
CS6115: Structure versus Hardness in Cryptography Aug 25, 2021

Lecture 7 : GSW13 Fully Homomorphic Encryption

Lecturer: Shweta Agrawal Scribe: Raghavendra N Vernekar

1 Introduction

In this course untill now we have studied various developments of Fully Homomorphic Encryp-
tion (FHE) schemes. We have seen LWE-based homomorphic encryption schemes. In this lecture
we look into the [GSW13] FHE scheme which makes achieving the homomorphic encryption ap-
pear much simpler and intuitive.
The key idea used in the schemes discussed so far was multiplication by tensoring. The idea
has issues of ciphertext size squaring for each multiplication and also error size squaring up at
every step. The technique of Dimension Reduction was used for addressing the issue of increase
in ciphertext size and the approach of Bit Decomposition was looked upon to address the error
growth issues. [Bra12] presented the idea of the Modulus Reduction technique of scale invariant
version to support O(nϵ) levels. We also have got better understanding of Bootstrapping tech-
niques which transforms the Homomorphic Encryption scheme to Fully Homomorphic Encryp-
tion scheme which can support arbitrary polynomial depth circuits. This lecture is dedicated to
[GSW13] FHE scheme which is a pretty amazing scheme, conceptually easier to understand and
makes achieving the FHE, appear effortless. Lets dive straight into this amazing idea.

2 Gentry, Sahai, Waters 2013 FHE Scheme (GSW13)

We now describe the GSW fully homomorphic encryption scheme[GSW13][MW16].

2.1 Construction

Define a special parity check matrix G. Let gt = (1, 2, 4, 8, 16, ..., 2k−1 ≥ q
2) where k = log q. Note

that the unmentioned entries of G are all 0.

G =

· · · gt · · ·

· · · gt · · ·
· · · gt · · ·

. . .
· · · gt · · ·

 ∈ Zn×nk
q

Define an operation G.BitDec(x) = x where x is a vector of size n. Therefore, define G−1(C)
where C is the ciphertext matrix of size n×nk such that GG−1(C) = C. For this to happen G−1(C)
should be the Bitdec operation. Hence each entry in M is represented using k bits and hence size
of G−1(C) will be nk × nk and GG−1(C) = C. Hence, G−1(C) will be a binary matrix.

Define the GSW FHE scheme as GSW.FHE = (GSW.Setup,GSW.Enc,GSW.Dec,GSW.Eval).

GSW.Setup(1λ): On input security parameter λ, it does following:

1. Let n = n(λ, d) be the lattice dimension parameters and let χ = χ(λ, d) be Bχ bounded
error distribution. Set modulus q as q = Bχ2

w(dλ log λ) such that LWEn−1,q,χ,Bχ holds.

2. Choose A′ ← Z(n−1)×m
q , s′ ← Z(n−1)×1

q and sample e ← χm. Here m = O(n log q) =
O(nk).

3. Let b = (s′)tA′ + e ∈ Zm×1
q

4. We set s = (−s′, 1) ∈ Zn×1
q

5. Let A =

[
A′

b

]
∈ Zn×m

q .

6. Output PK = A and SK = s. (Note that stA = (−s′)tA′ + b = −b+ b+ e = e ≈ 0).

GSW.Enc(PK, µ): On input public key PK and message µ ∈ {0, 1}, it does following:

1. Choose a random matrix as the randomness R← {0, 1}m×m.

2. Output the encryption of message µ as C = AR+ µG ∈ Zn×m
q .

(Note: We can use m and nk interchangeably since m = n log q = nk. So R matrix can
also be seen as nk × nk matrix.)

GSW.Dec(SK, C): On input secret key SK and ciphertext C, it does following:

1. Define w = (0, 0, 0, . . . , 0,
⌈ q
2

⌉
) ∈ Zn

q .

2. Compute the value of V = stCG−1(w).

3. Finally output decrypted message µ′ as |
⌊

V
q/2

⌉
|

(Note: G−1 is just the notation and not the matrix. G−1 doesn’t even exist as G is not a
square matrix. G is the matrix with elements of powers of two.)

GSW.Eval(C1, C2): On input two ciphertexts C1, C2, it does following:

1. GSW.add(C1, C2): Output C1 + C2 ∈ Zn×m
q .

2. GSW.mult(C1, C2): Output C× = C1G
−1(C2).

Correctness of decryption
Decryption works as follows:

V = stCG−1(w)

= st(AR+ µG)G−1(w)

= (stAR+ stµG)G−1(w)

≈ stµw

= µ
⌈q
2

⌉
(1)

We have crucially used the fact that stA ≈ 0 and GG−1(w) = w.
Correctness of addition

Addition correctness works as follows: It is evident that addition correctness holds and we
will get the value of µ1 + µ2.

Page 2

C1 + C2 = AR1 + µ1G+AR2 + µ2G

C1 + C2 = A(R1 +R2) + (µ1 + µ2)G

Now on decrypting using st and obtaining st(C1 + C2) we obtain

st(C1 + C2) = stA(R1 +R2) + st(µ1 + µ2)G

The first term will be the error term and will be of low norm since stA ≈ 0.

st(C1 + C2) = st(µ1 + µ2)G+ error

st(C1 + C2) ≈ st(µ1 + µ2)G

Correctness of multiplication
Multiplication correctness works as follows: Now to obtain the decrypted message we use st.

stC× = stC1G
−1(C2)

= st(AR1 + µ1G)G−1(C2)

≈ stµ1GG−1(C2)

≈ stµ1C2

≈ stµ1(AR2 + µ2G)

≈ stµ1µ2G

(2)

We have kept the error term under the carpet for now and how error (noise) grows is analyzed
in the next section.

Theorem 1. [GSW13] The scheme described above is a secure FHE under LWEn−1,q,χ,Bχ assumption.

The proof of security consists of two parts. First we can use the LWE assumption to replace
the public key A with a random uniform matrix. Then we can use the Leftover Hash Lemma to
replace the ciphertext C := AR + µG with a uniformly random value C ′. The error growth is
analyzed in the next section.

3 Error Growth

In this section, we will analyze the growth of error.

Definition 3.1. (β-noisy ciphertext): A β-noisy ciphertext of some message µ under secret-key
SK = s ∈ Zn

q is a matrix C ∈ Zn×m
q such that: stC = stµG+ e for some e with ||e||∞ ≤ β.

Correctness of addition including error
In this addition correctness we will carefully figure out the error value.

Claim 1. If C1 is β1 noisy and C2 is β2 noisy, then C1 + C2 is (β1 + β2) noisy.

Page 3

Proof. We know, C1 + C2 = AR1 + µ1G+AR2 + µ2G. Therefore,

st(C1 + C2) = st(AR1 + µ1G+AR2 + µ2G)

= stA(R1 +R2) + st(µ1 + µ2)G

= stAR1 + stAR2 + st(µ1 + µ2)G

= e1 + e2 + st(µ1 + µ2)G

≤ β1 + β2 + st(µ1 + µ2)G

(3)

Hence, if C1 is β1 noisy and C2 is β2 noisy, then C1 + C2 is (β1 + β2) noisy.

Correctness of multiplication including error
In this multiplication correctness we will carefully figure out the error value.

Claim 2. If C1 is β1 noisy and C2 is β2 noisy, then error will be C× is (mβ1 + β2)noisy.

Proof. We know, C× = C1G
−1(C2). Therefore,

stC× = stC1G
−1(C2)

= st(AR1 + µ1G)G−1(C2)

= stAR1G
−1(C2) + stµ1GG−1(C2)

= e1G
−1(C2) + stµ1C2

= e1G
−1(C2) + stµ1(AR2 + µ2G)

= e1G
−1(C2) + stµ1AR2 + stµ1µ2G

= e1G
−1(C2) + e2µ1 + stµ1µ2G

(4)

Here β2 noise is e2µ1. µ1 is a bit and e2 is low norm, so the error is also low norm. While
||e1G−1(C2)||∞ can be bounded by β1m as G−1(C2) is a binary matrix of size m×m and in worst
case, all entries of this matrix can be 1. So, the error generated by multiplication is mβ1 + β2.

Correctness of decryption including error
For the correctness of decryption, Let C be the β-noisy encryption of µ. So stC = e + µstG

where ||e||∞ ≤ β. Then the decryption equation V = stCG−1(w) = e′ + µ(q2) such that e′ =
⟨e,G−1(w)⟩. So the value of e′ is bounded by mβ. The decryption works fine as long as ||e′||∞ <
q/4. Hence correctness works as long as β < q

4m .

4 Asymmetry of Noise Growth

According to [BV14], asymmetry allows homomorphic multiplication with additive noise growth.
Let C12 = C× . Let we wish to multiply C3. According to the way we multiply, error growth

changes as described below:

1. Approach 1: Try C123 = C12G
−1(C3).

Here the error term for C123 will be e123 = e12G
−1(C3) + µ12e3. Here, e12 is polynomial and

G−1(C3) is also polynomial in n. Therefore, we get new error e123 as (poly×poly).

Page 4

2. Approach 2: Try C123 = C3G
−1(C12).

Here the error term for C123 will be e123 = e3G
−1(C12) + µ3e12. Note that the first term is

polynomial × fresh noise (e3) and second term is the product of a bit with a polynomial
error. So the overall error e123 in this case will be (poly + poly) instead of (poly× poly).

This idea of asymmetry allowing homomorphic multiplication with additive noise growth is dis-
cussed in the paper [BV14].

We conclude this lecture having looked at [GSW13] scheme and analyzing its error growth.
We will start our ride on some new exciting concepts of Deniable Encryption in the upcoming
lectures.

References

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Annual Cryptology Conference, pages 868–886. Springer, 2012.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In
Proceedings of the 5th conference on Innovations in theoretical computer science, pages 1–12,
2014.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology
ePrint Archive, Report 2013/340, 2013.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key fhe. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 735–763. Springer, 2016.

Page 5

	Introduction
	 Gentry, Sahai, Waters 2013 FHE Scheme (GSW13)
	Construction

	Error Growth
	Asymmetry of Noise Growth

