Deniable Fully Homomorphic Encryption from LWE

<u>Shweta Agrawal</u>, Shafi Goldwasser, Saleet Mossel Crypto, 2021 (To appear)

Deniable Fully Homomorphic Encryption from LWE

<u>Shweta Agrawal</u>, Shafi Goldwasser, Saleet Mossel Crypto, 2021 (To appear)

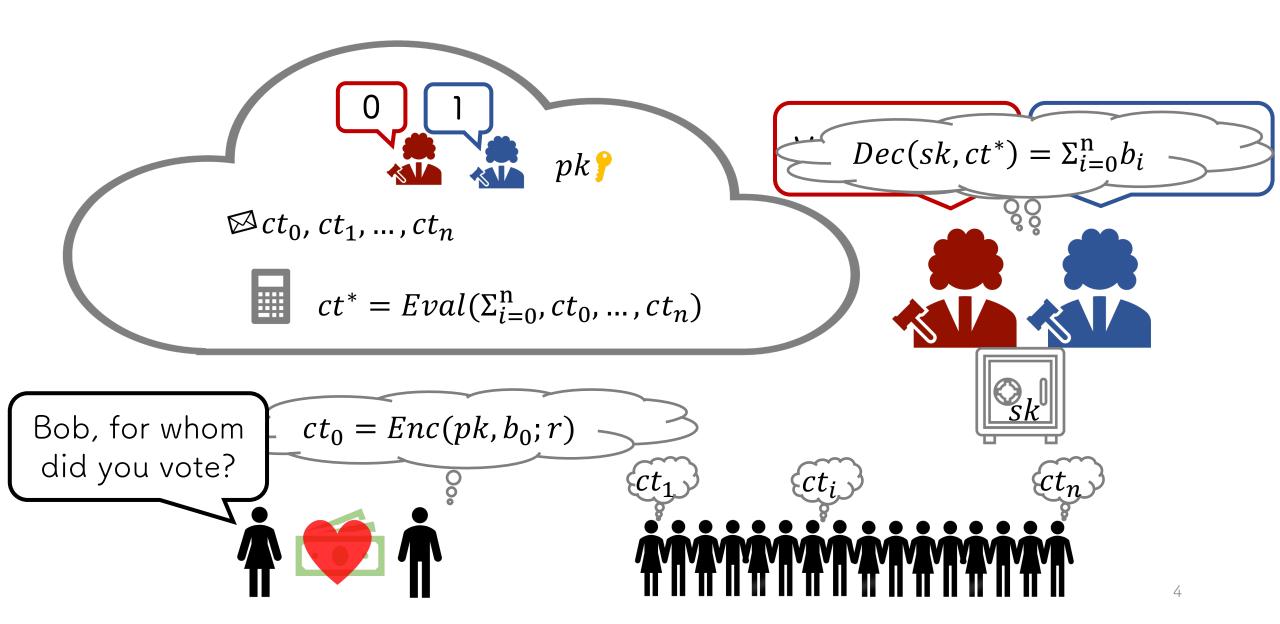
Most slides by Saleet Mossel

Deniable Encryption Fully Homomorphic Encryption

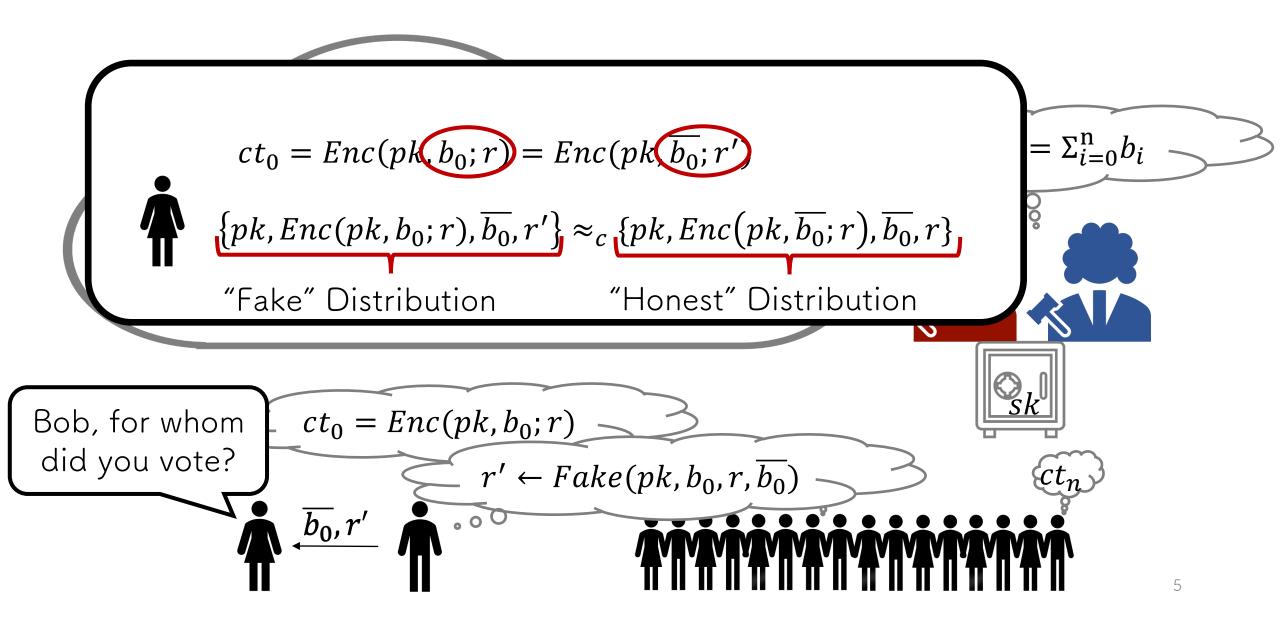
Deniable FHE

The notion of Deniable FHE

Deniable FHE

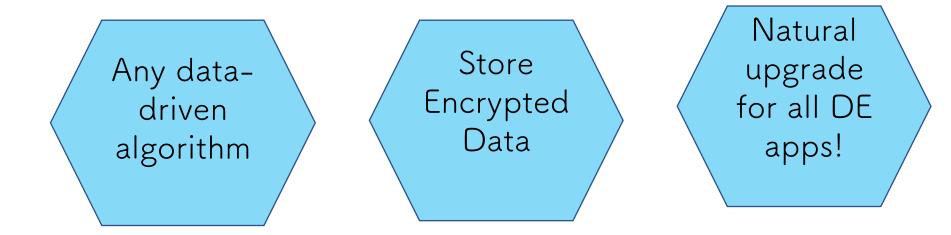


Deniable FHE



Elections require Deniability & FHE

- Benefit of Deniable Encryption in Elections:
 Honest Participation
- Benefit of Fully Homomorphic Encryption in Elections:
 Homomorphically compute the voting result



Deniable Encryption

• Introduced by Canetti, Dwork, Naor and Ostrovsky 1997

- construction from trapdoor permutations, unique SVP
- size of *ct* is the inverse of the detection probability
- Weak Deniable Encryption
 - can also lie about the encryption algorithm (Enc, Denc)
 - construction with compact *ct* and negligible deniability
- Lower bound (Efficiency vs. Deniability)
 - It seems inherent that the length of *ct* grows with the inverse of the detection probability in "separable" constructions.
- A significant step forward [SW14]
 - construction from iO and OWF
 - compact *ct* and negligible deniability

What does this mean given recent iO results?

Deniable Encryption

CDNO

Based on TDP

1997

• CT size inverse of detection prob

SW

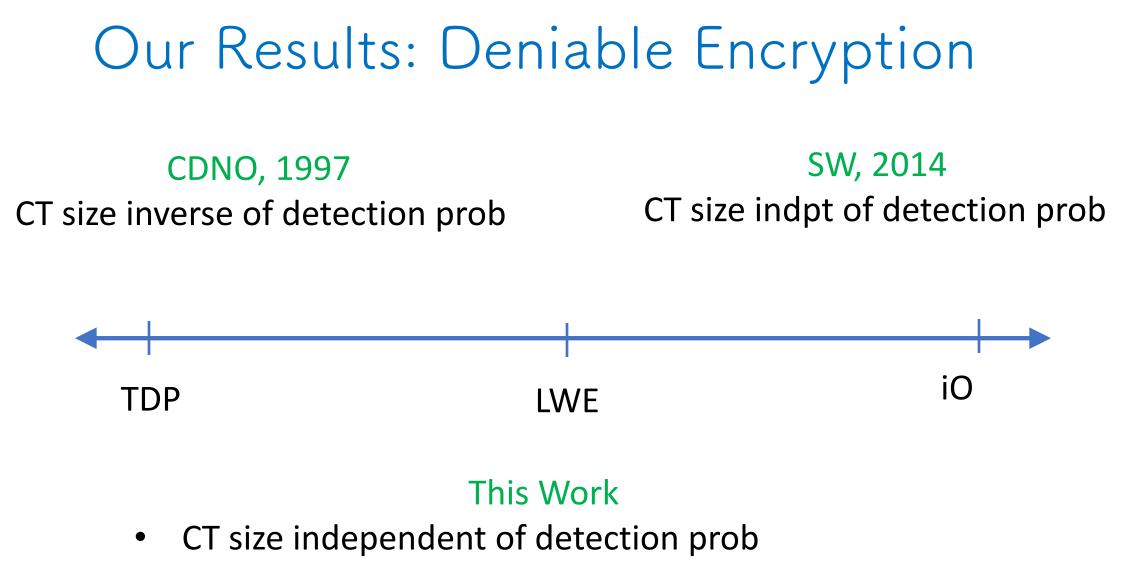
- Based on iO
- CT size indpt of detection prob

2014

In full model, nothing else known!

Our Results

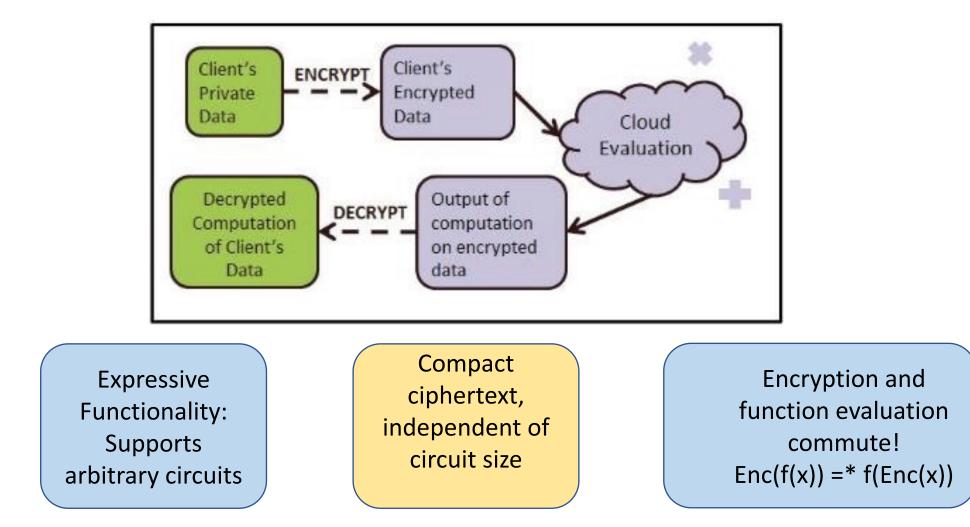
- Notion of Deniable FHE (full and weak)
- Constructions based on Learning With Errors
- Compact *ct* : size does not depend on detection probability!
 - Our construction is separable (so not inherent)
 - Total encryption <u>time</u> grows with the inverse of the detection probability!
- Support large message space
 - All prior work encode large messages bit by bit
- Offline-Online Encryption
 - Online time independent of the detection probability



• (Offline) encryption time inverse of detection prob

Via special properties in Fully Homomorphic Encryption!

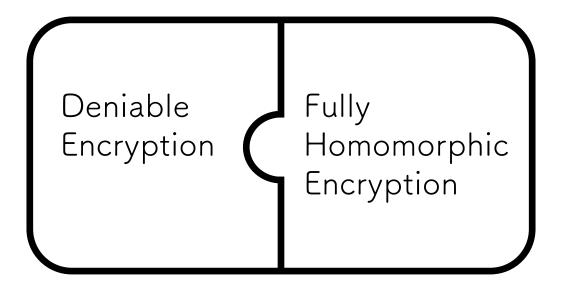
Fully Homomorphic Encryption Can be built using LWE (BV11, BGV12, GSW13…)



* : roughly

Adding Deniability to the Mix

- A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake)
 - (Gen, Enc, Eval, Dec) is an FHE scheme
 - (Gen, Enc, Dec, Fake) is a Deniable Encryption scheme



Deniable FHE

A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake) syntax

- $Gen \rightarrow (pk, sk)$
- Enc(pk,m;r) = ct
- Dec(sk, ct) = b
- $Eval(pk, f, ct_1, ..., ct_k) = ct^*$
- $Fake(pk, b, r, \overline{b}) \rightarrow r'$

Deniable FHE

A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake)

- 1. Correctness
- 2. CPA-Security
- 3. Deniability
- 4. Compactness

Correctness versus Deniability

Correctness:

For every f and m_1, \ldots, m_k :

 $\Pr\left[Dec(sk, Eval(pk, f, ct_1, \dots, ct_k)) = f(m_1, \dots, m_k)\right] = 1 - negl$

where $ct_i \leftarrow Enc(pk, m_i)$ and $(pk, sk) \leftarrow Gen$

Cannot simultaneously satisfy <u>perfect</u> correctness and <u>deniability</u>

$\delta(\lambda)$ - Deniability

We consider (inverse) polynomial deniability

For every bit *b*, and PPT adversary *A*

$$\left|\Pr[A(pk, Enc(pk, b; r), b, r)] - \Pr[A(pk, Enc(pk, \overline{b}; r), b, r')]\right| \leq \delta(\lambda)$$
"Honest" Distribution
$$\left|\Pr[A(pk, Enc(pk, \overline{b}; r), b, r')]\right| \leq \delta(\lambda)$$

where $(pk, sk) \leftarrow Gen, r \leftarrow \{0, 1\}^{\ell'}$, and $r' \leftarrow Fake(pk, \overline{b}, r, b)$

Evaluation & Deniability Compactness

Independent of k and the complexity of fa) For every f and m_1, \ldots, m_k : $|Eval(pk, f, ct_1, \dots, ct_k)| \leq poly$ where $ct_i \leftarrow Enc(pk, m_i)$ and $(pk, sk) \leftarrow Gen$ Independent of the detection probability b) For every *m*: $|Enc(pk,m)| \leq poly$ where $(pk, sk) \leftarrow Gen$, regardless of the encryption running time

Deniable FHE

Our Construction of Deniable FHE

Special Fully Homomorphic Encryption

Π

FHE from LWE: A Very Brief Recap

- All* known FHE schemes add noise in CT for security.
- Homomorphic evaluation of CTs (eval(f, $ct_1 \cdots ct_n$)) cause noise to grow
- Kills correctness after noise grows too much
- Limits number of homomorphic operations

How to keep going: Gentry's bootstrapping [Gen09]!

- Assume that an FHE is powerful enough to support evaluation of its own decryption circuit Dec.
- By correctness of decryption, $Dec(ct_x, sk) = x$

$$Dec\left(x , sk \right) = x$$

- Define circuit $Dec_{ct}(sk) = Dec(sk, ct)$
- By correctness of homomorphic evaluation, $Eval(F, ct_x) = ct(F(x))$

Eval
$$\left(\text{Dec}_{ct}, \text{sk} \right) = \left(\text{Dec}_{ct}(\text{sk}) \right) = \left(\text{x}_{21} \right)^{21}$$

 Originally introduced to reduce noise in evaluated ciphertext

- Homomorphic evaluation of decryption
 - removes large old noise
 - adds small new noise (size small since decryption shallow)

This work: Oblivious Sampling of FHE ciphertexts!

- Assume that decryption <u>always</u> outputs 0 or 1
 - even if input ct is not well formed
- Then, bootstrapping <u>always</u> outputs proper encryption of 0 or 1!

Eval
$$\left(\text{Dec}_{ct}, \text{sk} \right) = \left(\text{Dec}_{ct}, \text{sk} \right) = X$$

Even if input "ct" is a random element in ciphertext space!

- Assume that decryption outputs 0 w.o.p for random input
- Then, bootstrapping outputs <u>encryption of 0 w.o.p for random</u> <u>input</u>

Eval
$$\left(\text{Dec}_{\text{rand}}, \text{sk} \right) = \left(\text{Dec}_{\text{rand}}(\text{sk}) \right) = 0$$

Given enc(sk), run dec homomorphically on random to generate encryption of 0 w.o.p!

But, wait a minute…

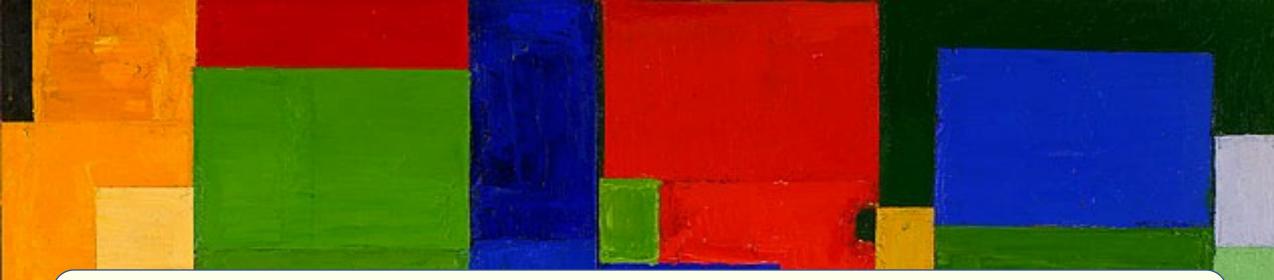
• Given <u>encryption of 1</u>, decryption outputs 1 w.o.p

• Encryption of 1 is indistinguishable from random!

Eval
$$\left(\text{Dec}_{ct1}, \text{ sk} \right) = \left(\text{Dec}_{ct1}(\text{sk}) \right) = 1$$

• Can pretend as if ct1 = enc(1) is a random string

Pretend bootstrapping outputs enc(0) but actually enc(1)!



Can provide randomness R so it looks like Bootstrap(R) = enc(0) but actually enc(1)

OK... but why is this useful?

Leveraging our trick (binary msg space)

- Let B(x) = Eval(pk, Dec_x, ct_{sk}) the bootstrapping procedure
 recall Dec_x(sk) = Dec(sk, x)
- Denote homomorphic addition (mod 2) as $Eval(pk, +, ct_a, ct_b) = ct_a \bigoplus ct_b$ $B(R_i) = Enc(x_i)$

 $B(R_1) \oplus \cdots \oplus B(R_n) = \text{Enc}(\text{Parity}(x_1, \dots, x_n))$

Gen:

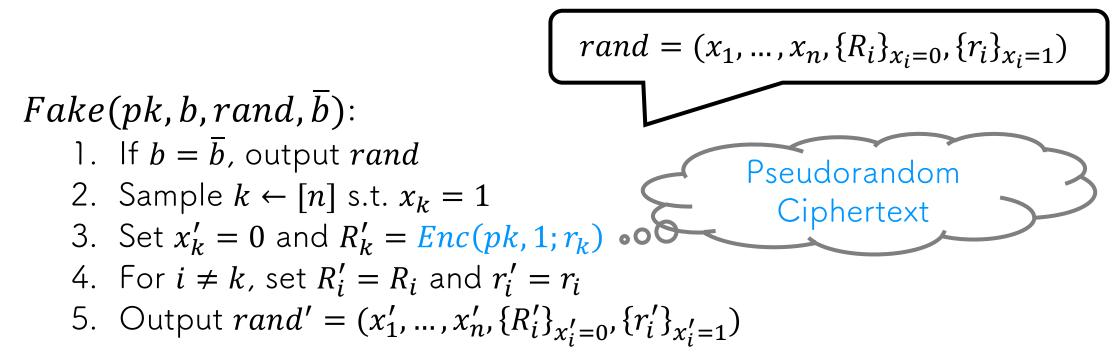
- 1. $(pk, sk) \leftarrow Gen$
- 2. $ct_{sk} \leftarrow Enc(pk, sk)$
- 3. Output $pk = (pk, ct_{sk}), sk = sk$

$$rand = (x_1, \dots, x_n, \{R_i\}_{x_i=0}, \{r_i\}_{x_i=1})$$

Enc(*pk*, *b*):

- 1. Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ s.t. $\sum_i x_i = b \pmod{2}$
- 2. For $x_i = 0$, sample $R_i \leftarrow \mathcal{R}^{\ell}$
- 3. For $x_i = 1$, sample $r_i \leftarrow \{0,1\}^{\ell'}$ and set $R_i = Enc(pk, 1; r_i)$
- 4. Compute $ct = B(R_1) \oplus \cdots \oplus B(R_n)$
- 5. Output *ct*

 $B(\mathcal{R}^{\ell})$ is a valid encryption of 0 w.h.p



By pretending one ciphertext enc(1) is random, parity flipped!

Statistical distance from honest dist is 1/poly(n)

$Eval(pk, f, ct_1, ..., ct_k)$:

- 1. Interpret ct_i as special FHE ciphertext ct_i
- 2. Output $Eval(pk, f, ct_1, ..., ct_k)$

Dec(dsk,ct):

- 1. Interpret *ct* as special FHE ciphertext *ct*
- 2. Output *Dec(sk,ct)*

As before!

Deniable FHE

Proof of Correctness, CPA-Security, Compactness, Deniability

Proof: Correctness

- The output is a ciphertext of the Special FHE.
- If with high probability $B(\mathcal{R}^{\ell})$ is a valid encryption of 0, then with high probability Enc(pk, b) is a valid encryption of b.

I. CorrectnessSolutionEnc(pk, b):I. Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ s.t. $\sum_i x_i = b \pmod{2}$ I. Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ s.t. $\sum_i x_i = b \pmod{2}$ I. CorrectnessSolutionI. CorrectnessSolutionI. Compute $r_i \leftarrow \{0,1\}^{\ell'}$ and set $R_i = Enc(pk, 1; r_i)$ I. Compute $ct = B(R_1) \oplus \dots \oplus B(R_n)$ </t

 $\Pr[Dec(sk, Eval(pk, f, ct_1, ..., ct_k) = f(m_1, ..., m_k)] = 1 - negl$

where $ct_i \leftarrow Enc(pk, m_i)$ and $(pk, sk) \leftarrow Gen$

Proof: CPA-Security

- The output is a ciphertext of the Special FHE.
- The public key is (*pk*, *ct*_{sk})
- If the special FHE is circular secure, then the scheme is secure.

2. CPA-Security $\{pk, Enc(pk, 0)\} \approx_{c} \{pk, Enc(pk, 1)\}$ where $(pk, sk) \leftarrow Gen$ 1. $(pk, sk) \leftarrow Gen$ 2. $ct_{sk} \leftarrow Enc(pk, sk)$ 3. Output $pk = (pk, ct_{sk}), sk = sk$

- First, prove that $Enc(pk, \overline{b}; r) = Enc(pk, b, r')$.
- We can remove the ciphertext from A's input.
 - It is a function of A's input.
- Last, prove the distance is $\delta(\lambda)$

3. $\delta(\lambda)$ -Deniability

For every bit **b**, and PPT adversary **A**

 $|\Pr[A(pk, b, r)] - \Pr[A(pk, b, r')]| \le \delta(\lambda)$

where $(pk, sk) \leftarrow Gen, r \leftarrow \{0, 1\}^{\ell'}$, and $r' \leftarrow Fake(pk, \overline{b}, r, b)$

- Prove that $Enc(pk, \overline{b}; r) = Enc(pk, b, r')$
 - uniform r and $r' \leftarrow Fake(pk, \overline{b}, Enc(pk, b))$:

• Real:
$$r = x_1, ..., x_n, \{R_i\}_{x_i=0}, \{r_i\}$$

1. Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ s.t. $\sum_i x_i = b \pmod{2}$ 2. For $x_i = 0$, sample $R_i \leftarrow \mathcal{R}^{\ell}$ 3. For $x_i = 1$, sample $r_i \leftarrow \{0,1\}^{\ell'}$ and set $R_i = Enc(pk, 1; r_i)$ (R_n) • r is uniform conditioned on $\sum x_i$

4. Compute
$$ct = B(R_1) \oplus \cdots \oplus B(R_n)$$

• Fake:
$$r' = x'_1, \dots, x'_n, \{R'_i\}_{x'_i=0}, \{r'_i\}_{x'_i=1}$$

• r' is equal to r except:
• $x'_k = \overline{x_k} = 0$ and $R'_k = Enc(pk, 1; r_k)$
 $\sum x'_i = b \pmod{2}$
Output is identical
• $r' = k, \text{ set } R'_i = R_i \text{ and } r'_i = r_i$
Output is identical

- Last, prove the distance is $\delta(\lambda)$
- If special FHE has **pseudorandom ciphertext**, then the following are computational indistinguishable

• Fake
$$r' = x'_1, ..., x'_n, \{R'_i\}_{x'_i=0}, \{r'_i\}_{x'_i=1}$$
 s.t.

•
$$R'_k = Enc(pk, 1; r_k)$$
 and $r_k \leftarrow \{0, 1\}^{\ell'}$

- Mid $r' = x'_1, \dots, x'_n, \{R'_i\}_{x'_i=0}, \{r'_i\}_{x'_i=1}$ s.t.
 - $R'_k \leftarrow \mathcal{R}^\ell$

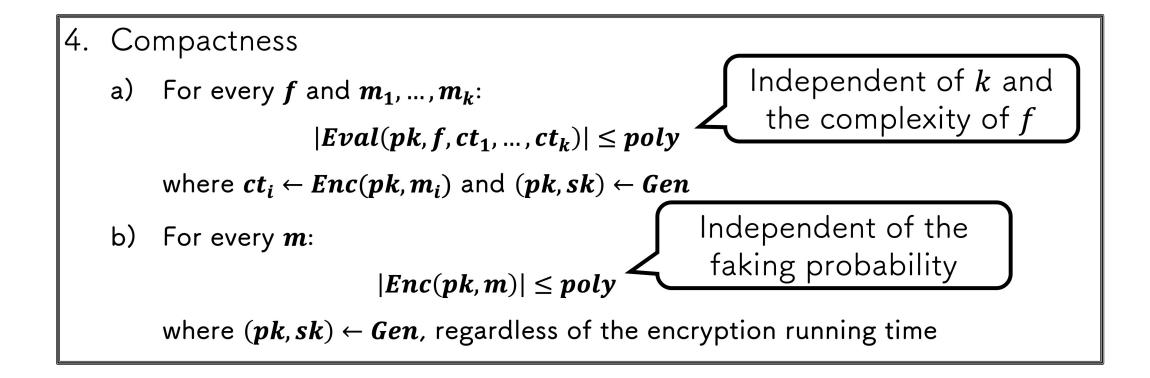
- Last, prove the distance is $\delta(\lambda)$
- The Statistical Distance of the following two distributions is $\frac{1}{\sqrt{n}}$
 - Mid $r' = x'_1, \dots, x'_n, \{R'_i\}_{x'_i=0}, \{r'_i\}_{x'_i=1}$ s.t.
 - Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ such that $\sum x_i = \overline{b} \pmod{2}$
 - Sample $k \leftarrow [n]$ such that $x_i = 1$
 - Set $x'_k = 0$ and for $i \neq k$ set $x'_i = x_i$
 - Real $r = x_1, ..., x_n, \{R_i\}_{x_i=0}, \{r_i\}_{x_i=1}$ s.t.
 - Sample $x_1, \dots, x_n \leftarrow \{0,1\}$ such that $\sum x_i = b \pmod{2}$

set $n = \frac{1}{\delta(\lambda)^2}$

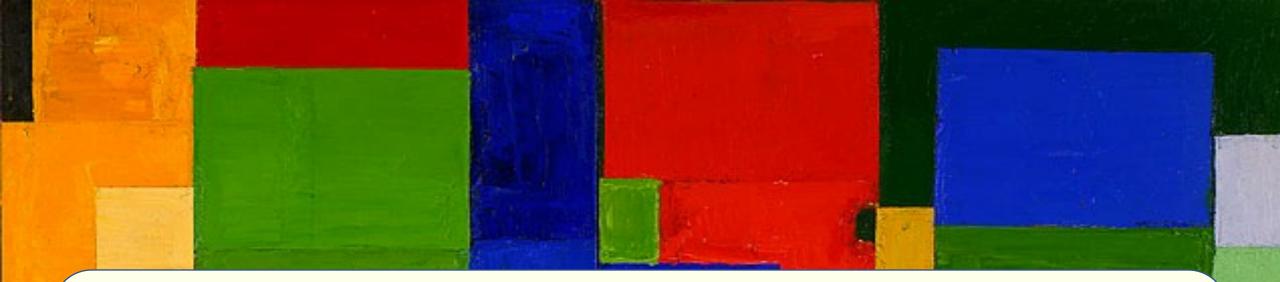
 $E[\sum x_i] > E[\sum x'_i]$

Proof: Compactness

• The output is a ciphertext of the Special FHE.

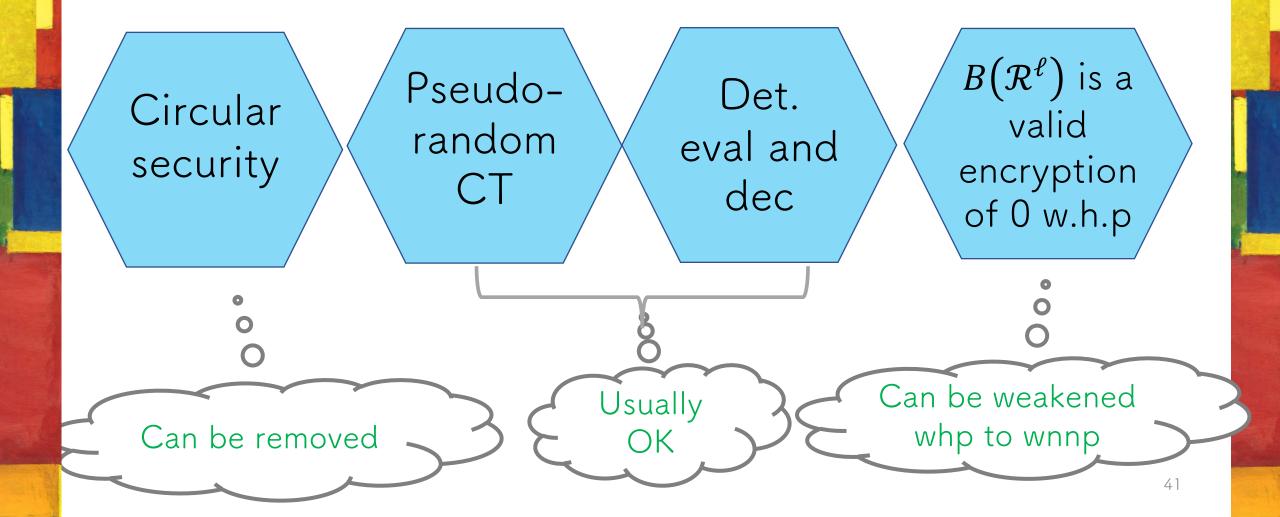


Deniability Compactness from Evaluation Compactness!



Special FHE Definition and Instantiation

Special FHE



Weaker Special FHE

Pseudorandom Ciphertext
 Deterministic evaluation and decry
 Decryption always outputs a valid mess
 Pr[Dec(sk, R) = 0] = 1/poly

where $\mathbf{R} \leftarrow \mathbf{\mathcal{R}}^{\ell}$ and $(\mathbf{pk}, \mathbf{sk}) \leftarrow \mathbf{Gen}$

[BGV14] FHE satisfies all properties!

Instantiation of Special FHE

- In [BGV14] given the *sk* one can check if *ct* is well-formed
- We modify the decryption algorithm of [BGV14]:

If well-formed: then, output Dec(sk, ct), else output 0

Set q to be super polynomial, then $\frac{B}{q}$ is negligible $Dec(sk, ct) = \left[[\langle sk, ct \rangle]_q \right]_2$ $\underline{Ciphertexts:} \\ [\langle sk, ct \rangle]_q = b + 2e$ where |e| < B $\underline{Random \ elements:} \\ [\langle sk, R \rangle]_q = b + 2e$ where $\Pr[|e| < B] = \frac{B}{q}$ $\frac{B}{q}$

Online-Offline Encryption

Bulk of the computation is <u>independent of the message</u>, and may be performed in an <u>offline pre-processing</u> phase.

Enc(dpk,b):

- 1. Select $x_1, \dots, x_n \leftarrow \{0,1\}$ s.t. $\sum_i x_i = b \pmod{2}$
- 2. For $x_i = 0$, select $R_i \leftarrow \mathcal{R}^\ell$
- 3. For $x_i = 1$, select $r_i \leftarrow \{0,1\}^{\ell'}$ and set $R_i = Enc(pk, 1; r_i)$
- 4. Output $dct = B(R_1) \oplus \cdots \oplus B(R_n)$

n-1 computations of $B(R_i)$ can be done offline: choose R_n depending on b and compute $B(R_n)$ online

Main Takeaway: Evaluation compactness in FHE implies deniability compactness in DE!

Going Forward

- Compact CT → compact encryption runtime?
 Analogy to FE [LPST16,GKPVZ13]
- Technical barrier: unidirectional cheating
- Need: Invertible oblivious sampling with bias
 - SW construction may be viewed through this lens
- From LWE: can have oblivious sampling with bias (this work) or oblivious sampling with inversion but not both (so far).

Images Credit: Hans Hoffman