, constructing O is very difficult. Only very recently the last heuristic step was
crossed and the construction from standard assumptions was completed[JLS21].

2. Explain punctured PRF. Also explain the notion of an adversary outputting a poly-sized set
and the properties holding for all elements in and not in S.

We attempt to answer this question by providing an intuition for the idea. However, for the sake
of concreteness, we provide the definition of punctured PRF again.

Definition 2.1 (Punctured PRF). A puncturable family of PRFs F'is described by three algorithms,
Keyr , Puncturer , and Evalp , and a pair of computable functions n(.) and m(.), satisfying the
following conditions:

* Functionality preserved under puncturing: For every PPT adversary Adv such that Adv(1*)
outputs a set S C {0,1}"™), then for all z € {0,1}"()\) and = ¢ S, we have that:

Pr[K + Keyr(1"), Kg = Puncturer(K, S); Evalp(K,z) = Fvalp(Kg, z)] = 1

¢ Pseudorandom at punctured points: For every pair of PPT adversary (Advi, Advs) such
that Adv(1*) outputs a set S C {0,1}"" and state . Also let K + Keyp(1*) and Kg =
Puncturep(K, S). Then we have

|Pr[Adva(S, 0, Kg, Bval(Kg, S)) = 1] — Pr[Adva(S, 0, K5, Up). s)) = 1]| < negl())

where Fvalp(Kg,S) is the concatenation of Evalp(Kg,x1), ..., Evalp(Kg,z), where S =
{z1,...,2¢}. Note that z;,...,x¢ in S is the enumeration of elements in S according to the
lexicographic order and U; denotes the uniform distribution over [bits.

Now firstly, the main idea of Deniable Encryption is that given a cipher text, there should be
more than one way to open the cipher text. So given a cipher text, the attacker should not be
able to tell whether the encryption is of message one or message two(say), i.e, there should be
an honest randomness by which the encryption of the actual message is done and there should
be a fake randomness by which a different message can be associated with the given cipher text.
However, it should decrypt the cipher text correctly as well.

For FHE, the cipher text is stored as CT = As + e + m(%) for a matrix A, secret key s and an
error distribution e. Here, the message is m and the scaling factor is q. Now, for an encryption
of 0, the ciphertext should be C'Ty = As + e and for an encryption of 1, the ciphertext should be
CTy = As + e+ (). Now, in order to deny the message, we must have a representation of an
encryption of 0 as an encryption of 1(intuitively). That is, there must exist a secret key s’ and error
distribution ¢’ such that

CT, = As' + ¢

Now since this is the structure of the encryption of 0, we can successfully deny it as an encryption
of 1.

Now we look at a different approach. Instead of trying to find a roundabout way of “faking” our
encryption, we build the explain function to encode (using the function F') a given ciphertext-
message pair (¢, m’) such that F(¢/,m’) is pseudorandom. So it must follow these two conditions:

1. It can be inverted using a secret key
2. It should be pseudorandom

This brings the notion of “hidden sparse trigger”.

So this explain algorithm would output a fake randomness which is simply a pseudorandom
encoding of (¢, m’). This is done using trapdoor functions. We use three PRF keys to achieve this
and in order to hide these PRF keys, we need obfuscation.

Now consider a reduction algorithm. On one side there is the iO challenger and on the other
side there is the DE adversary. It must translate a DE attack to an iO attack. Consider the position

Page 2

of the reduction. In order for the reduction to use the security of the PRF, the reduction algorithm
shouldn’t know the keys of the PRF but the DE public key contains obfuscated programs which
in turn contain PRF keys. So the reduction must emulate the DE challenger and the O adversary.
The DE challenger needs to give the public keys which contain the obfuscated programs which
in turn contain PRF keys. Now for simplicity, assume that explain is giving PRF (K, (m/,c)) as
output. This is pseudorandom only if the PRF keys are not known. If this had been an “oracle
style” obfuscation, which says that just the input-output behaviour is maintained, then it could
have possibly been simulated. But we don’t have an oracle style obfuscation.

So the main question: without “oracle style” obfuscation, given only ‘O, how can the reduction
return the DE PK without knowing the PRF key? And this is where the notion of puncturing comes
in. We need to get functional equivalence of PRF(K, (m/, ¢)) without knowing the key K. So we
use punctured PRF. Let us puncture the PRF on some special point z* and let the punctured key
be K*. So by our construction, K* gives me the same functionality as K except on the point 2*. On
the point 2*, we want to invoke PRF security. Now PPREF tells us that on z*, the output of the PRF
appears random. However, this needs to be equal for z* as well. So we insert a “trapdoor branch”
at the point z* in the program. So we add an “if’ condition that if the input is z* then output y
where PRF(K, z*) = y, otherwise replace K with K*. Now by our construction using punctured
PRE the functional equivalence is maintained. Now the security of the iO can be invoked. Now I
can invoke PRF security on the point z* and in the next hybrid y can be replaced by random. The
detailed process is given in [Lec12] and [?].

Note that the key K* can leak z*. In other words, we do not require z* to be private. There
is a notion of private punctured PRFs that do not give away the z* point, however we won't be
needing it here.

3. In the definition of statistically injective PRF, they define the notion of a failure probability
which is the probability with which it is not injective. Do there exist variants which have this
failure probability 0? If yes, why not use them to make the ideas more clear?

For our purpose, it can be assumed that the failure probability is 0. The reason for the mention of
failure probability is that there is a construction of an injective PRF and it has a failure probability
which is inherited from the construction.

’ 4. Explain min-entropy. Also explain the idea of extracting puncturable PRFs.

The formal definition of min-entropy is given in [Lec11] : For a random variable X with support
Supp(X) (support of a random variable is the set of all points on which X has non-zero probabil-
ity). Then H(X) is the min-entropy of X:

1
Hoo(X) = in log | —=———
(X) xeSrE;E(X) ©8 <PT[X = l‘])

Intuitively, it gives the maximum amount of uncertainty of a random variable in a distribution. It
can be seen as a measure of unpredictability of a set of outcomes.

The idea of an extracting puncturable PRF is that now the key K is known but the point z is
unknown. So in the simple case where x is chosen randomly, then the extracting PPRF says that
the output is random. Similarly, in the general case, the output should still be random.

Page 3

5. Is it not possible to find a “very good” PRF which can be used everywhere instead of having
3 different PRF’s? In other words, why can’t there be a PRF with a large domain and range and
somehow use restrictions to modify it for the other cases?

There is no good way of having one PRF having the properties of all the three PRFs. For example,
in this particular case, the extracting PRF has to be shrinking and there are other PRFs that has
to be expanding in nature. However, there is a notion of “Invertible constrained PRFs” [BKW17]
which should suffice by a single key K.

6. Is 0O practical? For instance, from what little I know, SMPC(secure multiparty computation)
is not highly practical at the moment in most cases but it is slowly changing with more practical
applications coming quickly.

No, O is not practical in the sense that the construction of O is not efficient. However, iO has
practical applications. The notion of converting a private key encryption scheme to a public key
encryption scheme is a great practical application and it has become useful in many places(restricted
use software).

’ 7. Are other applications like NIZK, TDF and OT be covered? ‘

No.

References

[BKW17] Dan Boneh, Sam Kim, and David J. Wu. Constrained keys for invertible pseudorandom
functions. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages 237-
263, Cham, 2017. Springer International Publishing.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 60-73, 2021.

[Lec11] Lecture. Deniable encryption fromio. http://www.cse.iitm.ac.in/~shwetaag/
6115/Lecll.pdf, 11.

[Lec12] Lecture. Deniable encryption fromio. http://www.cse.iitm.ac.in/~shwetaag/
6115/Lecl?2.pdf, 12.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 475-484, 2014.

Page 4

http://www.cse.iitm.ac.in/~shwetaag/6115/Lec11.pdf
http://www.cse.iitm.ac.in/~shwetaag/6115/Lec11.pdf
http://www.cse.iitm.ac.in/~shwetaag/6115/Lec12.pdf
http://www.cse.iitm.ac.in/~shwetaag/6115/Lec12.pdf

	Introduction
	Review of Deniable Encryption from iO

