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In this lecture, and following few lectures, we will study bi-linear maps (pairings) and its applica-
tions. Before defining bi-linear maps we will define some preliminary hard problems in groups.
Let us begin with a motivating example.

Suppose two parties, Alice and Bob want to agree on a common secret key (which they can
further use for exchanging secret messages using symmetric key encryption). But they are con-
strained to send any message over a public channel, where anyone can tap on the channel and
get access to the messages sent over it. However, for simplicity, we assume that no one else, other
than the legitimate parties can insert or modify the messages on this channel. Thus, we want the
following: Alice sends some message, saymA to Bob and similarly Bob sends some messagemB to
Alice over a public channel; and then they both compute a common key K which, given mA and
mB , appears random to anyone other than Alice and Bob. This problem is known as Key Agreement
Problem. Before looking at a solution to this problem let us first define some preliminary hard
problems in groups.

1 Preliminaries

Definition 1.1 (Discrete Log Problem). In a cyclic group G = 〈g〉 (g is a generator of G) of order
q > 2λ, the Discrete Logarithm problem is defined as follows. Given g ∈ G and h ← G, find
x ∈ Zq such that gx = h. We say that the Discrete Logarithm assumption holds in G if, for
any probabilistic polynomial-time (PPT) algorithm A, we have AdvDL

A (λ) := Pr[h = gx | x ←
A(G, g, h), h← G] ∈ negl(λ), where the probability is taken over all coin tosses and negl(λ) denotes
the set of negligible functions of λ ∈ N.

Next we describe two related problems, called Computational Diffie Hellman problem and Deci-
sional Diffie Hellman problem.

Definition 1.2 (Computational Diffie Hellman Problem). The Computational Diffie-Hellman (CDH)
problem in G is to compute gab given (g, ga, gb), with a, b ← Zq. We say that the CDH assump-
tion holds in G if, for any PPT algorithm A, it holds that AdvCDH

A (λ) := Pr[h = gab | h ←
A(G, g, ga, gb); a, b← Zq] ∈ negl(λ), where the probability is taken over all coin tosses.

Definition 1.3 (Decisional Diffie Hellman Problem). The Decisional Diffie-Hellman problem in
group G is to distinguish between two distributions D0 = {(g, ga, gb, gab) | a, b ← Zq} and D1 =
{(g, ga, gb, gc) | a, b, c ← Zq}. We say that the DDH assumption holds in G if the distributions D0

and D1 are computationally indistinguishable, i.e. for all PPT A,

AdvDDH
A (λ) := | Pr

x←D0

[A(x) = 1]− Pr
x←D1

[A(x) = 1]| ∈ negl(λ), i.e.

|Pr[A(g, ga, gb, gab) = 1 | a, b← Zq]− Pr[A(g, ga, gb, gc) = 1 | a, b, c← Zq]| ∈ negl(λ).



1.1 Applications of DL, DDH and CDH Assumptions

Key Agreement Protocol We return to the problem of key agreement that we defined in the be-
ginning. The DDH assumption has its direct application in Diffie-Hellman key agreement protocol
given by Diffie and Hellman in 1976 [DH76]. Recall that in key agreement problem, we want two
remote parties Alice and Bob to setup a common random key K between them using a public
channel. For correctness, we want that both Alice and Bob compute the same key and for security
we want that K must be pseudorandom. The protocol is described as follows:

Alice→ Bob : mA = ga, a← Zq
Bob→ Alice : mB = gb, b← Zq

Alice computes key as K = ma
B = (gb)a = gab;

Bob computes key as K = mb
A = (ga)b = gab.

Correctness and Security: Both Alice and Bob compute the same key K = gab which proves the
correctness. Security also follows directly from the DDH assumption.

An important point to note here is that the protocol is secure only against passive adversary
who can only view the messages sent over the public channel but cannot modify or inject its own
messages.

ElGamal Encryption Another application of DDH assumption is the construction of a public key
encryption scheme given by ElGamal [ElG85]. The scheme is defined as follows:

KeyGen(1λ): On input 1λ, the keygen algorithm does the following:

1. Chooses a group G of prime order q > 2λ, a group generator g for G and x← Zq.
2. Computes h = gx mod q and outputs pk = (G, g, q, h) and sk = x.

Enc(pk,M): To encrypt a message M ∈ G, the encryption algorithm does the following.

1. Samples r ← Zq and outputs

ct = (c1, c2), where c1 = gr and c2 =M · hr.

Dec(sk, ct): To decrypt a ciphertext ct = (c1, c2) using secret key sk = x, the decryption algorithm
computes and outputs the following.

M =
c2
cx1

Correctness and Security: Correctness is straightforward:

c2
cx1

=
M · hr

(gr)x
=
M · gxr

grx
=M

For security we prove the following theorem:

Theorem 1. Assume that the DDH assumption holds in G. Then the ElGamal encryption scheme
presented above satisfies IND-CPA security.
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Proof. We can prove the above theorem using following hybrids:

Hybrid0 : In this hybrid, the challenger encrypts message M0. That is, the challenger sends pk =
(G, g, q, gx) to A. A outputs two messages M0 and M1. The challenger sends challenge
ciphertext as ct = (gr,M0 · gxr) to A.

Hybrid1 : This hybrid is same as the previous one, except that in this hybrid, the challenger com-
putes ct as ct = (gr,M0 · gc), where c← Zq.

Hybrid2 : This hybrid is same as the previous one, except that in this hybrid, M0 is replaced by
M1, i.e. ct is computed as ct = (gr,M1 · gc), where c← Zq.

Hybrid3 : This hybrid is same as the previous one, except that in this hybrid, ct is a valid encryp-
tion of M1, i.e. ct = (gr,M1 · gxr).

Observe that our goal is to show that Hybrid0 and Hybrid3 are computationally indistinguishable.
For this, it suffices to show that the consecutive hybrids are indistinguishable.

Claim: If any PPT adversary A can distinguish between Hybrid0 and Hybrid1 with advantage ε,
then there exists an adversary B against DDH problem with advantage at least ε.

Proof. B is defined as follows:
Upon receiving a challenge (G, g, q, ga, gb, t) from the DDH challenger, B does the following:

1. Sets pk = (G, g, q, ga) and invokes Awith pk. B implicitly sets sk = a.

2. Upon receiving challenge messages M0 and M1 from A, B computes ct = (gb,M0 · t) and
sends ct to A.

3. In the end, A outputs a bit d′. B returns the same bit to the DDH challenger.

We can observe that if t = gab, then B simulated Hybrid0 and if t = gc for c← Zq, then B simulated
Hybrid1 with A. Therefore, advantage of B is equal to

|Pr[B outputs 1 | t = gab]− Pr[B outputs 1 | t = gc]|
= |Pr[A outputs 1 in Hybrid0]− Pr[A outputs 1 in Hybrid1]| = ε.

• Hybrid1 and Hybrid2 are statistically indistinguishable because of the following arguments.
The only difference between the two hybrids is that in Hybrid1, c2 =M0 · gc, while in
Hybrid2, c2 =M1 · gc. For d ∈ {0, 1}, let Md = gmd for some md ∈ Zq. Then Md · gc = gmd+c.
Since, c is uniformly random, md + c is also uniformly random in Zq implying that Md · gc is
uniformly random in G, regardless of whether d = 0 or d = 1. Hence, the two hybrids are
statistically indistinguishable.

• Indistinguishability of Hybrid2 and Hybrid3 can be argued in the same way as that for
indistinguishability between Hybrid0 and Hybrid1.
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2 Pairings and its Applications

We start with some definitions.

Definition 2.1 (Pairings). A pairing is a bilinear map e : G1 ×G2 → GT for cyclic abelian groups
G1, G2, GT of order p (usually prime) such that:

1. e(ga1 , g
b
2) = e(gb1, g

a
2) = e(g1, g2)

ab, ∀ g1 ∈ G1,∀ g2 ∈ G2, ∀ (a, b) ∈ Zq;

2. If p is prime, then e(g1, g2) = 1GT
⇐⇒ g1 = 1G1 and g2 = 1G2 .

We need to assume that the pairing is efficiently computable.

Remarks:

1. If G1 = G2, then e is called symmetric map.

2. If G1 = G2 = G, then DDH problem is easy in G because of the following observation:
Given (G, g, p, ga, gb, gc), where a, b← Zq and c← Zq or c = ab,

c = ab ⇐⇒ e(ga, gb) = e(g, gc).

3. Discrete Logarithm problem is not any harder in the groups G1 or G2 (regardless of whether
G1 = G2 or not) than in GT . For example, if g, g1 ∈ G1, then logg(g1) = loge(g,h)e(g1, h) for
any h ∈ G2, so that a Discrete Logarithm instance in G1 is easily turned into a Discrete
Logarithm instance in GT . The same holds for a discrete log instance in G2.

Now we define a computational assumption on pairings. For simplicity we consider
G1 = G2 = G.

Definition 2.2 (Decisional Bilinear Diffie-Hellman (DBDH) Assumption). The Decisional Bilinear
Diffie-Hellman (DBDH) assumption holds in (G,GT ) if the distributions

D0 = {(g, ga, gb, gc, e(g, g)abc | a, b, c← Zp}, and

D1 = {(g, ga, gb, gc, e(g, g)d | a, b, c, d← Zp}

are computationally indistinguishable. The advantage of a distinguisher can be defined as the
distance between two probabilities, analogously to the DDH case as follows:

AdvDBDH
A (λ) = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1 | a, b, c← Zp]

− Pr[A(g, ga, gb, gc, e(g, g)d) = 1 | a, b, c, d← Zp]|

The DBDH assumption holds in (G,GT ) if for all PPT A, AdvDBDH
A ≤ negl(λ).

Observation:
We can observe that the DBDH assumption in groups (G,GT ) is a natural extension of the DDH
assumption in a group G without pairings. DDH assumption says that given (g, ga, gb), gab is
computationally indistinguishable from a random element in G. That is, it says that it is hard to
compute even a single multiplication in the exponent. Analogously, pairings let us do one
multiplication in the exponent (in other words, allows degree 2 term in the exponent) but again,
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it is hard to go beyond one multiplication. That is, given e : G×G→ GT and ga, gb, gc for
randomly chosen a, b, c, it is easy to compute e(g, g)ab or e(g, g)bc or e(g, g)ac, but e(g, g)abc is
computationally indistinguishable from a random element in GT , i.e. by doing even one more
multiplication in the exponent, we get a pseudorandom value.
The definition of bi-linear maps can in fact, be generalized to higher orders which allows more
than one multiplication in the exponent and is called multi-linear maps. For bi-linear maps, there
exist groups on elliptic curves for which we know of instantiations for pairings that are efficiently
computable. However, for higher degrees, i.e. multilinear maps, even though there exist such
maps, we don’t know of any map that is efficiently computable and this is a big open problem in
cryptography.

3-way Key Agreement Protocol using Pairings The Diffie-Hellman key agreement protocol
naturally extends to a single round 3-way key agreement protocol using pairings and the DBDH
assumption. In 3-way key agreement, three parties, A,B and C agree upon a common key by
communicating through a public channel.
The protocol is defined as follows: Let e : G×G→ GT be a symmetric bilinear map, with a
generator g ∈ G. The three parties proceed as follows.

1. A chooses a← Zp and sends ga to B and C.

2. B chooses b← Zp and sends gb to A and C.

3. C chooses c← Zp and sends gc to A and B.

When the protocol ends, A,B and C compute the shared key

K = e(g, g)abc = e(gb, gc)a = e(ga, gc)b = e(ga, gb)c,

which is pseudo-random to everyone except A,B or C under the DBDH assumption which says
that K = e(g, g)abc is computationally indistinguishable from a random element of GT given
(g, ga, gb, gc).

2.1 Identity Based Encryption

The concept of identity based encryption was first given by Shamir in 1984 [SHA84]. Identity
based encryption is an extension of public key encryption (PKE), in which the public key can be
any string of one’s own choice. For example, one can choose her own identity as her public key
and then get a corresponding secret key from some ”key generating authority”. This is different
from public key encryption in which both the public key and the secret key are generated by the
setup algorithm. The public key thus generated is long and does not generally have any structure
and hence, hard to remember. Moreover, in case of PKE, we need some certification authority to
certify the mapping between one’s identity and his public key. In addition, we need a public
repository which maps different identities with corresponding public keys so that anyone who
wants to send some secret message to someone can get his public key from the repository. In case
of IBE, since the public key of any user is her identity itself, we do not need any certificate or
mapping. Thus motivation behind IBE is to simplify key management and minimize the use of
certification authority.

Definition 2.3 (Identity Based Encryption). An Identity Based Encryption (IBE) scheme is a tuple
of algorithms (Setup,KeyGen,Enc,Dec) such that:
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Setup(1λ)→ (pp,msk): Given a security parameter 1λ, the setup algorithm outputs a pair
(pp,msk). (This algorithm is run by an authority called Private-Key Generator (PKG)).

KeyGen(msk, ID)→ skID: Given msk and user’s identity ID, the keygen algorithm outputs a
secret key skID corresponding to ID. (this algorithm is also run by the PKG).

Enc(pp, ID,M)→ ct: Given pp, the receiver’s identity ID and a plaintext M , the encryption
algorithm outputs a ciphertext ct.

Dec(pp, skID, ct)→M ′ or ⊥: Given pp, a private key skID and a ciphertext ct, the decryption
algorithm outputs M ′ or an error symbol ⊥ indicating a decryption failure.

Correctness:

Pr

 M ← Dec(pp, skID, ct):
(pp,msk)← Setup(1λ),
skID ← KeyGen(pp,msk, ID),
ct← Enc(pp, ID,M)

 ≥ 1− negl(λ).

Security:
An IBE scheme satisfies IND-ID-CPA security if for all PPT adversary A, for all λ ∈ N, advantage
of A is negligible in the following game.

Experiment ExptIBEA (λ):

1. Setup phase: The challenger generates (pp,msk)← Setup(1λ), gives pp to A and initializes a
set Q.

2. Key queries: A adaptively corrupts polynomially many identities of its choice by repeating
the following kind of queries:

• A chooses an identity ID and obtains skID ← KeyGen(msk, ID) from the challenger.

• The challenger updates Q := Q ∪ {ID}.

Note that each query may depend on the answer to previous queries.

3. Challenge Query: A outputs two messages M0,M1 and an ID∗ 6∈ Q. The challenger chooses
a bit b← {0, 1} and returns ct∗ = Enc(pp, ID∗,Mb) to A.

4. A corrupts more identities under the restriction that ID∗ can never be corrupted. Hence, it
must hold that ID∗ 6∈ Q at the end of the game.

5. A outputs its guess bit b′ and wins if an only if b′ = b.

Advantage of A is defined as Pr[b′ = b]− 1/2.

Construction First construction of IBE was given by Boneh and Franklin in 2001 [BF01], for
which they won Gödel prize in 2013 (along with Antoine Joux) [ACM]].
Boneh and Franklin’s construction uses pairings and is secure in random oracle model. Let us
first understand the random oracle model. Then we will study the construction in next lecture.
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Random Oracle Model Consider a family of functions F = {f : {0, 1}n → {0, 1}m}. For simple
case of m = 1, each function has truth table of length 2n bits. Thus, |F| = 22

n
. In general m is

large so that for a randomly chosen function Rf from F , the function value is unique (i.e.
different at different points) with high probability at p many points, where p = p(λ) is a
polynomial in the security parameter λ. Observe that the truth table of any function in F is
exponentially large and therefore, in general, it may not always be possible to efficiently
represent a random function.
Random oracle model is a theoretical model in which we assume that everyone in the system has
”query access” to a random function Rf sampled from F . By query access, we mean that anyone
in the system can query the oracle for Rf on any input x of its choice and get y in response. Since,
Rf is a random function, y is uniformly random in {0, 1}m. However, by the definition of a
function, if different entities in the system query the random oracle for Rf on same input x, then
they all receive the same value y.
In practice, the use of random oracles is justified by the existence of certain efficiently
representable functions whose outputs are sufficiently randomized to look random. These
functions generate pseudorandom outputs. For e.g. SHA family of hash functions is a good
candidate (and mostly used in practice) for random functions.
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