
Seminar in Cryptographic ProtocolsSeminar in Cryptographic Protocols
Roy Kasher

Overview
! Construction of CCA1 encryption from NIZK [Naor Yung]

! First construction of CCA2 encryption [DDN]

! Strengthening NIZK [Sahai] [De Santis et al]

Non-malleablility, one time simulation soundness, ! Non-malleablility, one time simulation soundness,
robustness

! Simplified construction of CCA2 encryption from one
time simulation sound NIZK [Sahai] [Lindell]

! More strengthening NIZK [De Santis et al]

! Many time simulation soundness

Preliminaries - PKE
! Types of attacks:

! Chosen plaintext attack (CPA)
Adversary has access to encryption oracle

! Passive chosen ciphertext attack (CCA1)! Passive chosen ciphertext attack (CCA1)
Adversary has access to decryption oracle, prior to
encryption (“lunchtime attack”)

! Adaptive chosen ciphertext attack (CCA2)
Adversary has unlimited access to decryption oracle

! Strongest security: Existential unforgeability

Preliminaries - IND Security
! Let (E,D,G) be a triplet of PPT algorithms

! IND CPA Game 1:
! (pk,sk) ← Gen(1n)

! IND CPA Game 0:
! (pk,sk) ← Gen(1n)

! For any PTT A, |Pr0 [b=1] - Pr1[b=1]| < ν(n)

! (pk,sk) ← Gen(1)
! (m0,m1) ← A(pk)
! c ← Epk(m1)
! b ← A(pk, c)

! (pk,sk) ← Gen(1)
! (m0,m1) ← A(pk)
! c ← Epk(m0)
! b ← A(pk, c)

Preliminaries - IND Security
! Let (E,D,G) be a triplet of PPT algorithms

! IND CCA1 Game 1:
! (pk,sk) ← Gen(1n)

! IND CCA1 Game 0:
! (pk,sk) ← Gen(1n)

! For any PTT A, |Pr0 [b=1] - Pr1[b=1]| < ν(n)

! (pk,sk) ← Gen(1)
! (m0,m1) ← ADsk(pk)
! c ← Epk(m1)
! b ← A(pk, c)

! (pk,sk) ← Gen(1)
! (m0,m1) ← ADsk(pk)
! c ← Epk(m0)
! b ← A(pk, c)

Preliminaries - IND Security
! Let (E,D,G) be a triplet of PPT algorithms

! IND CCA2 Game 1:
! (pk,sk) ← Gen(1n)

! IND CCA2 Game 0:
! (pk,sk) ← Gen(1n)

! For any PTT A, |Pr0 [b=1] - Pr1[b=1]| < ν(n)
! Recall: CCA2 security is equivalent to non-malleability

! (pk,sk) ← Gen(1)
! (m0,m1) ← ADsk(pk)
! c ← Epk(m1)
! b ← ADsk (pk, c)

! (pk,sk) ← Gen(1)
! (m0,m1) ← ADsk(pk)
! c ← Epk(m0)
! b ← ADsk (pk, c)

Preliminaries - Adaptive NIZK
! A pair of PPT (P, V) is an adaptive non-interactive

proof system for a language L∈NP if it satisfies:
! Completeness: For all (x,w)∈RL,

Pr[r←{0,1}*; Π←P(r,x,w): V(r,x,Π)=1] = 1Pr[r←{0,1}*; Π←P(r,x,w): V(r,x,Π)=1] = 1
! Adaptive soundness: For all x∉L, PPT A,

Pr[r←{0,1}*; (x, Π)←A(r): V(r,x,Π)=1] < ν(n)

Preliminaries - Adaptive NIZK
! A pair of PPT (P, V) is an adaptive non-interactive zero

knowledge proof system for a language L∈NP if it is
adaptive NIP, and in addition, satisfies:
! Adaptive zero-knowledge: There exists PPT sim. S such ! Adaptive zero-knowledge: There exists PPT sim. S such

that the distributions {r,x,Π} are indistinguishable in the
following two games, for any PPT adversary A:

! ZK real:
! r← {0,1}poly(n)

! (x,w) ← A(r)
! Π ← P(r,x,w)

! ZK sim:
! r← S(1n)
! (x,w) ← A(r)
! Π ← S(r,x)

CCA1 Encryption - Construction
! Due to Naor and Yung
! Let (P,V) be an adaptive NIZK proof system, and

(E,D,G) an IND-CPA secure encryption scheme
! Key Generation: Obtain two independent keys from G, ! Key Generation: Obtain two independent keys from G,

and choose random reference string.
! Encryption: Encrypt m twice, once with each public

key. Prove consistency of encryptions.
! Decryption: Verify the proof is accepting, and decrypt

one of the ciphertexts using the matching key

CCA1 Encryption - Construction
! G*(1n):

! (pk1,sk1), (pk2,sk2) ← G(1n)
! r ← {0,1}poly(n)

! pk* = (pk ,p,k ,r)

! D*(c1,c2,Π):
! Verify V(r,(c1,c2,pk1,pk2),Π) = 1
! Output Dsk1(c1)

! pk* = (pk1,p,k2,r)
! sk*= (sk1,sk2)

! E*(m):
! c1 = Epk1(m;w1), c2 = Epk2(m;w2)
! Π = P(r,(c1,c2,pk1,pk2),(m,w1,w2))
! Output (c1,c2,Π)

Proof checks that both ciphertexts encrypt same msg

CCA1 Encryption
! Cryptosystem based on secret hiding principle:

! Introduced by Feige and Shamir
! System has two “secrets”
! In order to operate it, only one of the secrets needs to be ! In order to operate it, only one of the secrets needs to be

known (Decryption with one key; Verification public)

! To an outsider, it should be indistinguishable
which of the secrets is known

CCA1 Encryption - Proof
! Want to show games are indistinguishable

! Game 1:
! pk* = (pk1,pk2,runi)

sk* = (sk ,sk)

! Game 0:
! pk* = (pk1,pk2,runi)

sk* = (sk ,sk)

! Problem: Adversary against CPA cannot simulate proof

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = P(r,(c1,c2),(m1,w1,w2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m0;w2)
Π = P(r,(c1,c2),(m0,w1,w2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! … Except that by definition of NIZK, he can:

! Game 0sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Game 0:
! pk* = (pk1,pk2,runi)

sk* = (sk ,sk)

! Next: Second encryption with m1 instead of m0

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m0;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m0;w2)
Π = P(r,(c1,c2),(m,w1,w2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! Easy, because decryption oracle uses sk1:

! Game 0/1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Game 0sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Next: First encryption with m1 instead of m0

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m0;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! Problem: Adversary cannot simulate decryption
! Recall: Verifier ensures c1 and c2 encrypt same plaintext
! Idea: Decrypt the second message, instead of first
! Fails when proof is invalid: D (c’)≠D (c’) but verify pass! Fails when proof is invalid: Dsk1 (c’1)≠Dsk2 (c’2) but verify pass

! Game 0/1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

! D*sk1(c’1,c’2,Π’):
! Verify V(r,(c’1,c’2),Π’) = 1
! Output Dsk1(c’1)

CCA1 Encryption - Proof
! Need to show: A cannot generate invalid proofs
! Let’s review our games so far

! Game 0/1sim:
! pk* = (pk ,pk ,r)

! Game 0sim:
! pk* = (pk ,pk ,r)

! Game 0:
! pk* = (pk ,pk ,r)

! In game 0, validity of proofs by adaptive soundness
! Invalid0 ≈ Invalid0sim since runi ≈ rsim by ZK
! Invalid0sim ≈ Invalid0/1sim since games are identical
! Hence, validity of proofs guaranteed

! pk* = (pk1,pk2,rsim)
sk* = (sk1,sk2)

! m0,m1 ← AD*sk1(pk)

! pk* = (pk1,pk2,rsim)
sk* = (sk1,sk2)

! m0,m1 ← AD*sk1(pk)

! pk* = (pk1,pk2,runi)
sk* = (sk1,sk2)

! m0,m1 ← AD*sk1(pk)

CCA1 Encryption - Proof
! Can now replace decryption oracle

! Game 0/1sim (alt key):
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Game 0/1sim :
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! (Note we have proved adaptive NIZK is sound against
simulated reference strings)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk2(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! Repeating previous arguments,

! Game 1sim (alt key):
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Game 0/1sim (alt key):
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk) sk* = (sk1,sk2)
! (m0,m1) ← AD*sk2(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk2(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! Repeating previous arguments,

! Game 1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk)

! Game 1sim (alt key):
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk) sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk2(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! Repeating previous arguments,

! Game 1:
! pk* = (pk1,pk2,runi)

sk* = (sk ,sk)

! Game 1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk ,sk) sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = P(r,(c1,c2),(m,w1,w2))

! b ← A(c1,c2,Π)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m1;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← A(c1,c2,Π)

CCA1 Encryption - Proof
! By “Chain of Indistinguishability” :

0 ↔ 0sim ↔ 0/1sim ↔ 0/1sim (key) ↔ 1sim (key) ↔ 1sim ↔ 1
=> |Pr0 [b=1] - Pr1[b=1]| < ν(n)

! This completes the proof of the NY scheme! This completes the proof of the NY scheme
! Seven game proof from lecture notes of Jonathan Katz
! Naor Yung define parameterized games (b1,b2); Use

only four games

CCA1 Encryption - Not CCA2
! Unfortunately, the NW scheme is not secure against

adaptive chosen ciphertext attacks
! Take any adaptive NIZK proof system and modify:

New prover adds extra bit to proofNew prover adds extra bit to proof
New verifier ignores last bit

! An attacker can request challenge encryption, swap
the last bit and query the decryption oracle

! Intuitively, since the proof is malleable, so is the
encryption scheme (More on this later…)

CCA1 Encryption - Not CCA2
! Where does our proof break?
! A could not generate invalid proofs due to soundness
! This no longer holds when A is invoked the 2nd time

! Game 0/1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← AD*sk1(c1,c2,Π)

CCA1 Encryption - Not CCA2
! In fact, this is the only part where our proof fails
! Can we fix this?
! We can, by strengthening the NIZK

But first let’s start from scratch, as this was the ! But first let’s start from scratch, as this was the
chronological order of things

CCA2 - History
! CCA2 definition [Rackoff Simon 91]

! 1st CCA2 based on general assumptions [DDN 91/2000]

! Random Oracle Model [Bellare Rogaway 93]

! With respect to our model - Heuristic only! With respect to our model - Heuristic only
! Efficient CCA2 based on DDH [Cramer Shoup 98]

! NY Paradigm + stronger NIZK
! Non-malleable [Sahai 99]

! Many time simulation soundness, robust [De Santis et al 01]

! One time simulation soundness [Lindell 06]

! CCA2 from Identity Based Encryption [Canetti Halevi Katz 05]

CCA2 - DDN
! Dolev, Dwork and Naor 2000
! First construction based on general assumptions
! Exploits intricate interplay between several

componentscomponents
! Many encryptions
! NIZK proofs
! Digital signatures

! Hard to teach in a course on cryptography, for example

CCA2 - DDN (Construction)
! Public key consists of n pairs of public keys,

(pk1,0, pk1,1)…(pkn,0, pkn,1) and a ref string for NIZK
! Encryption:

! Choose an instance of a digital signature scheme! Choose an instance of a digital signature scheme
! View the public verification key as a sequence of bits

selecting public encryption keys (vk)
! Encrypt plaintext under each of the selected keys (C)
! Provide a NIZK of consistency (Π)
! Sign on the ciphers and the proof (σ)
! Ciphertext is a quad (vk, C, Π, σ)

CCA2 - DDN (Intuition)
! Attacker is given ciphertext (vk, C, Π, σ) it wishes to

maul
! If attacker uses vk, it will be unable generate a valid

signature on any other contentsignature on any other content
! If attacker changes signature scheme, there will be at

least one pair of encryption keys (pki,0, pki,1) so that C
contains Epki,0(m), and the adversary needs Epki,1(m’)
for m’ related to m. Since keys are chosen
independently, he has no idea how to do this

Non Malleable NIZK
! First considered by Sahai as an intuitive interpretation

of zero knowledge
! Non malleability: What one can prove after seeing a

NIZK proof one could also have proved before seeing itNIZK proof one could also have proved before seeing it
(except the ability to duplicate the proof)

! Does not follow from current defs of NIZK:
! Let L∈NP a hard language, L’={(x,y)|x,y∈L}
! Build proof system by concatenation
! Proof for (x,y) + witness for x’ allows proving (x’,y)

Non Malleable NIZK
! Many flavours

! Non malleability
! Adaptive non malleability
! Non malleability with respect to multiple proofs! Non malleability with respect to multiple proofs

! Bounded
! or unbounded

! Consider adaptive non malleability: Adversary can ask
for a proof of a theorem of its choosing

! Formalization surprisingly hard

Non Malleable NIZK
! Who provides the witness for the proof?

! Adversary: Makes definition trivial
! All-powerful party: Allows adversary to learn which

theorems are truetheorems are true
! Alternative: Define non-malleability with respect to

simulated proofs
! Can consider a similar, yet incomparable, approach:

Simulation soundness: Adversary cannot prove a false
statement, even after seeing simulated proof(s)

Non Malleable NIZK
! Constructions

! [Sahai 99] Adaptive non-malleable and many time
simulation sound NIZK

! [De Santis et al 01] unbounded many time simulation ! [De Santis et al 01] unbounded many time simulation
sound NIZK

! [Lindell 06] Simple one time simulation sound NIZK
! As observed by Sahai, all notions above suffice for

constructing CCA2 secure encryption
! Specifically, by plugging in the strong NIZK in the NW

construction

1 Time Simulation Soundness
! Let (P,V) be an adaptive NIZK proof system for a

language L with simulator S
! We say (P,V,S) is one-time simulation sound if for every

PPT A, it succeeds in the following experiment with PPT A, it succeeds in the following experiment with
negligible probability:

! r ← S(1n)
! x ← A(r)
! Π← S(x,r)
! (x’, Π’) ← A(x,r,Π)
! A wins if x’∉L, (x’,Π’)≠(x,Π) but V(x’,r,Π’)=1

NY Revisited
! Couldn’t prove A generates verifiable invalid proofs

Dsk1(c1)≠Dsk2(c2) with negligible probability

! Game 0/1sim:
! pk* = (pk ,pk ,r) ! D* (c’ ,c’ ,Π’):

! This is no longer the case

! pk* = (pk1,pk2,rsim)
sk* = (sk1,sk2)

! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← AD*sk1(c1,c2,Π)

! D*sk1(c’1,c’2,Π’):
! Verify V(r,(c’1,c’2),Π’) = 1
! Output Dsk1(c’1)

NY Revisited
! Easily reduced to one time simulation soundness
! Adversary receives simulated ref rsim, chooses (m0,m1)

as below, observes simulated proof Π, and outputs
verifiable invalid proofverifiable invalid proof
(In particular, A’s output
≠(c1,c2,Π))

! Result: Can safely replace
sk1 with sk2

! Game 0/1sim:
! pk* = (pk1,pk2,rsim)

sk* = (sk1,sk2)
! (m0,m1) ← AD*sk1(pk)
! c1 = Epk1(m0;w1)

c2 = Epk2(m1;w2)
Π = S(r,(c1,c2))

! b ← AD*sk1(c1,c2,Π)

NY Revisited
! Rest of proof as before (Verify at home…)
! Note:

! NW scheme with adaptive NIZK is CCA1 secure
NW scheme with adaptive OTSS NIZK is CCA2 secure! NW scheme with adaptive OTSS NIZK is CCA2 secure

! Conclusion:
! CCA2 secure encryption schemes exist if enhanced

trapdoor permutations exist
! (Late fact: Adaptive NIZK requires enhanced trapdoor

permutations)

OTSS - Tools
! For our construction, we will need the following tools:
! Non-interactive perfectly-binding commitment

schemes satisfying:
! Hiding: it is hard to distinguish C(s) from C(s)! Hiding: it is hard to distinguish C(s1) from C(s2)
! Binding: C(s1;r1) ≠ C(s2;r2) for every r1,r2

! Pseudorandom range: Output should be pseudorandom
! Negligible support: A random string is a commitment

with negligible probability
! All properties are easily satisfiable with OWP-based

commitment scheme

OTSS - Tools
“Strong” one-time signature schemes
! Triplet of PPT algorithms (G,Sign,Ver)
! Validity:

Ver(vk,m,Sign(sk,m))=1 where (vk,sk)←G(1n)Ver(vk,m,Sign(sk,m))=1 where (vk,sk)←G(1n)
! Security: Probability to produce

(m,σ)≠(m’,σ’) s.t. Ver(vk,m’,σ’)=1
is negligible

! Constructed using universal
one-way hash and 1-1 OWF

! SIGN Game:
! (vk,sk) ← G(1n)
! m ← A(vk)
! σ ← Sign(sk,m)
! (m, σ’) ← A(vk,m,σ)

OTSS - Construction
! Reference string is divided into two parts (r1, r2)
! Following [FLS], prove a compound statement:

! Define L’: Either x∈L or r1 has some special property
Random r has property with negligible property! Random r1 has property with negligible property

! Simulator generated r1 does have special property
! In [Lindell], r1 is a commitment to a verification key
! Note compound language in NP if L∈NP

! Witness to (x,r1,vk) is either witness to x or random tape
for commitment (r1 = C(vk;w))

OTSS - Construction
! Common reference string: (r1, r2)
! Prover(x,w):

! Choose random pair of signature keys (vk,sk)
Prove compound statement (x,r ,vk)∈L’ using w and r! Prove compound statement (x,r1,vk)∈L’ using w and r2

! Sign on proof σ = Signsk(x,p)
! Output (vk,x,p,σ)

! Verifier(vk,x,p,σσσσ):
! Verify signature Versk ((x,p),σ)=1
! Verify proof V((x,r1,vk),r2,p)=1

OTSS - Proof
! Completeness immediate
! Soundness:

! Random string is a valid commitment with negligible
probabilityprobability

! For a random r1, x∉L implies (x,vk,r1)∉L’
! Adaptive soundness:

! Proofs generated using random r2

! Immediate from adaptive soundness of underlying NIZK

OTSS - Proof
! Zero knowledge:

! Proves (x,vk,r1)∈L’ based on r1 = Commit(vk)
! Reference string is pseudorandom because commitment

has pseudorandom rangehas pseudorandom range
! Underlying proof is indistinguishable due to WI of

adaptive NIZK
! Formally, define two hybrids

OTSS - Proof
! Zero knowledge:

! Simulator (ref string):
! Choose random (vk,sk)
! Compute r = Commit(vk)! Compute r1 = Commit(vk)
! Choose random r2

! Output (r1,r2)

! Simulator (proof):
! Prove statement based on r1 = Commit(vk)
! Sign input, proof with sk
! Output proof (vk,x,p,σ)

OTSS - Proof
! One time simulation soundness:

! Sim ref string (r1,r2), sim proof (vk,x,p,σ)
Adversary outputs verifiable (vk’,x’,p’,σ’), x’∉L

! vk≠vk’:! vk≠vk’:
! By perfect binding, r1∉Commit(vk’)
! x’∉L => (x’,r1,vk’)∉L’
! Negligible by soundness of underlying NIZK (r2 uniform)

! vk=vk’:
! ((x,p),σ)≠((x’,p’),σ’)
! Negligible by the strong security of the signature (sk unused)

Time’s up…

