
CS7111: Topics in Cryptography July 31, August 2, 7, 2019

Lecture 1-3: Learning With Errors

Lecturer: Shweta Agrawal Scribe: Tapas Pal

1 Introduction

What if we want to process a particular file stored on a server without letting the server know
any information on the file we are looking for? If we use plain public-key encryption (PKE) to
encrypt those files and keep on the server, then the server has to know the secret-key which we
used to encrypt our files. This is clearly insecure, since the server can access all the files which
we do not want. Else, you need to download the encrypted documents that we need every time,
decrypt to process them and re-encrypt to keep them back in the server. This is cumbersome
and we want to avoid this. Is there a way that we can encrypt the files and store them into
the server such that the server can still process any query without knowing the secret-key and
send back the result we intended to get? The cryptographic primitive of “fully homomorphic”
encryption (FHE) makes this possible. FHE lets us compute any arbitrary function (of our
choice) on the encrypted data so that we would be able to use our secret key to decrypt the
“encrypted output” given by the server.

In this course, we will learn some exciting techniques in modern cryptography pertaining
to computing on encrypted data and outsourcing computation. We will be introduced to some
beautiful primitives like FHE, Functional Encryption (FE), Indistinguishability Obfuscation
(iO) and Witness Encryption (WE). To this end, we plan to cover some basic tools and tech-
niques in this lecture for understanding FHE.

• Introduction: from PKE to FHE

• Textbook RSA (that satisfies homomorphic property with respect to only multiplication)

• An average case hard problem: Learning With Errors (LWE)

• Private-key encryption from LWE

• Public-key encryption from LWE

Notation. For an integer n ∈ N, the notation [n] represents the set {1, . . . , n}. We denote by
x← D the process of sampling a value x according to the distribution of D. We consider x← S
as the process of random sampling a value x according to the uniform distribution over a finite
set S. We abbreviate probabilistic polynomial time as PPT. Any cryptographic scheme relies
implicitly on the notion of security parameter. This parameter quantifies any PPT adversary’s
probability of breaking the cryptographic protocol. We will denote security parameter by λ.
We denote by negl = {neglλ}λ∈N as the class of functions over N which degrades faster than
the inverse of any polynomial in λ. In particular, f ∈ neglλ iff ∀c ∈ N,∃λ0 ∈ N such that
∀λ ≥ λ0, f(λ) ≤ λ−c. Such a function f is called a negligible function.

2 Public-key Encryption

Definition 1. (Public-key encryption). A public-key encryption scheme for a message space
M is given as a tuple of PPT algorithms PKE = (Gen,Enc,Dec) as follows:

1

• PKE.Gen(1λ) → (SK,PK) : This is a randomized key generation algorithm which takes
the security parameter λ as input and outputs a public key PK and a secret key SK.

• PKE.Enc(PK,m)→ c : This a randomized algorithm that takes the public key PK and a
message m ∈M and outputs a ciphertext c encrypting m.

• PKE.Dec(SK, c) ∈M∪{⊥}: This is a deterministic algorithm which takes the secret key
SK and a ciphertext c as input. It outputs a message m′ ∈M. (In some cases, it can also
output ⊥ indicating a decryption failure.)

Correctness: ∀λ ∈ N,m ∈M, we have

Pr
[
PKE.Dec(SK, c) = m : (SK,PK)← PKE.Gen(1λ), c← PKE.Enc(PK,m)

]
= 1

over the random coin tosses of the algorithms PKE.Gen,PKE.Enc.

Definition 2. (IND-CPA). We say that a public-key encryption scheme PKE = (Gen,Enc,Dec)
satisfies indistinguishability under chosen plaintext attacks (IND-CPA), if ∀λ ∈ N and every
PPT adversary A, it holds that∣∣∣Pr [ExptPKEA (1λ, 0) = 1

]
− Pr

[
ExptPKEA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ)

where the experiment ExptPKEA (1λ, b) is defined in Figure 1 where b ∈ {0, 1} and µ is a negligible
function of λ.

1. The challenger obtains PKE.Gen(1λ) → (SK,PK) and sends PK to the adversary A.

2. A selects (m0,m1) ∈ M2 such that |m0| = |m1| and sends (m0,m1) to the challenger.

3. The challenger sends PKE.Enc(PK,mb) → cb to A.

4. The adversary A outputs a guess b′ for b.

Figure 1: ExptPKEA (1λ, b): IND-CPA security game for public-key encryption

Note: For homomorphic encryption there is an additional (possibly PPT) algorithm Eval which
takes as input the public key PK (and sometimes a separate publicly known evaluation key, Evk),
a boolean function f : {0, 1}l → {0, 1} and ciphertexts c1, . . . , cl. It returns a new ciphertext c∗

as Eval(PK,Evk, f, c1, . . . , cl)→ c∗. Note that, Eval should be a public key algorithm.

Definition 3. (C-homomorphic encryption). An encryption scheme HE = (Gen,Enc,Dec,Eval)
(with an evaluation algorithm HE.Eval as defined above) is called a C-homomorphic encryption
scheme for a class of functions C, a message space M, if ∀m1, . . . ,ml ∈ M,∀f ∈ C, it holds
that

Pr

Dec(SK, c∗) 6= f(m1, . . . ,ml) :
HE.Gen(1λ)→ (SK,PK,Evk),
HE.Enc(PK,mi)→ ci,∀i ∈ [l],
Eval(PK,Evk, f, c1, . . . , cl)→ c∗

 ∈ neglλ.

over the random coin tosses of HE.Gen,HE.Enc.

If C is a class of all polynomial sized circuits (P/poly), then we say that the scheme is fully
homomorphic. The security requirement is the same as the IND-CPA security of the PKE.

2

2.1 Textbook RSA: Multiplicative homomorphic

Let us first review the textbook RSA scheme. Then we show that the RSA encryption satisfies
the homomorphic property with respect to multiplication.

• Gen(1λ) → (PK,SK): Choose two large primes p, q and set N = pq. Sample e ← Z∗N
such that gcd(e, φ(N)) = 1. Output the public-key as PK = (e,N) and secret-key as
SK = e−1 mod φ(N). Here, φ is the Euler’s totient function.

• Enc(PK,m) → c: For a message m ∈ ZN , compute and return c = me mod N as a
ciphertext encoding m.

• Dec(SK, c) = m′: Compute and output message m′ = cSK mod N .

Homomorphic property of RSA: Let c1 and c2 be the RSA encryption of two messages
m1 and m2 respectively. We show that c1 · c2 produces the RSA encryption of the message
m1 ·m2 mod N :

Enc(PK,m1) · Enc(PK,m2) = me
1 ·me

2 mod N

= (m1 ·m2)
e mod N

= Enc(PK,m1 ·m2)

Therefore, RSA encryption naturally satisfies the multiplicative homomorphic property. Simi-
larly, one can show that the classical El-Gamal encryption scheme is additively homomorphic.
Note that RSA is not IND-CPA secure as the encryption algorithm is deterministic. There are
some versions of RSA where randomization techniques (for example OAEP) are employed in
the encryption to make it an IND-CPA secure scheme.

Fact: All known IND-CPA versions of RSA do not satisfy homomorphism.
Hence we can note down the following problem which is open for a long time.

Prob. Construct IND-CPA multiplicative homomorphic RSA.

Therefore, it is non-trivial to construct a fully homomorphic encryption scheme from known
PKEs. We discuss an average case hard problem named Learning with Errors (LWE) in the
next section and later construct a homomorphic encryption scheme from LWE.

3 Learning With Errors

The learning with errors problem was introduced by Oded Regev [Reg09] for which he won the
Gödel prize in 2018. Over this decade we have seen interesting applications of LWE in realizing
many cryptographic primitives. Another advantage is that no quantum attack against LWE
assumption is known till date (unlike the other problems–factoring and discrete logarithm which
supplies the hardness underlying the current cryptographic schemes like RSA and ElGamal).

An learning with errors instance LWEn,q,χ is parameterized by an integer n ∈ N, a prime
modulus q and a probability distribution χ over Zq. For a fixed s ∈ Znq , we define the LWE
distribution and a random distribution as follows:

– LWE distribution: sample a← Znq , e← χ and return (a, 〈a, s〉+ e)

– Random distribution: chose a← Znq , r ← Zq and return (a, r)

3

For s ← Znq , let LWEs be the oracle which outputs samples from the LWE distribution and
Random be the oracle that outputs samples according to the random distribution defined above.
We define two types of LWE problems below.

• Search Problem: The search-LWEn,q,χ is the problem to find s, given access to the oracle
LWEs.

• Decision Problem: The decision-LWEn,q,χ problem is to distinguish between LWEs and
Random.

The search-LWEn,q,χ assumption is that the search-LWEn,q,χ problem is hard and mathematically
we express this as–for any PPT algorithm A, it holds that

Pr
s←Znq

[
ALWEs(1n) = s

]
∈ negln

Similarly, the decision-LWEn,q,χ assumption is that the decision-LWEn,q,χ problem is hard and
mathematically we represent this statement as–for any PPT distinguisher D, it holds that∣∣∣Pr [DLWEs(1n) = 1

]
− Pr

[
DRandom(1n) = 1

] ∣∣∣ ∈ negln

3.1 LWE Assumption with Fixed Number of Samples

We can redefine the above LWE assumption with an additional parameter m ∈ N which repre-
sents the number of LWE or random samples given to the adversary (instead of the access to ora-
cles LWEs or Rand) to solve the above problems. The m LWE samples received from LWEs (resp.,
Random) are written as (A,ATs + e) (resp., (A,Ar)) where A ← Zn×mq , e ← χm, r ← Zmq .
Therefore, we restate the above assumptions as follows:

Definition 4. (search-LWEn,m,q,χ assumption). For any PPT algorithm A, it holds that

Pr
s←Znq

A←Zn×mq

e←χm

[
A(1n, (A,ATs + e)) = s

]
∈ negln

Definition 5. (decision-LWEn,m,q,χ assumption). For any PPT distinguisher D and r ← Zmq ,
it holds that∣∣∣∣∣∣∣∣∣∣

Pr
s←Znq

A←Zn×mq

e←χm

[
D(1n, (A,ATs + e)) = 1

]
− Pr

A←Zn×mq

r←Zmq

[D(1n, (A, r)) = 1]

∣∣∣∣∣∣∣∣∣∣
∈ negln

One can easily see that if the decision-LWEn,m,q,χ assumption holds, then search-LWEn,m,q,χ
holds too. Interestingly, the opposite direction is also true with some change in parameter
m. We note that the search-LWE is not suitable for cryptographic assumption as it allows an
adversary to learn the secret s partially (for example, the half part of s). In cryptographic
construction, we want that the adversary should not get any information about the secret and
the decision-LWE is thus preferable.

We also define another version of LWE problem where the secret s and the error e are
both sampled from the same distribution χ. This version of LWE is called short-secret-LWE or
ss-LWE.

Claim 1. The ss-LWE problem is as hard as normal LWE problem.

4

Proof. Assume we have an oracle OLWE that solves (normal) LWE problem. Given (A, b =
ATs + e) for A ← Zn×mq , s ← χn and e ← χm; we need to find b using the above oracle. We

sample s′ ← Znq and define b′ = b + ATs′ = AT (s + s′) + e. Therefore, (A, b′) becomes a
normal LWE sample as (s + s′) is uniformly distributed over Znq . Now, OLWE(A, b′) outputs
t ∈ Znq and hence we output t− s′ as the solution for the ss-LWE instance (A, b).

Next, we assume that the oracle Oss-LWE can solve an ss-LWE instance. Given a (normal)
LWE instance (A, b = ATs + e) for A← Zn×mq , s← Znq and e← χm; we need to find b using
the above oracle. We rewrite the instance as

AT =

(
A1

A2

)
, b =

(
A1

A2

)
s +

(
e1
e2

)
=

(
b1
b2

)
where A1 ∈ Zn×nq , A2 ∈ Z(m−n)×n

q , b1 ∈ Znq and b2 ∈ Zm−nq . Since A is uniform over Zn×mq ,
the matrix A1 is invertible with overwhelming probability. Now, b1 = A1s + e1 implies that
we can implicitly set s = A−11 (b1 − e1). We rewrite b2 as

A2s + e2 = A2(A
−1
1 (b1 − e1)) + e2

= A2A
−1
1 b1 −A2A

−1
1 e1 + e2

Therefore, A2A
−1
1 b1 − b2 = A2A

−1
1 e1 − e2 which implies that (A2A

−1
1 ,A2A

−1
1 b1 − b2) is a

fresh ss-LWE instance (as A2A
−1
1 is uniform over Z(m−n)×n

q since AT is itself uniformly chosen
from Zm×nq and e1 ← χn) and hence it can be fed to Oss-LWE to get e1. Now, we can derive s

from the equation s = A−11 (b1 − e1).

4 Encryption Schemes from LWE

4.1 Private-key Encryption Scheme from LWE

In this subsection we describe a private-key encryption scheme SKE = (Gen,Enc,Dec) from
LWE assumption. More precisely, we consider decision-LWEn,q,χ assumption where the error
distribution χ is such that ‖e‖ ≤ q/4 holds with high probability for e← χ.

• SKE.Gen(1n): Sample and output SK = s← Znq .

• SKE.Enc(SK,m): On input a secret-key SK = s and a message m ∈ {0, 1}, the encryption
algorithm samples a← Znq , e← χ and output c = (a, b = (〈a, s〉+ e+mb q2c) mod q).

• SKE.Dec(SK, c): On input a secret-key SK = s and a ciphertext c = (a, b), the decryption
algorithm first computes u = b− 〈a, s〉 and returns 0 if |u| ≤ q/4; otherwise 1.

Correctness. Note that u = b − 〈a, s〉 = e + mb q2c implies |u| ≤ q/4 with high probability if
m = 0 by the property of χ and |u| > q/4 if m = 1.

Security. By decision-LWEn,q,χ assumption, (a, 〈a, s〉+ e mod q) is computationally indistin-
guishable from a random vector (a, r) ∈ Znq ×Zq. After adding mb q2c to the second component
the LWE sample remains indistinguishable from a random vector (a, r) ∈ Znq × Zq. Therefore,
no PPT adversary can distinguish between the encryption of m = 0 and m = 1.

4.2 Public-key Encryption from LWE

We describe a public-key encryption scheme PKE = (Gen,Enc,Dec) from LWE assumption.
For the correctness of the scheme we need to chose the error distribution χ such that ‖e‖ ≤√
q/4(2n+ 1) for e← χ.

5

• PKE.Gen(1n): Sample A ← Zn×nq , s, e ← χn and output SK = s and PK = (A,y =

ATs + e) ∈ Zn×nq × Znq .

• PKE.Enc(PK,m): On input a public-key PK = (A,y) and a message m ∈ {0, 1}, the
encryption algorithm samples r,x← χn, x′ ← χ and output c = (c1, c2) ∈ Znq ×Zq, where
c1 = Ar + x, c2 = 〈y, r〉+ x′ +mb q2c).

• PKE.Dec(SK, c): On input a secret-key SK = s and a ciphertext c = (c1, c2), compute
u = c2 − 〈c1, s〉 and return 0, if |u| ≤ q/4; otherwise return 1.

Correctness. To re-compute u, we first note that

〈c1, s〉 = sT (Ar + x)

= (ATs)Tr − sTx

= 〈ATs, r〉 − 〈s,x〉
= (〈y, r〉 − 〈e, r〉)− 〈s,x〉

and therefore the value of u = c2 − 〈c1, s〉 is given by 〈e, r〉 − 〈s,x〉 + x′ + mb q2c. Due to

the choice of χ we have |〈e, r〉 − 〈s,x〉 + x′| ≤ nq
4(2n+1) + nq

4(2n+1) +
√

q
4(2n+1) <

q
4 . Hence, the

correctness follows.

Security. We show that the above scheme is IND-CPA secure under the harness of LWEn,2(n+1),q,χ

assumption. We proceed by the following hybrid experiments.

Hybrid 0. This is the same experiment as ExptPKEA (1n, 0) (defined in Figure 1) where the
challenger encrypts with respect to bit b = 0.

Hybrid 1. In this experiment the adversary receives a “fake” public-key defined as P̃K =
(A,y)← Zn×nq × Znq and ciphertexts are computed using P̃K.

The indistinguishability between Hybrid 0 and Hybrid 1 is preserved by the hardness of
ssLWEn,n,q,χ assumption, and therefore by LWEn,2n,q,χ assumption.

Hybrid 2. Compute the challenge ciphertext as

Ẽnc(P̃K, 0) = (a, b)

where (a, b) ← Znq × Zq. Note that the challenge ciphertext in Hybrid 1 is actually (n + 1)
ssLWE samples:

(Ar + x, 〈y, r〉+ x′)

where (A,y) ← Zn×nq × Znq , r,x ← χn, and x′ ← χ. Therefore, by ssLWEn,n+1,q,χ or by
LWEn,2n+1,q,χ assumption Hybrid 2 is computationally indistinguishable from Hybrid 1.

Hybrid 3. Compute the challenge ciphertext as

Ẽnc(P̃K, 1) = (a, b+ b q2c mod q)

where (a, b)← Znq × Zq. Since b is chosen uniformly at random from Zq, Hybrid 2 and Hybrid
3 are indistinguishable from the adversary’s view.

Hybrid 4. We send the challenge ciphertext as

PKE.Enc(P̃K, 1) = (Ar + x, 〈y, r〉+ x′ + b q2c) ∈ Znq × Zq.

6

Observe that Hybrid 3 and Hybrid 4 are computationally indistinguishable due to LWEn,2n+1,q,χ

assumption (as in Hybrid 2).

Hybrid 5. This is the same experiment as ExptPKEA (1n, 1) (defined in Figure 1) where the
challenger encrypts with respect to bit b = 1. Hybrid 5 is indistinguishable from Hybrid 4 by
LWEn,2n,q,χ assumption.

Therefore, we conclude by LWEn,2(n+1),q,χ assumption that∣∣Pr [ExptPKEA (1n, 0) = 1
]
− Pr

[
ExptPKEA (1n, 1) = 1

]∣∣ ∈ negln

References

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

7

	Introduction
	Public-key Encryption
	Textbook RSA: Multiplicative homomorphic

	Learning With Errors
	LWE Assumption with Fixed Number of Samples

	Encryption Schemes from LWE
	Private-key Encryption Scheme from LWE
	Public-key Encryption from LWE

