CS6115: Structure versus Hardness in Cryptography

Lecture 19 : Identity Based Encryption

Lecturer: Shweta Agrawal

1 Identity Based Encryption

We describe the IBE scheme given by Boneh and Franklin in 2001.

Setup(1^{λ}): Choose groups *G* and *G*_{*T*} of prime order $p > 2^{\lambda}$ along with a bilinear map $e : G \times G \to G_T$ and a generator *g*. Choose random $\alpha \in \mathsf{Z}_p^*$ and define the master secret key $\mathsf{MSK} = \alpha$. Define the public parameters

$$\mathsf{PP} = (G, G_T, g, g_1 = g^{\alpha}, H)$$

where *H* is a hash function treated as a random oracle in the security proof. Output (MSK, PP).

KeyGen(PP, MSK, ID): Output the secret key

$$d_{\mathsf{ID}} = (H(\mathsf{ID}))^c$$

Encrypt(PP, ID, *M*): Sample random $r \in \mathbb{Z}_p^*$. Output $C = (C_1, C_2)$ where

$$C_1 = g^r$$

$$C_2 = M.e(g_1, H(\mathsf{ID}))^r$$

Decrypt(PP, d_{ID} , C): Parse C as (C_1, C_2) and output

$$M = \frac{C_2}{e(C_1, d_{\mathsf{ID}})}$$

Correctness: We now prove correctness of the encryption scheme described above.

$$e(C_1, d_{\mathsf{ID}}) = e(g^r, H(\mathsf{ID})^\alpha)$$

= $e(g, H(\mathsf{ID}))^{\alpha r}$
= $e(g^\alpha, H(\mathsf{ID}))^r$
= $e(g_1, H(\mathsf{ID}))^r$

Now,

$$\frac{C_2}{e(C_1, d_{\mathsf{ID}})} = \frac{M.e(g_1, H(\mathsf{ID}))^r}{e(g_1, H(\mathsf{ID}))^r} = M$$

Oct 7, 2021

Scribe: Satvinder

Security

Theorem: The Boneh-Franklin IBE is IND-ID-CPA secure in the Random Oracle Model if the DBDH assumption holds in (G, G_T) .

Proof: Assume there exists an adversary A for the IBE scheme described earlier. We construct an adversary B for a DBDH challenger as follows:

- 1. \mathcal{B} is given (g, g^a, g^b, g^c) and T by the DBDH challenger where T is either $e(g, g)^{abc}$ or $e(g, g)^d$ where $a, b, c, d \leftarrow \mathbb{Z}_p$.
- 2. \mathcal{B} provides \mathcal{A} with the public parameters $\mathsf{PP} = (G, G_T, g, g_1 = g^a, H)$. Implicitly, $\mathsf{MSK} = a$
- 3. Initialize $L = \{\}$
- 4. When \mathcal{A} queries H(ID), \mathcal{B} does the following:
 - (a) Return previously defined H(ID) if it exists
 - (b) Flip a coin $b_{\mathsf{ID}} \in \{0, 1\}$ with probabilities

$$\Pr(b_{\mathsf{ID}} = 0) = \frac{q}{q+1}$$
$$\Pr(b_{\mathsf{ID}} = 1) = \frac{1}{q+1}$$

where q is the number of hash queries.

- (c) If $b_{\mathsf{ID}} = 0$, sample random $\beta_{\mathsf{ID}} \in \mathbb{Z}_p$ and define $H(\mathsf{ID}) = g^{\beta_{\mathsf{ID}}}$
- (d) If $b_{\mathsf{ID}} = 1$, sample random $\beta_{\mathsf{ID}} \in \mathbb{Z}_p$ and define $H(\mathsf{ID}) = (g^b)^{\beta_{\mathsf{ID}}}$
- (e) Store $(ID, b_{ID}, \beta_{ID}, H(ID))$ in L
- 5. When A queries secret key of an ID, B does the following: (Without loss of generality, we assume that every private key query was preceded by the corresponding hash query)
 - (a) If $b_{ID} = 1$, \mathcal{B} fails and outputs a random bit.
 - (b) If $b_{\text{ID}} = 0$, \mathcal{B} computes and returns $d_{\text{ID}} = (g^a)^{\beta_{\text{ID}}}$ to \mathcal{A}
- 6. Generation of challenge ciphertext and proof of security of reduction shall be covered in the next lecture.

References

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 213–229, 2001.