1 Identity Based Encryption

We describe the IBE scheme given by Boneh and Franklin in 2001.
Setup $\left(1^{\lambda}\right)$: Choose groups G and G_{T} of prime order $p>2^{\lambda}$ along with a bilinear map $e: G \times G \rightarrow G_{T}$ and a generator g. Choose random $\alpha \in \mathrm{Z}_{p}^{*}$ and define the master secret key $\mathrm{MSK}=\alpha$. Define the public parameters

$$
\mathrm{PP}=\left(G, G_{T}, g, g_{1}=g^{\alpha}, H\right)
$$

where H is a hash function treated as a random oracle in the security proof. Output (MSK, PP).
KeyGen(PP, MSK, ID): Output the secret key

$$
d_{\mathrm{ID}}=(H(\mathrm{ID}))^{\alpha}
$$

$\operatorname{Encrypt}(\mathrm{PP}, \mathrm{ID}, M):$ Sample random $r \in \mathbb{Z}_{p}^{*}$. Output $C=\left(C_{1}, C_{2}\right)$ where

$$
\begin{aligned}
& C_{1}=g^{r} \\
& C_{2}=M \cdot e\left(g_{1}, H(\mathrm{ID})\right)^{r}
\end{aligned}
$$

Decrypt(PP, $\left.d_{\mathrm{ID}}, C\right)$: Parse C as $\left(C_{1}, C_{2}\right)$ and output

$$
M=\frac{C_{2}}{e\left(C_{1}, d_{\mathrm{ID}}\right)}
$$

Correctness: We now prove correctness of the encryption scheme described above.

$$
\begin{aligned}
e\left(C_{1}, d_{\mathrm{ID}}\right) & =e\left(g^{r}, H(\mathrm{ID})^{\alpha}\right) \\
& =e(g, H(\mathrm{ID}))^{\alpha r} \\
& =e\left(g^{\alpha}, H(\mathrm{ID})\right)^{r} \\
& =e\left(g_{1}, H(\mathrm{ID})\right)^{r}
\end{aligned}
$$

Now,

$$
\frac{C_{2}}{e\left(C_{1}, d_{\mathrm{ID}}\right)}=\frac{M . e\left(g_{1}, H(\mathrm{ID})\right)^{r}}{e\left(g_{1}, H(\mathrm{ID})\right)^{r}}=M
$$

Security

Theorem: The Boneh-Franklin IBE is IND-ID-CPA secure in the Random Oracle Model if the DBDH assumption holds in $\left(G, G_{T}\right)$.

Proof: Assume there exists an adversary \mathcal{A} for the IBE scheme described earlier. We construct an adversary \mathcal{B} for a DBDH challenger as follows:

1. \mathcal{B} is given $\left(g, g^{a}, g^{b}, g^{c}\right)$ and T by the DBDH challenger where T is either $e(g, g)^{a b c}$ or $e(g, g)^{d}$ where $a, b, c, d \leftarrow \mathbb{Z}_{p}$.
2. \mathcal{B} provides \mathcal{A} with the public parameters $\mathrm{PP}=\left(G, G_{T}, g, g_{1}=g^{a}, H\right)$. Implicitly, $\mathrm{MSK}=a$
3. Initialize $L=\{ \}$
4. When \mathcal{A} queries $H(\mathrm{ID}), \mathcal{B}$ does the following:
(a) Return previously defined H (ID) if it exists
(b) Flip a coin $b_{\mathrm{ID}} \in\{0,1\}$ with probabilities

$$
\begin{aligned}
& \operatorname{Pr}\left(b_{\mathrm{ID}}=0\right)=\frac{q}{q+1} \\
& \operatorname{Pr}\left(b_{\mathrm{ID}}=1\right)=\frac{1}{q+1}
\end{aligned}
$$

where q is the number of hash queries.
(c) If $b_{\mathrm{ID}}=0$, sample random $\beta_{\mathrm{ID}} \in \mathbb{Z}_{p}$ and define $H(\mathrm{ID})=g^{\beta_{\mathrm{ID}}}$
(d) If $b_{\mathrm{ID}}=1$, sample random $\beta_{\mathrm{ID}} \in \mathbb{Z}_{p}$ and define $H(\mathrm{ID})=\left(g^{b}\right)^{\beta_{\mathrm{ID}}}$
(e) Store (ID, $\left.b_{\mathrm{ID}}, \beta_{\mathrm{ID}}, H(\mathrm{ID})\right)$ in L
5. When \mathcal{A} queries secret key of an ID, \mathcal{B} does the following: (Without loss of generality, we assume that every private key query was preceded by the corresponding hash query)
(a) If $b_{\mathrm{ID}}=1, \mathcal{B}$ fails and outputs a random bit.
(b) If $b_{\mathrm{ID}}=0, \mathcal{B}$ computes and returns $d_{\mathrm{ID}}=\left(g^{a}\right)^{\beta_{\mathrm{ID}}}$ to \mathcal{A}
6. Generation of challenge ciphertext and proof of security of reduction shall be covered in the next lecture.

References

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 213-229, 2001.

