CS6115: Structure versus Hardness in Cryptography

Lecture 4 : Quadratic Fully Homomorphic Encryption from LWE

Lecturer: Shweta Agrawal

In this lecture, we will be studying the quadratic homomorphic encryption (qFHE) in the secret key setting of [BV11].

1 Symmetric Key Encryption

Let *n* be the security parameter, *q* be the modulus and χ be the error distribution for the scheme. Let SKE = {keygen, enc, dec} be a symmetric key encryption scheme described below.

- * $sk \leftarrow \text{SKE.keygen}(1^n)$. On receiving the security parameter *n* as input, it samples $\mathbf{s} \leftarrow \mathbb{Z}_q^n$ and sets $sk = \mathbf{s}$.
- * $(\mathbf{a}, b) \leftarrow SKE.enc(sk, m)$. It takes input as a secret key sk, a message $m \in \{0, 1\}$ and performs the following steps.
 - 1. sample $\mathbf{a} \in \mathbb{Z}_q^n$ and $e \in \chi$,
 - 2. compute $b = < \mathbf{a}, \mathbf{s} > +e + m(\frac{q+1}{2})$,
 - 3. output the ciphertext $ct = (\mathbf{a}, b)$.
- * $m \leftarrow \text{SKE.dec}(sk, ct)$. It computes $w = b \langle \mathbf{a}, \mathbf{s} \rangle$. Note that $\mathbf{s} = sk$.
 - 1. If $\frac{q}{2} \le |w| \le q$ then output 1.
 - 2. Otherwise output 0.

Note that the correctness of this algorithm follows provided $|e| < \frac{q}{4}$. The security of SKE relies on the hardness of learning with errors problem.

Homomorphic Operations on the Above Symmetric Key Encryption SKE.

Let c_1, c_2 be two ciphertexts such that $c_i = (\mathbf{a}_i, b = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i + m_i(\frac{q+1}{2}))$ for i = 1, 2.

• It is easy to see that the scheme is *additively homomorphic* as explained below.

If we set $c = c_1 + c_2 \mod q$ defined by

$$c = (\mathbf{a}, b) = \left(\mathbf{a}_1 + \mathbf{a}_2, < \mathbf{a}_1 + \mathbf{a}_2, \mathbf{s} > +(e_1 + e_2) + (m_1 + m_2)\left(\frac{q+1}{2}\right)\right)$$

then

$$b - \langle \mathbf{a}_1 + \mathbf{a}_2, \mathbf{s} \rangle = (e_1 + e_2) + (m_1 + m_2) \left(\frac{q+1}{2}\right)$$

Thus, if we set the parameters in such a way that the accumulated noise $e_1 + e_2$ remains bounded above by $\frac{q}{4}$ then we get a valid encryption of $m_1 + m_2$.

• We now understand the ideas of [BV11] to get the above scheme SKE to be *multiplicatively homomorphic*. If we look from the other way, we actually want is the encryption of $m_1 \cdot m_2$, given the encryption of m_1 and m_2 . In other words, we want the encoding of $m_1m_2(\frac{q+1}{2})$. We already have

$$b_1-<\mathbf{a}_1,\mathbf{s}>\approx m_1\bigl(\frac{q+1}{2}\bigr),$$

$$b_2 - \langle \mathbf{a}_2, \mathbf{s} \rangle \approx m_2 \left(\frac{q+1}{2} \right).$$

That is $2(b_1 - \langle \mathbf{a}_1, \mathbf{s} \rangle)(b_2 - \langle \mathbf{a}_2, \mathbf{s} \rangle) \approx m_1 m_2 \left(\frac{q+1}{2}\right) \mod q.$

Let us recall the tensor product and the product of two inner products.

- 1. Let $\mathbf{w} = (w_1, w_2, \dots, w_s) \in \mathbb{Z}^s$ and $\mathbf{z} = (z_1, z_2, \dots, z_t) \in \mathbb{Z}^t$ then $\mathbf{w} \otimes \mathbf{z} = (w_i z_j)_{(i,j) \in [s][t]} \in \mathbb{Z}^{st}$.
- 2. $< \mathbf{u}_1, \mathbf{v}_1 > < \mathbf{u}_2, \mathbf{v}_2 > = < \mathbf{u}_1 \otimes \mathbf{u}_2, \mathbf{v}_1 \otimes \mathbf{v}_2 >.$

Let $\mathbf{t} = (-\mathbf{s}, 1)$. There are two things that needs to be noted. Firstly,

$$< c_1, \mathbf{t} > < c_2, \mathbf{t} > = (< -\mathbf{a}_1, \mathbf{s} > +b_1)(< -\mathbf{a}_2, \mathbf{s} > +b_2) = (b_1 - < \mathbf{a}_1, \mathbf{s} >)(b_2 - < \mathbf{a}_2, \mathbf{s} >).$$

Secondly, from the above definition we get $\langle c_1, \mathbf{t} \rangle \langle c_2, \mathbf{t} \rangle = \langle c_1 \otimes c_2, \mathbf{t} \otimes \mathbf{t} \rangle$. Also,

$$2 < c_1 \otimes c_2, \mathbf{t} \otimes \mathbf{t} > = 2 < c_1, \mathbf{t} > < c_2, \mathbf{t} >$$

= $2\left(e_1 + m_1\left(\frac{q+1}{2}\right)\right)\left(e_2 + m_2\left(\frac{q+1}{2}\right)\right)$
= $2e_1e_2 + (m_1e_2 + m_2e_1) + m_1m_2\left(\frac{q+1}{2}\right)$ (1)

Thus, $2 < c_1 \otimes c_2$, $\mathbf{t} \otimes \mathbf{t} >= 2 < c_1$, $\mathbf{t} >< c_2$, $\mathbf{t} >= m_1 m_2 \left(\frac{q+1}{2}\right) + noise$.

The above explanation says that $2c_1 \otimes c_2$ is the new ciphertext w.r.t the new secret key $\mathbf{t} \otimes \mathbf{t}$. From the definition of tensor product, it is clear that the size of the ciphertext and noise grows rapidly. More specifically, dimension *n* changes to n^2 . Following this way will limit the expressiveness of the multiplicative circuit. That is, if we take the multiplicative operation *i* times then the dimension increases to n^{2i} . In other words, the max depth the multiplicative circuit can support is log log *n*. Also, if we look at Equation (1) we notice that the growth in the error is quadratic. Next, our job is to bring the dimension n^2 back to *n*. In [BV11], the technique of reducing the dimension is called DIMENSION REDUCTION.

Let $C_{mult} = 2c_1 \otimes c_2$ and the new secret key = $\mathbf{t} \otimes \mathbf{t}$.

Dimension Reduction

We want to reduce the complexity of the decryption without decreasing the homomorphic capacity. We therefore provide some "extra stuff" that lets us bring the dimension n^2 (after one multiplication) back down to n. The idea here is to apply a transformation $\mathbf{B} \in \mathbb{Z}^{n \times n^2}$ (publicly known) to C_{mult} such that the high dimension C_{mult} (wrt $\mathbf{t}_1 \otimes \mathbf{t}_1$) comes down to a low dimensional C_{new} (wrt \mathbf{t}_2). Roughly speaking we encrypt $\mathbf{t}_1 \otimes \mathbf{t}_1$ under \mathbf{t}_2 with a relatively larger modulus. We know that

 $< \mathbf{t}_{1} \otimes \mathbf{t}_{1}, 2c_{1} \otimes c_{2} > \approx m_{1}m_{2}\left(\frac{q+1}{2}\right) \text{ i.e., } (\mathbf{t}_{1} \otimes \mathbf{t}_{1})^{T}C_{mult} \approx m_{1}m_{2}\left(\frac{q+1}{2}\right). \text{ Let } \mathbf{B}^{T} \cdot \mathbf{t}_{2} = \mathbf{t}_{1} \otimes \mathbf{t}_{1} \text{ then } (\mathbf{B}^{T} \cdot \mathbf{t}_{2})^{T} \cdot C_{mult} = \mathbf{t}_{2}^{T} \cdot C_{new} \text{ where } C_{new} = \mathbf{B} \cdot C_{mult}.$

Next, we need to specify the matrix **B** and the new secret key \mathbf{t}_2 such that $\mathbf{B}^T \mathbf{t}_2 \approx \mathbf{t}_1 \otimes \mathbf{t}_1$. Let us sample $\mathbf{s}_2 \leftarrow \mathbb{Z}_q^n$ and set $\mathbf{t}_2 = (-\mathbf{s}_2, 1)$. Let ψ_{ij} for all $i, j \in [n]$ be the columns of **B** such that

$$\psi_{ij} = Enc(t_{1i}, t_{1j}) = (\mathbf{a}_{ij}, \langle \mathbf{a}_{ij}, \mathbf{s}_2 \rangle + e_{ij} + t_{1i}t_{1j})$$

Roughly speaking, the entries of the matrix **B** can be seen as the encryptions of old long key $s_1 \otimes s_1$ under the new short key s_2 . Observe that

$$\langle \psi_{ij}, \mathbf{t}_2 \rangle \approx \mathbf{t}_{1i} \mathbf{t}_{1j}$$
 (2)

Thus, the way we have specified ψ_{ij} and from Equation (2), we see that $\mathbf{B}^T \mathbf{t}_2 \approx \mathbf{t}_1 \otimes \mathbf{t}_1$.

In the next lecture, we will continue our discussion on dimension reduction techniques. Observe that $C_{new} = \mathbf{B} \cdot C_{mult}$ is low dimensional and decrypts correctly. However the noise grows hugely due to the large normed vector $2c_1 \otimes c_2$. In next class, we will see how the bit decomposition technique helps us to reduce the error growth and allows us to take the depth of the circuit to be log *n* which was log log *n* earlier.

References

[BV11] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE, Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, 2011, pp. 97–106