
CS6115: Structure versus Hardness in Cryptography Aug 18, 2021

Lecture 5 : Dimension reduction & Handling noise growth

Lecturer: Shweta Agrawal Scribe: Akhil Vanukuri

1 Notations

All the vectors are represented as column matrices. Note : −→w indicates a vector but we drop the

arrow above to represent it as a column matrix when we talk about them in the context of matrix

operations.

Let,

−→w = (w1, w2, ...wp) ∈ Zp,
−→v = (v1, v2, ...vr) ∈ Zr

then, −→w ⊗−→z , wzT (matrix multiplication)

Observe that, −→w ⊗ −→z according to the above definition is of order p × r matrix, but throughout

this lecture and usually in crypto, we convert a p × r order matrix into a vector of pr dimensions

(i.e, a column matrix of order pr × 1 by concatenating one row after the other).

For example,

Let, −→w = (1, 2) ∈ Z2, −→v = (1, 2, 3) ∈ Z3, By the defintion stated above, −→w ⊗−→z =

1 2 3

2 4 6

but we re-write −→w ⊗−→z as a vector in Z6 i.e, −→w ⊗−→z = (1, 2, 3, 2, 4, 6)

if −→w and −→v are vectors of same dimensions then < −→w ,−→v > , dot product of −→w and −→v .

Zq means Z/qZ.

[n] = {1, 2, .., n}where n ∈ Z.

, means defined as

3means such that

if −→w ∈ Zp then for any i1, .., ik ∈ Z

Let, total =
∏j=k
j=1(ij) ≤ p , wtotal is the totalth element of the vector −→w .

Note: w ←− X means w is chosen randomly (uniformly) from X , where X is a distribution (or) a

ring.

2 Preliminaries

In this scheme, originally[3], we use nearest integer of b q2e, but instead of that for easy calculations,

we replace it with (q+1
2) (This doesn’t affect our scheme).

Let, SKE be the symmetric key encryption scheme mentioned in the Lecture 4 [1]

where,

n be the security parameter[2].

χ be a B-bounded error distribution[2].

q be the odd prime.

B << q [5]

Note : All the operations in the below scheme and this paper here after are operations in the

ring Zq (i.e, mod q is implicitly assumed to be applied to the final result of every calculation).

Note : In this paper when we say matrix multiplication where elements of the matrix ∈ Zq then

after the usual matrix multiplication, (mod q) is applied on each individual element of the matrix.

SKE = {keygen, enc, dec} (please refer to the detailed scheme mentioned in the previous lec-

tures [1, 2] along with the definitions for terms that are not defined in this paper).

Let,

−→s ∈ Znq be the ouput of SKE.keygen(1n),
−→
t , (−−→s , 1) ∈ Z(n+1)

q ,

−→c1 , −→c2 be two cipher-texts produced by running two instances of SKE.enc with same secret key
−→
t

on the messages −→m1, −→m2 respectively 3 −→m1, −→m2 ∈ {0, 1}, −→c1 , −→c2 ∈ Zn+1
q ,

−→
t ∈ Zn+1

q .

∴ ∀ i ∈ {1, 2}, −→ci = (−→ai , bi) 3 bi , < −→ai ,−→s > + ei +mi(
q+1
2) where, ei ←− χ

Now, we will recall how we proceeded with the multiplicative scheme. We already showed in [1]

that,

< 2−→c1 ⊗−→c2 ,
−→
t ⊗−→t > = 2e1e2 + (m1e2 +m2e1) +m1m2(

q + 1

2
) (1)

Page 2

For now, let us say

< 2−→c1 ⊗−→c2 ,
−→
t ⊗−→t > ≈ m1m2(

q + 1

2
) (2)

We will deal with the consequences of this assumption a bit later. Observe that after one multipli-

cation, the cipher-text changes from (n+ 1) dimensions to (n+ 1)2 dimensions in (2−→c1 ⊗−→c2).

∴ If we take the multiplicative operation ’i’ times then the dimension of cipher-text increases to

(n+ 1)2
i
=⇒ maximum depth that the multiplicative circuit can support is less than an order of

log(log(n)).

Reason:

Substitute i = log(log(n)) then 2n
i
= nlog(n) =⇒ the output size is of the order super-polynomial

in n. But all the parameters must remain polynomial in n. Therefore, no.of levels of multiplication

allowed and thereby depth of the circuit allowed is strictly less than order of log(log(n))

Therefore, we try a method called ”dimension reduction”.

3 Dimension Reduction

3.1 Setting up the idea

Let,

−−−→cmult , 2−→c1 ⊗−→c2 ∈ Z
(n+1)2

q

−→
sk

′
,
−→
t1 ⊗

−→
t1 3

−→
t1 =

−→
t ∈ Z

(n+1)2

q

In this method, we construct a matrix B(order is (n + 1) × (n + 1)2) 3 BT t2 ≈
−→
t1 ⊗

−→
t1 where

−→
t2 = (−−→s2 , 1) and −→s2 ←− Znq

If BT t2 ≈
−→
t1 ⊗

−→
t1 , then notice that,

< Bcmult, t2 > = (Bcmult)
T t2 = (cmult)

T (BT t2) ≈ (cmult)
T (
−→
t1 ⊗

−→
t1) ≈ m1m2(

q+1
2)

Notice that, Bcmult ∈ Z
(n+1)
q (i.e, of order ((n+ 1)× 1) as a matrix)

Therefore, if we construct a matrix B 3 BT t2 ≈
−→
t1 ⊗

−→
t1 then we can use

−→
t2 as the new key and

Bcmult as the cipher-text which satisfies our correctness constraint while reducing the dimension

of the cipher text.

Page 3

3.2 Constructing the Hint matrix B

Let, −→aij∗ ←− Znq (sampled afresh),
−→
t2 be as defined in (3.1).

∀i, j ∈ [n+ 1], ψij , Ẽnc(t1i, t1j) (3)

where, ψij are columns of the hint matrix B 3 ψij ∈ Z(n+1)
q .

Ẽnc(t1i, t1j) , (
−→
a∗ij , b

∗
ij) , where, b

∗
ij =<

−→aij ,−→s2 > +eij + t1itij (4)

Why did we put tilda (˜) on the top of Enc in the equation (4)?

Because, we can view the process mentioned in equation (4) as an encryption on (t1i, t1j) but in

the traditional definition of encryption, we are able to decrypt input from the output, but in the

above case we donot have such a requirement. Moreover, t1i, t1j can have large norms and might

not be recoverable in some cases (∵
−→
t1 = (−−→s , 1) and −→s is sampled uniformly from Znq)

Let, [etemp] be an error vector ∈ Z(n+1)2

q where it’s elements are eij ∀i, j ∈ [n+ 1]

Notice that,

∀ i, j ∈ [n+1] < ψij ,
−→
t2 >= − <

−→
a∗ij ,
−→s2 > +b∗ij = eij + t1it1j ≈ t1it1j =⇒ BT t2 =

−→
t1 ⊗
−→
t1 +[etemp]

Let,
−−−→
c
′
mult , Bcmult, by the above calculations we can see that

−−−→
c
′
mult ∈ Zn+1

q (∴ we were able to reduce

the dimension of the cipher text significantly) and <
−−−→
c
′
mult,

−→
t2 > decrypts correctly to approx.

m1m2(
q+1
2)

4 Handling the ignored noise

In the section (3), we didnot account for the noise produced at various stages.

There are two sources of noise :

Source 1 (the noise caused due to dimension reduction) :

we assumed BT t2 ≈
−→
t1 ⊗

−→
t1 but it is BT t2 =

−→
t1 ⊗

−→
t1 + [etemp].

Source 2 (the noise caused due to < 2−→c1 ⊗−→c2 ,
−→
t1 ⊗

−→
t1 >) :

From equation (1) , < 2−→c1 ⊗−→c2 ,
−→
t1 ⊗

−→
t1 > = 2e1e2 + (m1e2 +m2e1) +m1m2(

q+1
2)

Page 4

but we assumed it to be approx. m1m2(
q+1
2)

In this section we will deal with the un-accounted noise.

4.1 Dealing with the noise caused due to dimension reduction

[etemp] is the noise vector caused due to the dimension reduction that was previously un-accounted.

This noise causes a problem because when taking a dot product between ((
−→
t1 ⊗

−→
t1) + [etemp]) and

(2−→c1 ⊗−→c2), roughly speaking we get m1m2(
q+1
2)+ large noise.

It produces a large noise because (2−→c1 ⊗ −→c2) is not a low norm vector and, because the noise is

large the clear distinction between intervals used in recovering m1m2 values is lost =⇒ we lose

decryption correctness.

More Formally,

Let,

emult , 2e1e2 + (m1e2 +m2e1) and edr ,
∑

i,j∈[n+1] cmult(ij)eij

<
−−−→
c
′
mult,

−→
t2 > = < Bcmult,

−→
t2 >

= (Bcmult)
T t2

= (cmult)
T (BT t2)

= (cmult)
T ((
−→
t1 ⊗

−→
t1) + [etemp])

= (cmult)
T (
−→
t1 ⊗

−→
t1) + (cmult)

T [etemp]

= < cmult,
−→
t1 ⊗

−→
t1 > +

∑
i,j∈[n+1] cmult(ij)eij

= 2e1e2 + (m1e2 +m2e1) +m1m2(
q+1
2) + edr

= m1m2(
q+1
2) + emult + edr

Calculating the bounds on edr (this is the error caused due to dimension reduction)

edr =
∑

i,j∈[n+1] cmult(ij)eij

≤
∑

i,j∈[n+1] cmult(ij)B (∵ eij is sampled from a B-bounded distribution χ)

≤
∑

i,j∈[n+1] qB (∵cmult ∈ Zn+1
q)

≤ (n+ 1)2qB

Thus, edr can be made greater than q/4 easily and the final result may not decode correctly for

even low depth circuits. So, let’s try and see if we can reduce this bound any further.

Page 5

4.1.1 Binary representation trick to bound edr

Suppose we take binary representation of (2−→c1 ⊗−→c2). This results in blowing up the vector size by

blog(q)c.

Here, we assume q ∈ [2n
ε
, 2 · 2nε) which is sub-exponential in n. as stated in [5]. While this might

look contradictory, the ε ∈ (0, 1) therefore, b(log(q)c ≈ nε and if we take ε appropriately, then we

can see that dimension reduction still manages to create a lot of impact.

For the sake of intuition, let’s take an example where n = 1010 and ε = 1/10, Let, q = 2n
ε
, then

n2 = 1020 whereas nlog(q) = n1+ε = 1011 which is still better than blowing up cipher-text vector

size quadratically (which was the case without dimension reduction).

Now, the question is how will we modify (
−→
t1 ⊗

−→
t1), so that <

−→
t1 ⊗

−→
t1 , 2
−→c1 ⊗−→c2 > ≈ m1m2(

q+1
2)

Let us define,

BitDec(x) , (u0, ..., ub(log(q)c) 3 x =
∑blog(q)c

j=0 uj2
j

PowersOfTwo(x) , (x, 2x, 4x, .., 2blog(q)cx)

Claim : if p, r ∈ Zq, then < BitDec(a), PowersOfTwo(b) > = ab ∈ Zq

Proof:

Let,

BitDec(a) , (a0, ..., ab(log(q)c)

PowersOfTwo(b) , (b, 2b, 4b, .., 2blog(q)cb)

< BitDec(a), PowersOfTwo(b) > =
∑blog(q)c

j=0 aj2
jb = b(

∑blog(q)c
j=0 aj2

j) = ab ∈ Zq

We can extend the definition of BitDec and PowersOfTwo to vectors as follows:

Let, −→p = (p1, p2, .., pk) ,
−→r = (r1, r2, .., rk) ∈ Zkq , then

BitDec(−→p) = (BitDec(p1), .., BitDec(pk)) ∈ {0, 1}kb(logq)c

PowersOfTwo(−→r) = (PowersOfTwo(r1), .., PowersOfTwo(rk))

Therefore, < BitDec(−→p), PowersOfTwo(−→r) > = < −→p ,−→r >

By above definitions and claims, we can say that

< BitDec(2−→c1 ⊗−→c2), PowersOfTwo(
−→
t1 ⊗

−→
t1) > = < 2−→c1 ⊗−→c2 ,

−→
t1 ⊗

−→
t1 > (5)

Page 6

Redefining ψij by introducing a new index τ to accommodate the new representation.

Let,

τ ∈ [b(log(q)c], ∀ i, j ∈ [n+ 1]

ψijτ = (
−−→
a∗ijτ , <

−−→
a∗ijτ ,

−→s2 > +eijτ + 2τ t1it1j) (6)

where, ψijτ are the columns of matrix Bτ and Bτ is a matrix of order (n+ 1)× (n+ 1)2blog(q)c

Note : Bτ is the modified hint matrix to accommodate the binary representation trick.

Let, [etempτ] be the error vector ∈ Zb(log q)c(n+1)2 where it’s elements are eijτ ∀i, j ∈ [n + 1] , τ ∈

[blog qc]

Notice that,

∀ i, j ∈ [n+ 1], τ ∈ [b(log(q)c] < ψijτ ,
−→
t2 > = eijτ + 2τ t1it1j

=⇒ ∀ i, j ∈ [n+ 1], τ ∈ [b(log(q)c](ψijτ)T t2 = eijτ + 2τ t1it1j

=⇒ BT
τ t2 = PowerOfTwo(

−→
t1 ⊗

−→
t1) + [etempτ]

Notice,

< BτBitDec(cmult),
−→
t2 > = (BτBitDec(cmult))

T t2

= (BitDec(cmult))
T (Bτ)

T t2

= (BitDec(cmult))
T (PowersOfTwo(

−→
t1 ⊗

−→
t1) + [etempτ])

= < BitDec(−−−→cmult), PowersOfTwo(
−→
t1 ⊗

−→
t1) > + < BitDec(−−−→cmult), [etempτ] >

= (m1m2(
q+1
2))+ < BitDec(−−−→cmult), [etempτ] >

Let,

e
′
dr =< BitDec(cmult), [etempτ] > where, e

′
dr is the error generated due to dimension reduction

after using the binary representation trick.

Notice that,

e
′
dr ≤ (n+1)2blog(q)c|B| (derived similarly to the bound derived on edr but this time (BitDec(cmult))ijτ ∈

{0, 1}).

So, we managed to get a tighter bound on the error produced due to source 1 (that is dimension

reduction).

Page 7

4.2 Finding bounds on error due to < 2−→c1 ⊗−→c2 ,
−→
t1 ⊗

−→
t1 >

We are yet to find bound on the second source of noise.

< 2−→c1 ⊗−→c2 ,
−→
t1 ⊗

−→
t1 > = 2e1e2 + (m1e2 +m2e1) +m1m2(

q+1
2)

but we assumed it to be approx. m1m2(
q+1
2)

w.k.t, |e1|, |e2| ≤ B =⇒ |e1e2| ≤ B2

Observe that, after the first multiplication that results in the error emult, the subsequent d multi-

plications result in the error equivalent to (edr + emult)
d ≤ ((n + 1)2blog(q)cB + 2B2 + 4B)d ≤

(((n+ 1)2blog(q)c+ 4)B + 2B2)d

Note that in our parameter setting, we follow closely the parameters set in [5] to get the bounds.

In [5], section 1.1, they discuss the symmetric key based FHE, then in section section 4.1, they make

a note of the parameters while describing a public FHE which is very similar to our symmetric key

FHE. Therefore, we use the same parameters and manage to get the bound claimed in section 1.1

which is the one that we discussed in this paper.

They take, q ∈ [2n
ε
, 2 · 2nε) which is sub-exponential in n. While they take n to be a polynomial in

security parameter, we assume for ease of calculation that n is the security parameter itself. This

does not affect our calculations as we are only trying to get asymptotic bounds.

Therefore, log(q) ≈ nε is polynomial in n.

For a suitable ε, B ≥ q/2nε =⇒ (n+ 1)2blog(q)cB ≥ (n+1)2blog(q)cq
2nε

. If we set n appropriately, this

can be neglected in comparison to B2.

Therefore, after d multiplications, emult ≈ B2d

Because, the error due to multiplication is squaring (edr + emult) in every stage as opposed to the

error due to dimension reduction which is added at every stage, therefore the error due to mul-

tiplication is much more significant and must be considered to find the depth supported by the

circuit.

These are the given conditions for our scheme to work as intended:

For correctness :

B2d ≤ q/4 3 d is the depth of the circuit (7)

Page 8

For security :

q/B < 2n
ε

(8)

We need the condition in Eq(7), because as we know that error squares after every multiplication,

after ’d’ multiplications, the error will be of the order B2d , and as we have already stated the need

for error to be less than q/4 for correctness, the above condition must hold.

The condition in Eq(8), is an empirical observation.

Using Eq(7) and Eq(8), for a large enough ’d’ and ’n’ and a constant B (For ease of calculation),

q/4B ≈ B2d and q/4B ≈ 2n
ε
=⇒ 2dlog(B) ≈ nε =⇒ d ≈ εlog(n)

Though the above calculation is hand-wavy and the depth of the circuit isn’t exactly of the order

log(n), the idea is that we could bring the the depth supported by the circuit from something less

than log(log(n)) to something closer to log(n) which is a very good improvement.

References

[1] URL: https://www.cse.iitm.ac.in/˜shwetaag/6115/Lec4.pdf.

[2] URL: https://www.cse.iitm.ac.in/˜shwetaag/6115/Lec3.pdf.

[3] URL: https://people.csail.mit.edu/vinodv/6892-Fall2013/lecture03.pdf.

[4] URL: https://people.csail.mit.edu/vinodv/6892-Fall2013/lecture04.pdf.

[5] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic Encryption from

(Standard) LWE”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

2011, pp. 97–106. DOI: 10.1109/FOCS.2011.12.

Page 9

