Robust NIZK & CCA2 Encryption Seminar in Cryptographic Protocols Roy Kasher

Overview

- Construction of CCA1 encryption from NIZK [Naor Yung]
- First construction of CCA2 encryption [DDN]
- Strengthening NIZK [Sahai] [De Santis et al]
 - Non-malleablility, one time simulation soundness, robustness
- Simplified construction of CCA2 encryption from one time simulation sound NIZK [Sahai] [Lindell]
- More strengthening NIZK [De Santis et al]
 - Many time simulation soundness

Preliminaries - PKE

- Types of attacks:
 - Chosen plaintext attack (CPA) Adversary has access to encryption oracle
 - *Passive chosen ciphertext attack (CCA1)* Adversary has access to decryption oracle, prior to encryption ("lunchtime attack")
 - Adaptive chosen ciphertext attack (CCA2) Adversary has unlimited access to decryption oracle
- Strongest security: Existential unforgeability

Preliminaries - IND Security

- Let (E,D,G) be a triplet of PPT algorithms
 - IND CPA Game o:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A(pk)$
 - $\mathbf{c} \leftarrow \mathbf{E}_{pk}(\mathbf{m}_{o})$
 - b \leftarrow A(pk, c)

- IND CPA Game 1:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A(pk)$
 - $c \leftarrow E_{pk}(m_1)$
 - b \leftarrow A(pk, c)
- For any PTT A, $|Pr_o[b=1] Pr_1[b=1]| < v(n)$

Preliminaries - IND Security

- Let (E,D,G) be a triplet of PPT algorithms
 - IND CCA1 Game o:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A^{D_{sk}}(pk)$
 - $\mathbf{c} \leftarrow \mathbf{E}_{pk}(\mathbf{m}_{o})$
 - b \leftarrow A(pk, c)

- IND CCA1 Game 1:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A^{D_{sk}}(pk)$
 - $c \leftarrow E_{pk}(m_1)$
 - b \leftarrow A(pk, c)
- For any PTT A, $|Pr_o[b=1] Pr_1[b=1]| < v(n)$

Preliminaries - IND Security

- Let (E,D,G) be a triplet of PPT algorithms
 - IND CCA₂ Game o:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A^{D_{sk}}(pk)$
 - $\mathbf{c} \leftarrow \mathbf{E}_{pk}(\mathbf{m}_o)$
 - $b \leftarrow A^{D_{sk}}(pk, c)$

- IND CCA2 Game 1:
 - $(pk,sk) \leftarrow Gen(1^n)$
 - $(m_o, m_1) \leftarrow A^{D_{sk}}(pk)$
 - $\mathbf{c} \leftarrow \mathbf{E}_{pk}(\mathbf{m}_1)$
 - $b \leftarrow A^{\mathsf{D}_{\mathsf{sk}}}(\mathsf{pk}, \mathsf{c})$
- For any PTT A, $|Pr_o[b=1] Pr_1[b=1]| < v(n)$
- Recall: CCA2 security is equivalent to non-malleability

Preliminaries - Adaptive NIZK

- A pair of PPT (P, V) is an adaptive non-interactive proof system for a language L∈NP if it satisfies:
 - Completeness: For all $(x,w) \in R_L$, Pr $[r \leftarrow \{0,1\}^*; \Pi \leftarrow P(r,x,w): V(r,x,\Pi)=1] = 1$
 - Adaptive soundness: For all x∉L, PPT A, Pr[r←{0,1}*; (x, Π)←A(r): V(r,x,Π)=1] < ν(n)

Preliminaries - Adaptive NIZK

- A pair of PPT (P, V) is an adaptive non-interactive zero knowledge proof system for a language L∈NP if it is adaptive NIP, and in addition, satisfies:
 - Adaptive zero-knowledge: There exists PPT sim. S such that the distributions {r,x,Π} are indistinguishable in the following two games, for any PPT adversary A:
 - ZK real:
 - $r \leftarrow {o,1}^{poly(n)}$
 - $(x,w) \leftarrow A(r)$
 - $\Pi \leftarrow P(r,x,w)$

- ZK sim:
 - $r \leftarrow S(1^n)$
 - $(x,w) \leftarrow A(r)$
 - $\Pi \leftarrow S(r,x)$

CCA1 Encryption - Construction

- Due to Naor and Yung
- Let (P,V) be an adaptive NIZK proof system, and (E,D,G) an IND-CPA secure encryption scheme
 - **Key Generation**: Obtain two independent keys from G, and choose random reference string.
 - **Encryption**: Encrypt m twice, once with each public key. Prove consistency of encryptions.
 - **Decryption**: Verify the proof is accepting, and decrypt one of the ciphertexts using the matching key

CCA1 Encryption - Construction

- G*(1ⁿ):
 - $(pk_1, sk_1), (pk_2, sk_2) \leftarrow G(1^n)$
 - $r \leftarrow {0,1}^{poly(n)}$
 - $pk^* = (pk_1, p, k_2, r)$
 - $sk^* = (sk_1, sk_2)$
- E*(m):
 - $c_1 = E_{pk_1}(m; w_1), c_2 = E_{pk_2}(m; w_2)$
 - $\Pi = P(r, (c_1, c_2, pk_1, pk_2), (m, w_1, w_2))$ Proof checks that both ciphertexts encrypt same msg
 - Output (c_1, c_2, Π)

- $D^*(c_1, c_2, \Pi)$:
 - Verify $V(r, (c_1, c_2, pk_1, pk_2), \Pi) = 1$
 - Output $D_{sk_1}(c_1)$

CCA1 Encryption

- Cryptosystem based on *secret hiding* principle:
 - Introduced by Feige and Shamir
 - System has two "secrets"
 - In order to operate it, only one of the secrets needs to be known (Decryption with one key; Verification public)
 - To an outsider, it should be indistinguishable which of the secrets is known

- Want to show games are indistinguishable
 - Game o:
 - $pk^* = (pk_1, pk_2, r_{uni})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_o; w_2)$ $\Pi = P(r, (c_1, c_2), (m_o, w_1, w_2))$ • $b \leftarrow A(c_1, c_2, \Pi)$

- Game 1:
 - $pk^* = (pk_1, pk_2, r_{uni})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_1; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = P(r, (c_1, c_2), (m_1, w_1, w_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$
- Problem: Adversary against CPA cannot simulate proof

- ... Except that by definition of NIZK, he can:
 - Game o:
 - $pk^* = (pk_1, pk_2, r_{uni})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_o; w_2)$ $\Pi = P(r, (c_1, c_2), (m, w_1, w_2))$ • $b \leftarrow A(c_1, c_2, \Pi)$

- Game o_{sim}:
 pk* = (p)
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_o; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$
- Next: Second encryption with m₁ instead of m₀

• Easy, because decryption oracle uses sk₁:

- Game o_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_o; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Game o/1_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$
- Next: First encryption with m₁ instead of m_o

- Problem: Adversary cannot simulate decryption
- Recall: Verifier ensures c₁ and c₂ encrypt same plaintext
- Idea: Decrypt the second message, instead of first
- Fails when proof is *invalid*: $D_{sk_1}(c'_1) \neq D_{sk_2}(c'_2)$ but verify pass

• Game
$$o/1_{sim}$$
:
• $pk^* = (pk_1, pk_2, r_{sim})$
 $sk^* = (sk_1, sk_2)$
• $(m_o, m_1) \leftarrow A^{D^*sk_1}(pk)$
• $c_1 = E_{pk_1}(m_o; w_1)$
 $c_2 = E_{pk_2}(m_1; w_2)$
 $\Pi = S(r, (c_1, c_2))$
• $b \leftarrow A(c_1, c_2, \Pi)$

•
$$D_{sk_1}^*(c'_1, c'_2, \Pi')$$
:

• Verify $V(r, (c'_1, c'_2), \Pi') = 1$

• Output
$$D_{sk_1}(c'_1)$$

- Need to show: A cannot generate *invalid* proofs
- Let's review our games so far
- Game o:
 - $pk^* = (pk_1, pk_2, r_{uni})$ $sk^* = (sk_1, sk_2)$
- Game o_{sim}:

•
$$pk^* = (pk_1, pk_2, r_{sim})$$

 $sk^* = (sk_1, sk_2)$

- $m_{o}, m_{i} \leftarrow A^{D^{*}_{sk_{1}}}(pk)$ $m_{o}, m_{i} \leftarrow A^{D^{*}_{sk_{1}}}(pk)$
- Game $o/1_{sim}$:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$

•
$$m_o, m_1 \leftarrow A^{D^*_{sk_1}}(pk)$$

- In game o, validity of proofs by adaptive soundness
- Invalid_o \approx Invalid_{osim} since $r_{uni} \approx r_{sim}$ by ZK
- Invalid_{osim} ≈ Invalid_{o/1sim} since games are identical
- Hence, validity of proofs guaranteed

Can now replace decryption oracle

- Game o/1_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Game o/1_{sim} (alt key):
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_2}}(pk)$
 - $c_1 = E_{pk_1}(m_0; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$
- (Note we have proved adaptive NIZK is sound against simulated reference strings)

- Repeating previous arguments,
 - Game o/1_{sim} (alt key):
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_2}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Game 1_{sim} (alt key):
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_2}}(pk)$
 - $c_1 = E_{pk_1}(\mathbf{m}_1; \mathbf{w}_1)$ $c_2 = E_{pk_2}(\mathbf{m}_1; \mathbf{w}_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Repeating previous arguments,
 - Game 1_{sim} (alt key):
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_2}}(pk)$
 - $c_1 = E_{pk_1}(m_1; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Game 1_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_1; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Repeating previous arguments,
 - Game 1_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_1; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- Game 1:
 - $pk^* = (pk_1, pk_2, r_{uni})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_1; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = P(r, (c_1, c_2), (m, w_1, w_2))$
 - b $\leftarrow A(c_1, c_2, \Pi)$

- By "Chain of Indistinguishability": $0 \leftrightarrow 0_{sim} \leftrightarrow 0/1_{sim} \leftrightarrow 0/1_{sim} (key) \leftrightarrow 1_{sim} (key) \leftrightarrow 1_{sim} \leftrightarrow 1$ $=> |Pr_o[b=1] - Pr_1[b=1]| < v(n)$
- This completes the proof of the NY scheme
- Seven game proof from lecture notes of Jonathan Katz
- Naor Yung define parameterized games (b₁,b₂); Use only four games

CCA1 Encryption - Not CCA2

- Unfortunately, the NW scheme is not secure against *adaptive* chosen ciphertext attacks
- Take any adaptive NIZK proof system and modify: New prover adds extra bit to proof New verifier ignores last bit
- An attacker can request challenge encryption, swap the last bit and query the decryption oracle
- Intuitively, since the proof is malleable, so is the encryption scheme (More on this later...)

CCA1 Encryption - Not CCA2

- Where does our proof break?
- A could not generate invalid proofs due to soundness
- This no longer holds when A is invoked the 2nd time

Game
$$o/1_{sim}$$
:
• $pk^* = (pk_1, pk_2, r_{sim})$
 $sk^* = (sk_1, sk_2)$

•
$$(m_o, m_1) \leftarrow A^{D^*sk_1}(pk)$$

•
$$c_1 = E_{pk_1}(m_o; W_1)$$

 $c_2 = E_{pk_2}(m_1; W_2)$
 $\Pi = S(r, (c_1, c_2))$

•
$$\mathbf{b} \leftarrow \mathbf{A}^{\mathbf{D}^*_{\mathbf{sk_1}}}(\mathbf{c_1, c_2, \Pi})$$

CCA1 Encryption - Not CCA2

- In fact, this is the only part where our proof fails
- Can we fix this?
- We can, by strengthening the NIZK
- But first let's start from scratch, as this was the chronological order of things

CCA2 - History

- CCA2 definition [Rackoff Simon 91]
- 1st CCA2 based on general assumptions [DDN 91/2000]
- Random Oracle Model [Bellare Rogaway 93]
 - With respect to our model Heuristic only
- Efficient CCA2 based on DDH [Cramer Shoup 98]
- NY Paradigm + stronger NIZK
 - Non-malleable [Sahai 99]
 - Many time simulation soundness, robust [De Santis et al 01]
 - One time simulation soundness [Lindell 06]
- CCA2 from Identity Based Encryption [Canetti Halevi Katz 05]

CCA2 - DDN

- Dolev, Dwork and Naor 2000
- First construction based on general assumptions
- Exploits intricate interplay between several components
 - Many encryptions
 - NIZK proofs
 - Digital signatures

• Hard to teach in a course on cryptography, for example

CCA2 - DDN (Construction)

- Public key consists of n pairs of public keys, (pk_{1,0}, pk_{1,1})...(pk_{n,0}, pk_{n,1}) and a ref string for NIZK
- Encryption:
 - Choose an instance of a *digital signature scheme*
 - View the public verification key as a sequence of bits selecting public encryption keys (vk)
 - Encrypt plaintext under each of the selected keys (C)
 - Provide a NIZK of consistency (Π)
 - Sign on the ciphers and the proof (σ)
 - Ciphertext is a quad (vk, C, Π , σ)

CCA2 - DDN (Intuition)

- Attacker is given ciphertext (vk, C, Π, σ) it wishes to maul
- If attacker uses vk, it will be unable generate a valid signature on any other content
- If attacker changes signature scheme, there will be at least one pair of encryption keys (pk_{i,o}, pk_{i,1}) so that C contains E_{pki,o}(m), and the adversary needs E_{pki,1}(m') for m' related to m. Since keys are chosen independently, he has no idea how to do this

- First considered by Sahai as an intuitive interpretation of zero knowledge
- Non malleability: What one can prove after seeing a NIZK proof one could also have proved before seeing it (except the ability to duplicate the proof)
- Does not follow from current defs of NIZK:
 - Let $L \in NP$ a hard language, $L' = \{(x,y) | x, y \in L\}$
 - Build proof system by concatenation
 - Proof for (x,y) + witness for x' allows proving (x',y)

- Many flavours
 - Non malleability
 - Adaptive non malleability
 - Non malleability with respect to multiple proofs
 - Bounded
 - or unbounded
- Consider *adaptive non malleability*: Adversary can ask for a proof of a theorem of its choosing
- Formalization surprisingly hard

- Who provides the witness for the proof?
 - Adversary: Makes definition trivial
 - All-powerful party: Allows adversary to learn which theorems are true
- Alternative: Define non-malleability with respect to *simulated* proofs
- Can consider a similar, yet incomparable, approach: *Simulation soundness*: Adversary cannot prove a false statement, even after seeing simulated proof(s)

- Constructions
 - [Sahai 99] Adaptive non-malleable and many time simulation sound NIZK
 - [De Santis et al 01] *unbounded many time simulation sound* NIZK
 - [Lindell o6] Simple one time simulation sound NIZK
- As observed by Sahai, all notions above suffice for constructing CCA2 secure encryption
- Specifically, by plugging in the strong NIZK in the NW construction

1 Time Simulation Soundness

- Let (P,V) be an adaptive NIZK proof system for a language L with simulator S
- We say (P,V,S) is *one-time simulation sound* if for every PPT A, it succeeds in the following experiment with negligible probability:
 - $r \leftarrow S(1^n)$
 - $\mathbf{x} \leftarrow \mathbf{A}(\mathbf{r})$
 - $\Pi \leftarrow S(x,r)$
 - (x', Π ') \leftarrow A(x,r, Π)
 - A wins if $x' \notin L$, $(x',\Pi') \neq (x,\Pi)$ but $V(x',r,\Pi')=1$

NY Revisited

- Couldn't prove A generates verifiable *invalid* proofs
 D_{sk1}(c₁)≠D_{sk2}(c₂) with negligible probability
 - Game o/1_{sim}:
 - $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_o, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_o; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(r, (c_1, c_2))$
 - $\mathbf{b} \leftarrow \mathbf{A}^{\mathbf{D}^* \mathbf{sk_1}}(\mathbf{c_1}, \mathbf{c_2}, \Pi)$
- This is no longer the case

- $D^*_{sk_1}(c'_1, c'_2, \Pi')$:
 - Verify $V(r, (c'_1, c'_2), \Pi') = 1$
 - Output $D_{sk_1}(c'_1)$

NY Revisited

- Easily reduced to one time simulation soundness
- Adversary receives simulated ref r_{sim}, chooses (m_o,m₁) as below, observes simulated proof Π , and outputs verifiable invalid proof (In particular, A's output • Game o/1_{sim}: \neq (c₁,c₂, Π))
- Result: Can safely replace sk, with sk,
- $pk^* = (pk_1, pk_2, r_{sim})$ $sk^* = (sk_1, sk_2)$
 - $(m_0, m_1) \leftarrow A^{D^*_{sk_1}}(pk)$
 - $c_1 = E_{pk_1}(m_0; w_1)$ $c_2 = E_{pk_2}(m_1; w_2)$ $\Pi = S(\underline{r}, (c_1, c_2))$ • $\mathbf{b} \leftarrow \mathbf{A}^{\mathbf{D}^* \mathbf{sk_1}}(\mathbf{c_1}, \mathbf{c_2}, \Pi)$

NY Revisited

- Rest of proof as before (Verify at home...)
- Note:
 - NW scheme with adaptive NIZK is CCA1 secure
 - NW scheme with adaptive OTSS NIZK is CCA2 secure

• Conclusion:

- CCA2 secure encryption schemes exist if enhanced trapdoor permutations exist
 - (Late fact: Adaptive NIZK requires enhanced trapdoor permutations)

OTSS - Tools

- For our construction, we will need the following tools:
- Non-interactive perfectly-binding commitment schemes satisfying:
 - *Hiding*: it is hard to distinguish $C(s_1)$ from $C(s_2)$
 - Binding: $C(s_1;r_1) \neq C(s_2;r_2)$ for every r_1,r_2
 - *Pseudorandom range*: Output should be pseudorandom
 - *Negligible support*: A random string is a commitment with negligible probability
- All properties are easily satisfiable with OWP-based commitment scheme

OTSS - Tools

"Strong" one-time signature schemes

- Triplet of PPT algorithms (G,Sign,Ver)
- Validity:

Ver(vk,m,Sign(sk,m))=1 where $(vk,sk) \leftarrow G(1^n)$

- Security: Probability to produce (m,σ)≠(m',σ') s.t. Ver(vk,m',σ')=1 is negligible
- Constructed using universal one-way hash and 1-1 OWF

• SIGN Game:

- $(vk,sk) \leftarrow G(1^n)$
- $m \leftarrow A(vk)$
- $\sigma \leftarrow \text{Sign}(\text{sk},\text{m})$
- (m, σ ') \leftarrow A(vk,m, σ)

OTSS - Construction

- Reference string is divided into two parts (r₁, r₂)
- Following [FLS], prove a compound statement:
 - Define L': Either $x \in L$ or r_1 has some special property
 - Random r₁ has property with negligible property
 - Simulator generated r₁ does have special property
- In [Lindell], r₁ is a commitment to a verification key
- Note compound language in NP if $L \in NP$
 - Witness to (x,r₁,vk) is either witness to x or random tape for commitment (r₁ = C(vk;w))

OTSS - Construction

• **Common reference string**: (r₁, r₂)

• **Prover**(**x**,**w**):

- Choose random pair of signature keys (vk,sk)
- Prove compound statement $(x,r_1,vk) \in L'$ using w and r_2
- Sign on proof $\sigma = \text{Sign}_{sk}(x,p)$
- Output (vk,x,p,σ)
- Verifier(vk,x,p,σ):
 - Verify signature Ver_{sk} ((x,p),σ)=1
 - Verify proof $V((x,r_1,vk),r_2,p)=1$

- Completeness immediate
- Soundness:
 - Random string is a valid commitment with negligible probability
 - For a random r_1 , $x \notin L$ implies $(x,vk,r_1) \notin L'$
- Adaptive soundness:
 - Proofs generated using random r₂
 - Immediate from adaptive soundness of underlying NIZK

- Zero knowledge:
 - Proves $(x,vk,r_1) \in L'$ based on $r_1 = Commit(vk)$
 - Reference string is pseudorandom because commitment has pseudorandom range
 - Underlying proof is indistinguishable due to WI of adaptive NIZK
 - Formally, define two hybrids

- Zero knowledge:
 - Simulator (ref string):
 - Choose random (vk,sk)
 - Compute r₁ = Commit(vk)
 - Choose random r₂
 - Output (r_1, r_2)
 - Simulator (proof):
 - Prove statement based on r₁ = Commit(vk)
 - Sign input, proof with sk
 - Output proof (vk,x,p,σ)

• One time simulation soundness:

- Sim ref string (r₁,r₂), sim proof (vk,x,p,σ) Adversary outputs verifiable (vk',x',p',σ'), x'∉L
- vk≠vk':
 - By perfect binding, $r_1 \notin Commit(vk')$
 - $x' \notin L \Longrightarrow (x', r_1, vk') \notin L'$
 - Negligible by soundness of underlying NIZK (r₂ uniform)
- vk=vk':
 - ((x,p),σ)≠((x',p'),σ')
 - Negligible by the strong security of the signature (sk unused)

Time's up...