CS6115: Structure versus Hardness in Cryptography

September 29, 2021

Lecture 16 : Other Applications iO

Lecturer: Shweta Agrawal

Scribe: Saswata Mukherjee

1 Intoduction

Till now, we have seen deniable encryption, using indistinguishability obfuscation (Sahai-Waters paper). After that, public key encryption has been constructed, from secret key encryption, using iO. In this lecture, we are going to see (from [20]), iO construction for P, from iO for NC¹ and fully homomorphic encryption scheme, with decryption in NC¹.

1.1 Review of iO and FHE

Definition 1.1 (Homomorphic Encryption).

A homomorphic encryption scheme is defined as four-tuple of ppt algorithms (KeyGen, Enc, Dec, Eval).

- 1. $KeyGen(1^{\lambda})$: It gives output (pk, sk, evk) the public key, secret key and evaluation key.
- 2. Enc(pk, m) : If *m* is a messege then it outputs some ciphertext *c*.
- 3. Dec(sk, c) : It outputs some messege bit m_1 from ciphertext c.
- 4. Eval(evk, f, c_1, \ldots, c_l) : For some function f and ciphertexts c_1, \ldots, c_l it outputs $f(c_1, \ldots, c_l) = c_f$.

Correctness: The above scheme is correct if

 $\Pr[\mathsf{Dec}_{sk}(\mathsf{Eval}_{evk}(f, c_1, \dots, c_l)) \neq f(m_1, \dots, m_l)] = negl(\lambda)$

where $c_i \leftarrow \mathsf{Enc}(pk, m_i) \ \forall i$.

Compactness: The scheme is compact if the size of $\text{Eval}_{evk}(f, c_1, \ldots, c_l)$ is bounded by $\text{poly}(\lambda)$ bits and it is independent of the function and number of inputs to it.

Definition 1.2 (Indistinguishability Obfuscator). Indistinguishability Obfuscator $i\mathcal{O}$ is a ppt algorithm so that: Given input some program P_0 , $i\mathcal{O}(P_0)$ satisfies:

- 1. $i\mathcal{O}(P_0)$ can be computed in time polynomial over the description of P_0 .
- 2. $i\mathcal{O}(P_0)$ preserves functionality.
- 3. For any ppt adversary A and programs P_1 , P_2 , with equal complexity and functionality,

$$|\mathsf{Pr}[A(i\mathcal{O}(P_1)) = 1] - \mathsf{Pr}[A(i\mathcal{O}(P_2)) = 1]|$$

is negligible.

2 Construction

Say, (KeyGen, Enc, Dec, Eval) is our given FHE scheme, so that, it's decryption circuit is in NC¹. In the following procedure, we construct iO for a circuit C with polynomial depth.

- 1. Say, λ is our security parameter and $(\mathsf{pk}_1,\mathsf{sk}_1) \leftarrow \mathsf{KeyGen}(1^{\lambda}), (\mathsf{pk}_2,\mathsf{sk}_2) \leftarrow \mathsf{KeyGen}(1^{\lambda}).$
- 2. Encrypt *C* using two public keys. Say, $e_1 \leftarrow \text{Enc}_{\mathsf{pk}_1}(C)$, $e_2 \leftarrow \text{Enc}_{\mathsf{pk}_2}(C)$.
- 3. Now, we obfuscate of a program $P \in NC^1$ and description of *P* is given below.

For $i\mathcal{O}$ construction of C, we have to assure two main points. The first one is $i\mathcal{O}(C)$ should hide C and from the encryption of the circuit, we have the security guarantee. Now, we need to make sure that it preserves functionality.

Although Dec circuit is in NC¹, we cannot simply give the obfuscated Dec circuit publicly. As, in that case, by computing $Dec(\hat{C})$, the circuit C can be easily recovered (Here, \hat{C} is the encryption of circuit C).

So, we describe the program $P \in \mathbf{NC}^1$ by following procedure.

Here, we define **Universal Circuit** *U*. Given a circuit *C* and some input *x*, U(C, x) computes C(x). Let, U_x be the circuit U(., x) where *x* is hard-wired.

From definition of FHE.Eval, $\text{Eval}_{\text{evk}}(U_x, \widehat{C}) = \widehat{C}(x)$. So, we want to assure that the input to the obfuscated Dec circuit was computed as $\text{Eval}_{\text{evk}}(U_x, \widehat{C})$, for some x.

Say, R_1, R_2 are the circuits, which compute $y_1 \leftarrow \mathsf{Eval}_{\mathsf{evk}_1}(U_x, e_1)$ and $y_2 \leftarrow \mathsf{Eval}_{\mathsf{evk}_2}(U_x, e_2)$ respectively. Let π_1 and π_2 are the values of internal wires of circuits R_1 and R_2 , on input x.

Define $P = P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2}$, on input $(x, y_1, y_2, \pi_1, \pi_2)$ in the following way:

- 1. Check whether $R_1(x) = y_1$ and $R_2(x) = y_2$ by using π_1, π_2 .
- 2. if condition (1) is satisfied then output $Dec(sk_1, y_1)$.

FHE.Dec circuit is in NC¹ and as we have π_1, π_2 , we can check if $R_1(x) = y_1$ and $R_2(x) = y_2$ by using log depth circuit. Hence, $P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2} \in \mathsf{NC}^1$. We can obfuscate $P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2}$ by our known $i\mathcal{O}$ for NC¹ circuit. In this way we assure functionality.

Proof of Security:

We prove indistinguishability property for this construction, by hybrid argument. Here the $i\mathcal{O}$ for P adversary challenger gives two circuits $C_0, C_1 \in P$ and it receives $i\mathcal{O}(C_b)$ for some random $b \in \{0, 1\}$. It has to guess b.

And for the reduction from one hybrid to another, $i\mathcal{O}$ for NC¹ challenger or the \mathcal{FHE} challenger is invoked. Through these hybrids, we transform obfuscation of C_0 to obfuscation of C_1 and H_{i+1} is indistinguishable from H_i for all i.

- 1. H₀: The real world with $e_1 = \mathsf{Enc}_{\mathsf{pk}_1}(C_0)$, $e_2 = \mathsf{Enc}_{\mathsf{pk}_2}(C_0)$ with obfuscated $P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2}$.
- 2. H₁ : Here we make $e_2 = \text{Enc}_{pk_2}(C_1)$, using FHE security.

- 3. $H_2: P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2}$ is changed to $P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_2,\mathsf{e}_1,\mathsf{e}_2}$ (it uses sk_2 instead of sk_1), using $i\mathcal{O}$ security.
- 4. H_3 : Make $e_1 = Enc_{pk_1}(C_1)$ using FHE security.
- 5. H₄ : Change *P* to $P_{\mathsf{pk}_1,\mathsf{pk}_2,\mathsf{sk}_1,\mathsf{e}_1,\mathsf{e}_2}$ again, using *i* \mathcal{O} security. And here we arrive at real world with C_1 .

References

[20] Lecture 20. Using indistinguishability obfuscation. https://people.eecs.berkeley. edu/~sanjamg/classes/cs276-fall14/scribe/lec20.pdf.