
CS6115: Structure versus Hardness in Cryptography Aug 19, 2021

Lecture 6 : Modulus Reduction and Bootstrapping

Lecturer: Shweta Agrawal Scribe: Anuja Modi

1 Introduction

In the previous lecture, we constructed somewhat homomorphic symmetric key encryption scheme
(SWHE) based on LWE. This somewhat homomorphic symmetric key encryption scheme uses the
crucial idea of Dimension Reduction to reduce the size of quadratically growing cipher text to lin-
ear. Basically, dimension reduction technique allowed to support ε log n depth instead of log log n
depth.

In this lecture, we will first see Homomorphic Encryption with dimension reduction. Then we
will study about two important techniques. First is Modulus Reduction and second is Bootstrap-
ping. Modulus Reduction technique helps us to control the noise growth and thereby allow to
support O(nε) depth. Bootstrapping transforms the Homomorphic Encryption scheme to Fully
Homomorphic Encryption scheme that can support arbitrary polynomial depth circuits.

2 Homomorphic Encryption with dimension reduction

. In this section, we present the algorithms of Homomorphic Encryption with dimension reduc-
tion [BGV12].

Notations. Let d q2c = (q+1)
2 . log q = dlog qe. Ring, Zq =

{
− q−1

2 , . . . , 0, . . . , q−12

}
. [n] =

{0, 1, . . . , n− 1}.

• (sk, evk)← Gen(1λ, 1L)

1. For l ∈ [L+ 1], choose
−→
tl ← Znq and −→sl = (−−→tl , 1).

2. For l ∈ [L], i, j ∈ [n+ 1], τ, v ∈ [log q],

−−−−→
ψl,i,j,τ,v = (−−−−→al,i,j,τ,v, 〈−−−−→al,i,j,τ,v,

−−→
tl+1〉+ el,i,j,τ,v + 2vsl,i,j,τ,v)

where −−−−→al,i,j,τ,v ← Znq , el,i,j,τ,v ← χ.

3. Let (
−→
c∗ , 0) ← Enc(sk, 1), sk = (−→s0 , . . . ,−→sL) and evk = ({

−−−−→
ψl,i,j,τ,v}l,i,j,τ,v,

−→
c∗). Output

(sk, evk).
(Note: (

−→
c∗ , 0)← Enc(sk, 1) will be used later to raise level.)

• (−→c , l)← Enc(sk,m ∈ {0, 1})

1. Choose −→a ← Znq , e← χ. Let −→c =
(−→a , 〈−→a ,−→t0 〉+ e+m (q+1)

2

)
. Output (−→c , 0).

• m← Dec(sk, (−→c , l))

1. Compute m′ = 〈−→c ,−→sl 〉. Output 0 if −q4 ≤ m
′ ≤ q

4 , otherwise output 1.



• (−−→cadd, ladd)← Add(evk, (−→c1 , l1), (−→c2 , l2))

1. If l1 6= l2 then with help of Mult, raise lower level with the help of
−→
c∗ until l = l1 = l2.

2. Output −−→cadd = −→c1 +−→c2 and ladd = l.

• (−→c mult, lmult)←Mult(evk, (−→c 1, l1), (
−→c2 , l2))

1. If l1 6= l2 then with help of Mult, raise lower level with the help of
−→
c∗ until l = l1 = l2.

2. For i, j ∈ [n+ 1], τ ∈ [log q], let ci,j,τ be the τ th bit of 2c1,ic2,j .

3. −−−→cmult =
∑

i,j,τ ci,j,τ
−−−→
ψl,i,j,τ and lmult = l + 1. Output (−→c mult, lmult).

Correctness of addition. Let us see that the addition algorithm above is correct.

〈 −−→cadd,−−→sladd〉 = 〈
−→c1 +−→c2 ,−→sl 〉

= 〈 −→c1 ,−→sl 〉+ 〈 −→c2 ,−→sl 〉

= e1 + e2 + (m1 +m2mod2)
(q + 1)

2

= eadd + (m1 +m2mod2)
(q + 1)

2

(1)

Correctness of multiplication. Let us see that the multiplication algorithm above is correct.

〈−−−→cmult,
−−−→slmult〉 = 〈

∑
i,j,τ

ci,j,τ
−−−→
ψl,i,j,τ ,

−−→sl+1〉

=
∑
i,j,τ

ci,j,τ 〈
−−−→
ψi,j,τ ,

−−→sl+1〉

=
∑
i,j,τ

ci,j,τ (el,i,j,τ + 2τsl,isl,j)

= edr +
∑
i,j

2c1,ic2,jsl,isl,j

= edr + 〈2−→c1 ⊗−→c2 ,−→sl ⊗−→sl 〉

= edr + 2(e1e2 +m1e2 +m2e1) +m1m2
(q + 1)

2

= emult +m1m2
(q + 1)

2

(2)

where eadd, emult are the error corresponding to addition and multiplication respectively. It can
be seen that above errors satisfies the bounds. Note that emult is addition of error due to dimension
reduction, edr and error resulted from decryption 2(e1e2 +m1e2 +m2e1).

Let χ be a einit-bounded distribution. Therefore, at level L, the error is bounded by e2
L

init.
Hence, for correctness, we need that e2

L

init <
q
4 and for security best LWE algorithm running time

is 2n/(log(q/einit)). Hence einit is chosen to be in polynomial n = λ and q = 2n
ε

and hence, L ≈
log log q ≈ ε log n.

Hence, using this dimension reduction technique we can support ε log n depth circuit.

Page 2



3 Modulus Reduction

In this section, we first see important technique called ”Modulus Reduction” which support the
evaluation of circuit with depth O(nε) where ε ∈ (0, 1).

Let us first see the following claim 1.

Claim 1 ([ACPS09]). LWE with secret −→e ← χn is as hard as LWE with secret −→e ← Zn.

Proof. When LWE secret is drawn from error distribution i.e. −→e ← χn, it is called Hermite Normal
Form of LWE (hLWE).

To prove this claim, we show that if we can solve LWE, then we can solve hLWE and vice
versa.

• Case 1: To prove. Given an oracle that solves LWE, we can find a solution to an instance of
hLWE.

Proof. Let A, b = AT s+ e be an instance of hLWE such that s← X n, e← Xm and A ∈ Zn×mq .

Sample s′ ← Znq and e′ ← Xm.

Let b′ = AT s′ + e′

After subtracting the two equations,

b− b′ = AT (s− s′) + e− e′

OR b′′ = AT s′′ + e′′

This (AT , b′′) is an instance of LWE. Call LWE oracle to solve for s′′, e′′. Since we know s′, e′,
we can recover s, e.
Hence, given an oracle that solves LWE, we can find a solution to an instance of hLWE.

• Case 2: To prove. Given an oracle that solves hLWE, we can find a solution to an instance of
LWE.

Proof. Let A, b = AT t+ e be an instance of LWE, i.e. t← Znq , e← Xm and A ∈ Zn×mq .

Express AT =

(
A1

A2

)
where A1 ∈ Znxnq and e =

(
e1
e2

)
.

Let
(
b1
b2

)
=

(
A1

A2

)
t+

(
e1
e2

)
.

Note that a random square matrix is invertible with high probability.

=⇒ b1 = A1t+ e1

Solving it for t we get t = A−11 (b1 − e1)
Putting this t in b2 = A2t+ e2

=⇒ b2 = A2A
−1
1 b1 −A2A

−1
1 e1 + e2

=⇒ b2 −A2A
−1
1 b1 = −A2A

−1
1 e1 + e2

=⇒ b3 = Be1 + e2

Call hLWE oracle to get e1 and e2. We know b1, e1 and A1 and hence we can get t.

Hence, given an oracle that solves hLWE, we can find a solution to an instance of LWE.

Page 3



This claim helps us to choose the secret from a low norm distribution without affecting the
hardness or security of the underlying LWE.

Let χ be a B-bounded distribution and let q ≈ B10. In the original scheme without using
modulus reduction, the error gets squared after first level when we multiply two ciphertexts.
Hence, only blog 10c levels can be supported and after that we get decryption error. When we use
modulus reduction technique, both noise and modulus can be divided with B and thus resulting
ciphertext would be in integer ring ZB9 after level 1 as mentioned in Table 1. We can follow the
same procedure in subsequent levels and can support 10 levels.

Table 1: Comparison of noise growth without and with modulus reduction
Noise/Modulus Without modulus reduction With modulus reduction

Take fresh ciphertext B/B10 B/B10

Level 1 B/B10 B2/B10 → B/B9

Level 2 B2/B10 B2/B9 → B/B8

Level 3 B4/B10 B2/B8 → B/B7

Level 4 B8/B10 (Decryption error!) B2/B7 → B/B6

Let us roughly present the idea of the modulus reduction technique of scale invariant version
[Bra12].

By induction,

〈 −→c1 ,−→sl 〉 = z1q + e1 +m1
(q + 1)

2
(3)

and

〈 −→c2 ,−→sl 〉 = z2q + e2 +m2
(q + 1)

2
(4)

where z1, z2 ∈ [−(n+ 1)q, (n+ 1)q].
After tensoring and inner product of equation (3) and (4),〈

2

q
−→c1 ⊗−→c2 ,−→sl ⊗−→sl

〉
= zmrq + emr +m1m2

(q + 1)

2
(5)

where zmr = 2z1z2+ z1m2+ z2m1, emr = 2z1e2+2z2e1+ z1m2+ z2m1+ e1m2+ e2m1+m1m2/2+
(2e1e2 + e1m2 + e2m1 +m1m2/2)/q.

Note that this equation (5) is in the ciphertext form. However, we need to prove that emr is
much less than q. The term 2z1e2 + 2z2e1, is the dominating term in emr and it is in the interval
[−4(n + 1)qB, 4(n + 1)qB]. Now if we use Claim 1, then the interval above becomes [−4(n +
1)B2, 4(n+ 1)B2]. At this moment we can apply the Bitdecomp technique to the secret key.

The construction of the homomorphic scheme consists of algorithms same as the algorithms
in Section 2. With modulus reduction in frame, only Gen and Mult algorithm changes. Below are
the modified Gen and Mult algorithm. All the operations given below are in Zq ring except the
ones to compute d′i,j,τ .

• (sk, evk)← Gen(1λ, 1L)

1. For l ∈ [L+ 1], choose
−→
tl ← Znq and −→sl = (−−→tl , 1).

Page 4



2. For l ∈ [L], i, j ∈ [n+ 1], τ ∈ [log q], sl,i,j,τ be the τ th bit of sl,isl,j .

3. For l ∈ [L], i, j ∈ [n+ 1], τ, v ∈ [log q],

−−−−→
ψl,i,j,τ,v = (−−−−→al,i,j,τ,v, 〈−−−−→al,i,j,τ,v,

−−→
tl+1〉+ el,i,j,τ,v + 2vsl,i,j,τ,v)

where −−−−→al,i,j,τ,v ← Znq , el,i,j,τ,v ← χ.

4. Let (
−→
c∗ , 0) ← Enc(sk, 1), sk = (−→s0 , . . . ,−→sL) and evk = ({

−−−−→
ψl,i,j,τ,v}l,i,j,τ,v,

−→
c∗). Output

(sk, evk).

• (−→c mult, lmult)←Mult(evk, (−→c 1, l1), (
−→c2 , l2))

1. If l1 6= l2 then with help of Mult, raise lower level with the help of
−→
c∗ until l = l1 = l2.

2. For i, j ∈ [n+ 1], τ ∈ [logq], let d′i,j,τ = 2τ 2
q c1,ic2,j and di,j,τ = dd′i,j,τc.

3. For i, j ∈ [n+ 1], τ, v ∈ [logq], ci,j,τ,v be vth bit of di,j,τ .

4. −−−→cmult =
∑

i,j,τ,v ci,j,τ,v
−−−−→
ψl,i,j,τ,v and lmult = l + 1. Output (−→c mult, lmult).

Correctness of multiplication. Let us see that the multiplication algorithm above is correct.

〈 −−−→cmult,
−−−→slmult〉 =

〈 ∑
i,j,τ,v

ci,j,τ,v
−−−−→
ψi,j,τ,v,

−−→sl+1

〉

=
∑
i,j,τ,v

ci,j,τ,v

〈 −−−−→
ψi,j,τ,v,

−−→sl+1

〉
=
∑
i,j,τ,v

ci,j,τ,v (el,i,j,τ,v + 2vsl,i,j,τ )

= edr +
∑
i,j,τ

di,j,τsl,i,j,τ

= edr + eround +
∑
i,j,τ

d′i,j,τsl,i,j,τ

= edr + eround +
∑
i,j

2

q
c1,ic2,jsl,isl,j

= edr + eround +

〈
2

q
−→c1 ⊗−→c2 ,−→sl ⊗−→sl

〉
= edr + eround + emr +m1m2

(q + 1)

2

(6)

where edr, eround, emr are the error corresponding to dimension reduction, rounding and mod-
ulus reduction respectively. It can be seen that above errors satisfies the bounds.

Let χ be a einit-bounded distribution. Therefore, at levelL, the error is bounded by poly(n)Leinit.
Hence, for correctness, we need that poly(n)Leinit < q

4 and for security best LWE algorithm run-
ning time is 2n/(log(q/einit)). Hence einit is chosen to be in polynomial n = λ and q = 2n

ε
and hence,

L ≈ logq ≈ nε.
Hence, using this modulus reduction technique we can support O(nε) depth circuit.

Page 5



4 Bootstrapping

In this section we study second important topic of Bootstrapping which was first introduced by
Gentry [Gen09]. This technique can support homomorphic evaluation of arbitrary polynomial
depth circuit. Let us see how the scheme of [BGV12] supports bootstrapping.

Definition 4.1 (Circular Security). Encryption of secret key of BGV under BGV Encryption scheme
itself is secure.

The decryption circuit of BGV supports log n depth i.e. it is in NC1 class. BGV Encryption
scheme can support nε depth circuit. Hence, BGV construction is powerful enough to support
homomorphic evaluation of its own decryption circuit.

4.1 Supporting arbitrary polynomial depth

Let us now see how we can support arbitrary polynomial depth. Assume the circular security of
BGV and use the fact that BGV is powerful enough to support homomorphic evaluation of its own circuit.

Define the circuit C as
CCT (y) = BGV.Dec(CT, y)

Note: This circuit C is well defined with y as input and CT hardwired in it.

By the correctness of Evaluation algorithm, we have for any circuit F ,

F (BGV.Enc(x)) = BGV.Enc(F (x)) (7)

Let F be our circuit CCT , then

F (x) = CCT (x) = BGV.Dec(CT, x) (8)

Given BGV.Enc(sk) as input, we have

F (BGV.Enc(sk)) = BGV.Enc(BGV.Dec(CT, sk)) = BGV.Enc(m)

The first equality is because of equation (7) and second equality is because of correctness of de-
cryption algorithm.

We recovered BGV.Enc(m) from CT and BGV.Enc(sk) where CT is itself encryption of m.
Why are we taking encryption of m, doing some fancy steps and again outputting encryp-

tion of m? The reason is: CT is encryption of m with large noise. Homomorphic evaluation of
decryption circuit removes this large noise and adds small new noise.

We know we can evaluate a circuit of depth nε using the BGV construction. We get some noise.
This construction cannot go beyond nε depth. Therefore, we run the BGV Encryption scheme, get
some noise, use the homomorphic decryption procedure which removes old large noise and give
us the encryption of m with new small noise. Again we run BGV Encryption scheme up to depth
nε, get noise, remove it using bootstrapping and again get encryption of m with new small noise
and repeat it. Thereby, using this bootstrapping process we can support polynomial depth circuit.

Page 6



References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 595–618, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, page 309–325, New York, NY, USA, 2012. Associ-
ation for Computing Machinery.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, pages 868–886, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

Page 7

crypto.stanford.edu/craig

	Introduction
	Homomorphic Encryption with dimension reduction
	Modulus Reduction
	Bootstrapping
	Supporting arbitrary polynomial depth


