Lecture 4 : Quadratic Fully Homomorphic Encryption from LWE
Lecturer: Shweta Agrawal
Scribe: Meenakshi

In this lecture, we will be studying the quadratic homomorphic encryption (qFHE) in the secret key setting of [BV11].

1 Symmetric Key Encryption

Let n be the security parameter, q be the modulus and χ be the error distribution for the scheme. Let SKE $=$ \{keygen, enc, dec\} be a symmetric key encryption scheme described below.
$* s k \leftarrow \operatorname{SKE}$.keygen $\left(1^{n}\right)$. On receiving the security parameter n as input, it samples $\boldsymbol{s} \leftarrow \mathbb{Z}_{q}^{n}$ and sets $s k=\mathbf{s}$.

* (a, $b) \leftarrow \operatorname{SKE} . \operatorname{enc}(s k, m)$. It takes input as a secret key $s k$, a message $m \in\{0,1\}$ and performs the following steps.

1. sample $\mathbf{a} \in \mathbb{Z}_{q}^{n}$ and $e \in \chi$,
2. compute $b=<\mathbf{a}, \mathbf{s}>+e+m\left(\frac{q+1}{2}\right)$,
3. output the ciphertext $c t=(\mathbf{a}, b)$.

* $m \leftarrow \operatorname{SKE} \cdot \operatorname{dec}(s k, c t)$. It computes $w=b-<\mathbf{a}, \mathbf{s}\rangle$. Note that $\mathbf{s}=s k$.

1. If $\frac{q}{2} \leq|w| \leq q$ then output 1 .
2. Otherwise output 0 .

Note that the correctness of this algorithm follows provided $|e|<\frac{q}{4}$. The security of SKE relies on the hardness of learning with errors problem.

Homomorphic Operations on the Above Symmetric Key Encryption SKE.

Let c_{1}, c_{2} be two ciphertexts such that $c_{i}=\left(\mathbf{a}_{i}, b=<\mathbf{a}_{i}, \mathbf{s}>+e_{i}+m_{i}\left(\frac{q+1}{2}\right)\right)$ for $i=1,2$.

- It is easy to see that the scheme is additively homomorphic as explained below.

If we set $c=c_{1}+c_{2} \bmod q$ defined by

$$
c=(\mathbf{a}, b)=\left(\mathbf{a}_{1}+\mathbf{a}_{2},<\mathbf{a}_{1}+\mathbf{a}_{2}, \mathbf{s}>+\left(e_{1}+e_{2}\right)+\left(m_{1}+m_{2}\right)\left(\frac{q+1}{2}\right)\right)
$$

then

$$
\left.b-<\mathbf{a}_{1}+\mathbf{a}_{2}, \mathbf{s}\right\rangle=\left(e_{1}+e_{2}\right)+\left(m_{1}+m_{2}\right)\left(\frac{q+1}{2}\right) .
$$

Thus, if we set the parameters in such a way that the accumulated noise $e_{1}+e_{2}$ remains bounded above by $\frac{q}{4}$ then we get a valid encryption of $m_{1}+m_{2}$.

- We now understand the ideas of [BV11] to get the above scheme SKE to be multiplicatively homomorphic. If we look from the other way, we actually want is the encryption of $m_{1} \cdot m_{2}$, given the encryption of m_{1} and m_{2}. In other words, we want the encoding of $m_{1} m_{2}\left(\frac{q+1}{2}\right)$. We already have

$$
b_{1}-<\mathbf{a}_{1}, \mathbf{s}>\approx m_{1}\left(\frac{q+1}{2}\right),
$$

$$
b_{2}-<\mathbf{a}_{2}, \mathbf{s}>\approx m_{2}\left(\frac{q+1}{2}\right) .
$$

That is $2\left(b_{1}-<\mathbf{a}_{1}, \mathbf{s}>\right)\left(b_{2}-<\mathbf{a}_{2}, \mathbf{s}>\right) \approx m_{1} m_{2}\left(\frac{q+1}{2}\right) \bmod q$.
Let us recall the tensor product and the product of two inner products.

1. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{s}\right) \in \mathbb{Z}^{s}$ and $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{t}\right) \in \mathbb{Z}^{t}$ then

$$
\mathbf{w} \otimes \mathbf{z}=\left(w_{i} z_{j}\right)_{(i, j) \in[s][t]} \in \mathbb{Z}^{s t} .
$$

2. $\left\langle\mathbf{u}_{1}, \mathbf{v}_{1}\right\rangle\left\langle\mathbf{u}_{2}, \mathbf{v}_{2}\right\rangle=\left\langle\mathbf{u}_{1} \otimes \mathbf{u}_{2}, \mathbf{v}_{1} \otimes \mathbf{v}_{2}\right\rangle$.

Let $\mathbf{t}=(-\mathbf{s}, 1)$. There are two things that needs to be noted. Firstly,

$$
\left.\left.\left\langle c_{1}, \mathbf{t}\right\rangle\left\langle c_{2}, \mathbf{t}\right\rangle=\left(<-\mathbf{a}_{1}, \mathbf{s}>+b_{1}\right)\left(<-\mathbf{a}_{2}, \mathbf{s}>+b_{2}\right)=\left(b_{1}-<\mathbf{a}_{1}, s\right\rangle\right)\left(b_{2}-<\mathbf{a}_{2}, \mathbf{s}\right\rangle\right) .
$$

Secondly, from the above definition we get $\left\langle c_{1}, \mathbf{t}\right\rangle\left\langle c_{2}, \mathbf{t}\right\rangle=\left\langle c_{1} \otimes c_{2}, \mathbf{t} \otimes \mathbf{t}\right\rangle$. Also,

$$
\begin{align*}
2\left\langle c_{1} \otimes c_{2}, \mathbf{t} \otimes \mathbf{t}\right\rangle & =2\left\langle c_{1}, \mathbf{t}\right\rangle\left\langle c_{2}, \mathbf{t}\right\rangle \\
& =2\left(e_{1}+m_{1}\left(\frac{q+1}{2}\right)\right)\left(e_{2}+m_{2}\left(\frac{q+1}{2}\right)\right) \\
& =2 e_{1} e_{2}+\left(m_{1} e_{2}+m_{2} e_{1}\right)+m_{1} m_{2}\left(\frac{q+1}{2}\right) \tag{1}
\end{align*}
$$

Thus, $2\left\langle c_{1} \otimes c_{2}, \mathbf{t} \otimes \mathbf{t}\right\rangle=2\left\langle c_{1}, \mathbf{t}\right\rangle\left\langle c_{2}, \mathbf{t}\right\rangle=m_{1} m_{2}\left(\frac{q+1}{2}\right)+$ noise.
The above explanation says that $2 c_{1} \otimes c_{2}$ is the new ciphertext w.r.t the new secret key $\mathbf{t} \otimes \mathbf{t}$. From the definition of tensor product, it is clear that the size of the ciphertext and noise grows rapidly. More specifically, dimension n changes to n^{2}. Following this way will limit the expressiveness of the multiplicative circuit. That is, if we take the multiplicative operation i times then the dimension increases to $n^{2^{i}}$. In other words, the max depth the multiplicative circuit can support is $\log \log n$. Also, if we look at Equation (1) we notice that the growth in the error is quadratic. Next, our job is to bring the dimension n^{2} back to n. In [BV11], the technique of reducing the dimension is called DIMENSION REDUCTION. Let $C_{\text {mult }}=2 c_{1} \otimes c_{2}$ and the new secret key $=\mathbf{t} \otimes \mathbf{t}$.

Dimension Reduction

We want to reduce the complexity of the decryption without decreasing the homomorphic capacity. We therefore provide some "extra stuff" that lets us bring the dimension n^{2} (after one multiplication) back down to n. The idea here is to apply a transformation $\mathbf{B} \in \mathbb{Z}^{n \times n^{2}}$ (publicly known) to $C_{\text {mult }}$ such that the high dimension $C_{m u l t}$ (wrt $\mathbf{t}_{1} \otimes \mathbf{t}_{1}$) comes down to a low dimensional $C_{\text {new }}$ (wrt \mathbf{t}_{2}). Roughly speaking we encrypt $\mathbf{t}_{1} \otimes \mathbf{t}_{1}$ under \mathbf{t}_{2} with a relatively larger modulus. We know that $<\mathbf{t}_{1} \otimes \mathbf{t}_{1}, 2 c_{1} \otimes c_{2}>\approx m_{1} m_{2}\left(\frac{q+1}{2}\right)$ i.e., $\left(\mathbf{t}_{1} \otimes \mathbf{t}_{1}\right)^{T} C_{m u l t} \approx m_{1} m_{2}\left(\frac{q+1}{2}\right)$. Let $\mathbf{B}^{T} \cdot \mathbf{t}_{2}=\mathbf{t}_{1} \otimes \mathbf{t}_{1}$ then $\left(\mathbf{B}^{T} \cdot \mathbf{t}_{2}\right)^{T}$. $C_{\text {mult }}=\mathbf{t}_{2}^{T} \cdot C_{\text {new }}$ where $C_{\text {new }}=\mathbf{B} \cdot C_{\text {mult }}$.
Next, we need to specify the matrix \mathbf{B} and the new secret key \mathbf{t}_{2} such that $\mathbf{B}^{T} \mathbf{t}_{2} \approx \mathbf{t}_{1} \otimes \mathbf{t}_{1}$. Let us sample $\mathbf{s}_{2} \leftarrow \mathbb{Z}_{q}^{n}$ and set $\mathbf{t}_{2}=\left(-\mathbf{s}_{2}, 1\right)$. Let $\psi_{i j}$ for all $i, j \in[n]$ be the columns of \mathbf{B} such that

$$
\psi_{i j}=\widetilde{E n c}\left(t_{1 i}, t_{1 j}\right)=\left(\mathbf{a}_{i j},<\mathbf{a}_{i j}, \mathbf{s}_{2}>+e_{i j}+t_{1 i} t_{1 j}\right)
$$

Roughly speaking, the entries of the matrix \mathbf{B} can be seen as the encryptions of old long key $\mathbf{s}_{1} \otimes \mathbf{s}_{1}$ under the new short key \mathbf{s}_{2}. Observe that

$$
\begin{equation*}
<\psi_{i j}, \mathbf{t}_{2}>\approx \mathbf{t}_{1 i} \mathbf{t}_{1 j} \tag{2}
\end{equation*}
$$

Thus, the way we have specified $\psi_{i j}$ and from Equation (2), we see that $\mathbf{B}^{T} \mathbf{t}_{2} \approx \mathbf{t}_{1} \otimes \mathbf{t}_{1}$.

In the next lecture, we will continue our discussion on dimension reduction techniques. Observe that $C_{\text {new }}=\mathbf{B} \cdot C_{m u l t}$ is low dimensional and decrypts correctly. However the noise grows hugely due to the large normed vector $2 c_{1} \otimes c_{2}$. In next class, we will see how the bit decomposition technique helps us to reduce the error growth and allows us to take the depth of the circuit to be $\log n$ which was $\log \log n$ earlier.

References

[BV11] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE, Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, 2011, pp. 97-106

