Identity Based Encryption

We will continue the proof of the security theorem discussed in the last class

Theorem. [BF01] The Boneh-Franklin IBE is IND-ID-CPA secure in the Random Oracle Model if the DBDH assumption holds in $\left(G, G_{T}\right)$.

Proof(continued): Till now the form of reduction we have

1. \mathcal{B} is given $\left(g, g^{a}, g^{b}, g^{c}\right)$ and the Target element $T=e(g, g)^{a b c}$, or a random $e(g, g)^{d}$ (slightly different from the previous scribe) by the challenger.
2. PP: a will be treated as MSK. Hence the PP is ($G, G_{T}, g, g_{1}=g^{a}, H$)
3. Hash queries: With a biased coin toss, $b_{i d} \in\{0,1\}$ we will determine H (ID) by

$$
\begin{cases}H(\mathrm{ID})=g^{\beta_{i d}} & \text { if } b_{i d}=0 \\ H(\mathrm{ID})=\left(g^{b}\right)^{\beta_{i d}} & \text { if } b_{i d}=1\end{cases}
$$

L will store these information.
4. Public key queries: for any ID \mathcal{B} will return

$$
\left\{\begin{array}{l}
\mathcal{B} \text { fails and returns a random value } \\
\left(g^{a}\right)^{\beta_{i d}}
\end{array} \quad \text { if } b_{i d}=1\right.
$$

Now the task is to generate cipher text. It will also depend on the value of $b_{i d^{*}}$. (id ${ }^{*}$ is the identity used as secret key)

1. If $b_{i d^{*}}=0$ then \mathcal{B} fails and outputs a random value. (as we know how to generate secret key for that particular id, follows from the construction of β)
2. if $b_{i d^{*}}=1$ then c will be treated as r, since we have the access of g^{c}, we will set $c_{1}=g^{c}$ (c_{1}, r are the same parameters defined in discussion of the IBE scheme) Now construction of c_{2} will be straight forward

$$
\begin{aligned}
c_{2} & =M_{\gamma} e\left(g^{a}, H\left(\mathrm{ID}^{*}\right)\right)^{c} \quad(\gamma \text { is a random bit }) \\
& =M_{\gamma} e\left(g^{a}, g^{\left.b \beta_{\mathrm{ID}^{*}}\right)^{c}}\right. \\
& =M_{\gamma} e(g, g)^{(a b c) \beta_{\mathrm{ID}^{*}}} \\
& =M_{\gamma} T^{\beta_{1 \mathrm{D}^{*}}}
\end{aligned}
$$

(M_{0}, M_{1} are the msg required for the security game)
Now that can be either completely random value or our desired target element.
If T is random then the adversary can only guess randomly for the msg bit (since the msg has been wiped out, so M_{γ} and hence γ is information theoretically hidden from the IBE Adv)
Now if T is not random and adv can guess γ correctly then actually during the reduction it can distinguish between $e(g, g)^{a b c}$ and random element which contradicts the DBDH assumption.

Success Probability:

Say if \mathcal{B} outputs $1, T$ is real (i.e., $=e(g, g)^{a b c}$), \mathcal{B} outputs 0 otherwise.
Let us call the event that \mathcal{B} fails as FAILS. Now not FAILing can occur by both challenger coin comes with 1 (w.p. $\frac{1}{q+1}$) and q many key coins comes with 0 (w.p. $\left(\frac{q}{1+q}\right)^{q}$). Hence

$$
\begin{aligned}
\operatorname{Pr}(\neg \mathrm{FAIL}) & =\frac{1}{q+1}\left(\frac{q}{1+q}\right)^{q} \\
& \approx \frac{1}{\exp (1)(q+1)}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \operatorname{Pr}(B=1 \mid \mathrm{T} \text { Real }) \\
= & \frac{\operatorname{Pr}(B=1 \wedge \mathrm{~T} \text { Real })}{\operatorname{Pr}(\mathrm{T} \text { Real })} \\
= & \frac{\operatorname{Pr}(B=1 \wedge \neg \text { FAIL } \wedge \mathrm{T} \text { Real })+\operatorname{Pr}(B=1 \wedge \text { FAIL } \wedge \mathrm{T} \text { Real })}{\operatorname{Pr}(\mathrm{T} \text { Real })} \\
= & \frac{\operatorname{Pr}(B=1 \wedge \neg \text { FAIL } \wedge \mathrm{T} \text { Real })}{\operatorname{Pr}(\mathrm{T} \text { Real })} \times \frac{\operatorname{Pr}(\neg \text { FAIL } \wedge \mathrm{T} \text { Real })}{\operatorname{Pr}(\neg \text { FAIL } \wedge \mathrm{T} \text { Real })} \\
& +\frac{\operatorname{Pr}(B=1 \wedge \text { FAIL } \wedge \mathrm{T} \text { Real })}{\operatorname{Pr}(\mathrm{T} \text { Real })} \times \frac{\operatorname{Pr}(\text { FAIL } \wedge \mathrm{T} \text { Real })}{\operatorname{Pr}(\text { FAIL } \wedge \mathrm{T} \text { Real })} \\
= & \operatorname{Pr}(B=1 \mid \neg \text { FAIL } \wedge \mathrm{T} \text { Real }) \times \operatorname{Pr}(\neg \text { FAIL } \mid \mathrm{T} \text { Real }) \\
& +\operatorname{Pr}(B=1 \mid \text { FAIL } \wedge \mathrm{T} \text { Real }) \times \operatorname{Pr}(\text { FAIL } \mid \mathrm{T} \text { Real }) \\
= & \operatorname{Pr}(B=1 \mid \neg \text { FAIL } \wedge \mathrm{T} \text { Real }) \times \operatorname{Pr}(\neg \text { FAIL }) \\
& +\operatorname{Pr}(B=1 \mid \text { FAIL } \wedge \mathrm{T} \text { Real }) \times \operatorname{Pr}(\text { FAIL })
\end{aligned}
$$

(Since FAILing and T being real are independent)

$$
=\operatorname{Pr}(B=1 \mid \neg \text { FAIL } \wedge \mathrm{T} \text { Real }) \times \operatorname{Pr}(\neg \text { FAIL })+\frac{1}{2} \operatorname{Pr}(\text { FAIL })
$$

(whenever the reduction fails it outputs a random bit)

$$
\begin{align*}
& =\frac{1}{2}+\operatorname{Pr}(\neg \text { FAIL })\left(\operatorname{Pr}(B=1 \mid \neg \text { FAIL } \wedge \mathrm{T} \text { Real })-\frac{1}{2}\right) \\
& =\frac{1}{2}+\operatorname{Pr}(\neg \text { FAIL }) \varepsilon \tag{say}
\end{align*}
$$

Now note ε is indeed the "advantage" that \mathcal{B} has over a random guess.

Now similarly for random T case we have

$$
\operatorname{Pr}(B=1 \mid \mathrm{T} \text { Random })=\frac{1}{2}+\operatorname{Pr}(\neg \text { FAIL })\left(\operatorname{Pr}(B=1 \mid \neg \text { FAIL } \wedge \mathrm{T} \text { Random })-\frac{1}{2}\right)=\frac{1}{2}
$$

(when T is random it can only guess, hence there is no advantage or $\operatorname{Pr}(B=1 \mid \neg$ FAIL $\wedge \mathrm{T}$ Random $\left.)=\frac{1}{2}\right)$

So the advantage of the reduction \mathcal{B} over the DBDH challenger

$$
\begin{aligned}
& =\mid \operatorname{Pr}(B=1 \mid \mathrm{T} \text { Real })-\operatorname{Pr}(B=1 \mid \mathrm{\top} \text { Random }) \mid \\
& =\frac{1}{2}+\operatorname{Pr}(\neg \mathrm{FAIL}) \varepsilon-\frac{1}{2} \\
& =\frac{1}{\exp (1)(q+1)} \varepsilon
\end{aligned}
$$

Which is non-negligible if ε is non-negligible.

References

[BF01] Dan Boneh and Matthew K. Franklin. . identity-based encryption from the weil pairing. Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, pages 213-229, 2001.

