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Deniable FHE

Vote 1 for me Vote 0 for me
10

𝑠𝑘, 𝑝𝑘 ← 𝐺𝑒𝑛

𝑠𝑘

𝑝𝑘

𝑐𝑡! = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟)

𝑐𝑡!

𝑐𝑡" 𝑐𝑡# 𝑐𝑡$

, 𝑐𝑡", … , 𝑐𝑡$

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(Σ#&!' , 𝑐𝑡!, … , 𝑐𝑡$)

𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡∗ = Σ#&!' 𝑏#

Bob, for whom 
did you vote?
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10

𝑠𝑘

𝑝𝑘

𝑐𝑡! = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟)

𝑐𝑡!

𝑐𝑡" 𝑐𝑡# 𝑐𝑡$

, 𝑐𝑡", … , 𝑐𝑡$

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(Σ#&!' , 𝑐𝑡!, … , 𝑐𝑡$)

𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡∗ = Σ#&!' 𝑏#

Bob, for whom 
did you vote? 𝑟( ← 𝐹𝑎𝑘𝑒(𝑝𝑘, 𝑏!, 𝑟, 𝑏!)

𝑏!, 𝑟𝑏!, 𝑟′

𝑝𝑘, 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟), 𝑏!, 𝑟( ≈) {𝑝𝑘, 𝐸𝑛𝑐 𝑝𝑘, 𝑏!; 𝑟 , 𝑏!, 𝑟}

𝑐𝑡! = 𝐸𝑛𝑐 𝑝𝑘, 𝑏!; 𝑟 = 𝐸𝑛𝑐(𝑝𝑘, 𝑏!; 𝑟()

“Fake” Distribution “Honest” Distribution

Deniable FHE
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Elections require Deniability & FHE
• Benefit of Deniable Encryption in Elections:
• Honest Participation 

• Benefit of Fully Homomorphic Encryption in Elections: 
• Homomorphically compute the voting result 
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Any data-
driven 

algorithm

Store 
Encrypted 

Data

Natural 
upgrade 
for all DE 
apps!



Deniable Encryption
• Introduced by Canetti, Dwork, Naor and Ostrovsky 1997

• construction from trapdoor permutations, unique SVP 
• size of 𝑐𝑡 is the inverse of the detection probability

• Weak Deniable Encryption 
• can also lie about the encryption algorithm (Enc, Denc)
• construction with compact 𝑐𝑡 and negligible deniability

• Lower bound (Efficiency vs. Deniability)
• It seems inherent that the length of 𝑐𝑡 grows with the inverse of the 
detection probability in “separable” constructions.

• A significant step forward [SW14] 
• construction from iO and OWF
• compact 𝑐𝑡 and negligible deniability

What does this mean given 
recent iO results? 
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Deniable Encryption

In full model, nothing else known! 

1997 2014

CDNO
• Based on TDP
• CT size inverse of detection prob

SW
• Based on iO
• CT size indpt of detection prob
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Our Results
• Notion of Deniable FHE (full and weak)

• Constructions based on Learning With Errors

• Compact 𝑐𝑡 : size does not depend on detection probability!
• Our construction is separable (so not inherent)
• Total encryption time grows with the inverse of the detection probability!

• Support large message space
• All prior work encode large messages bit by bit

• Offline-Online Encryption 
• Online time independent of the detection probability

9



Our Results: Deniable Encryption

TDP iO

CDNO, 1997
CT size inverse of detection prob

SW, 2014
CT size indpt of detection prob

This Work
• CT size independent of detection prob
• (Offline) encryption time inverse of detection prob

LWE
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Via special properties in Fully Homomorphic Encryption!



Fully Homomorphic Encryption 
Can be built using LWE (BV11, BGV12, GSW13…)

12

Expressive 
Functionality: 

Supports 
arbitrary circuits 

Compact 
ciphertext, 

independent of 
circuit size

Encryption and 
function evaluation 

commute!
Enc(f(x)) =* f(Enc(x))

* : roughly



Adding Deniability to the Mix

• A Deniable FHE scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒)

• (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐) is an FHE scheme

• (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒) is a Deniable Encryption scheme

Deniable 
Encryption 

Fully 
Homomorphic 
Encryption 
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Deniable FHE

A Deniable FHE scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒) syntax

• 𝐺𝑒𝑛 → 𝑝𝑘, 𝑠𝑘

• 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝑟 = 𝑐𝑡

• 𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡 = 𝑏

• 𝐸𝑣𝑎𝑙 𝑝𝑘, 𝑓, 𝑐𝑡!, … , 𝑐𝑡" = 𝑐𝑡∗

• 𝐹𝑎𝑘𝑒 𝑝𝑘, 𝑏, 𝑟, @𝑏 → 𝑟′
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Deniable FHE

A Deniable FHE scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐, 𝐹𝑎𝑘𝑒)

1. Correctness

2. CPA-Security

3. Deniability

4. Compactness

15



Correctness versus Deniability

Correctness: 

For every 𝒇 and 𝒎𝟏, … ,𝒎𝒌:

𝐏𝐫 𝑫𝒆𝒄 𝒔𝒌, 𝑬𝒗𝒂𝒍 𝒑𝒌, 𝒇, 𝒄𝒕𝟏, … , 𝒄𝒕𝒌 = 𝒇 𝒎𝟏, … ,𝒎𝒌 = 𝟏 − 𝒏𝒆𝒈𝒍

where 𝒄𝒕𝒊 ← 𝑬𝒏𝒄(𝒑𝒌,𝒎𝒊) and 𝒑𝒌, 𝒔𝒌 ← 𝑮𝒆𝒏

Cannot simultaneously satisfy perfect correctness and 
deniability
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𝛿(𝜆)- Deniability

For every bit 𝒃, and PPT adversary 𝑨

𝐏𝐫 𝑨 𝒑𝒌, 𝑬𝒏𝒄 𝒑𝒌, 𝒃; 𝒓 , 𝒃, 𝒓 − 𝐏𝐫 𝑨 𝒑𝒌, 𝑬𝒏𝒄 𝒑𝒌, ;𝒃; 𝒓 , 𝒃, 𝒓′ ≤ 𝜹(𝝀)

where 𝒑𝒌, 𝒔𝒌 ← 𝑮𝒆𝒏, 𝒓 ← 𝟎, 𝟏 ℓ!, and 𝒓" ← 𝑭𝒂𝒌𝒆(𝒑𝒌, ;𝒃, 𝒓, 𝒃)

detection probability

“Fake” Distribution“Honest” Distribution

We consider (inverse) polynomial deniability
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a) For every 𝒇 and 𝒎𝟏, … ,𝒎𝒌:

𝑬𝒗𝒂𝒍 𝒑𝒌, 𝒇, 𝒄𝒕𝟏, … , 𝒄𝒕𝒌 ≤ 𝒑𝒐𝒍𝒚

where 𝒄𝒕𝒊 ← 𝑬𝒏𝒄(𝒑𝒌,𝒎𝒊) and 𝒑𝒌, 𝒔𝒌 ← 𝑮𝒆𝒏

b) For every 𝒎:

𝑬𝒏𝒄 𝒑𝒌,𝒎 ≤ 𝒑𝒐𝒍𝒚

where 𝒑𝒌, 𝒔𝒌 ← 𝑮𝒆𝒏, regardless of the encryption running time

Independent of 𝑘 and 
the complexity of 𝑓

Evaluation & Deniability Compactness

Independent of the 
detection probability
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Special

Special Fully 
Homomorphic 
Encryption 

Deniable FHE
Our Construction of Deniable FHE
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FHE from LWE: A Very Brief Recap

• All* known FHE schemes add noise in CT for security.
• Homomorphic evaluation of CTs (eval(f, ct1…ctn) ) cause 
noise to grow
• Kills correctness after noise grows too much
• Limits number of homomorphic operations 

How to keep going: Gentry’s bootstrapping [Gen09]!

20



The Magic of Bootstrapping
• Assume that an FHE is powerful enough to support evaluation of its 
own decryption circuit Dec. 

• By correctness of decryption, Dec(ctx, sk) = x

• Define circuit Dec#$ sk = Dec(sk, ct)
• By correctness of homomorphic evaluation, Eval(F, ctx) = ct(F(x))

xDec , sk = x

Decct (sk)=skDecct , =Eval x
21



The Magic of Bootstrapping
•Originally introduced to reduce noise in evaluated 
ciphertext

•Homomorphic evaluation of decryption 
• removes large old noise 
• adds small new noise (size small since decryption shallow)

This work: Oblivious Sampling of FHE ciphertexts!
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The Magic of Bootstrapping
• Assume that decryption always outputs 0 or 1
• even if input ct is not well formed

• Then, bootstrapping always outputs proper encryption of 0 or 1!

Decct (sk)=skDecct , =Eval x

Even if input “ct” is a random element in ciphertext space!

23



The Magic of Bootstrapping
• Assume that decryption outputs 0 w.o.p for random input 

• Then, bootstrapping outputs encryption of 0 w.o.p for random 
input 

Decrand (sk)=skDecrand , =Eval 0

Given enc(sk), run dec homomorphically on random to 
generate encryption of 0 w.o.p!

24



But, wait a minute…
• Given encryption of 1, decryption outputs 1 w.o.p

• Encryption of 1 is indistinguishable from random!

• Can pretend as if ct1 = enc(1) is a random string

Decct1 (sk)=skDecct1 , =Eval 1

Pretend bootstrapping outputs enc(0) but actually enc(1)!
25



Can provide randomness R so it looks 
like Bootstrap(R) = enc(0) but actually enc(1)

OK… but why is this useful?



Leveraging our trick (binary msg space)

• Let 𝐵 𝑥 = 𝐸𝑣𝑎𝑙(𝑝𝑘, 𝐷𝑒𝑐% , 𝑐𝑡&') the bootstrapping procedure 
• recall 𝐷𝑒𝑐' 𝑠𝑘 = 𝐷𝑒𝑐(𝑠𝑘, 𝑥)

• Denote homomorphic addition (mod 2) as
𝐸𝑣𝑎𝑙 𝑝𝑘, +, 𝑐𝑡( , 𝑐𝑡) = 𝑐𝑡( ⊕ 𝑐𝑡)

𝐵 𝑅! ⊕⋯⊕𝐵(𝑅") = Enc (Parity (𝑥!, … , 𝑥")

27

𝐵 𝑅!
= 𝐸𝑛𝑐(𝑥!)



Construction

𝐺𝑒𝑛:
1. (𝑝𝑘, 𝑠𝑘) ← 𝐺𝑒𝑛
2. 𝑐𝑡1" ← 𝐸𝑛𝑐(𝑝𝑘, 𝑠𝑘)
3. Output 𝑝𝑘 = 𝑝𝑘, 𝑐𝑡1" , 𝑠𝑘 = 𝑠𝑘

28



𝐸𝑛𝑐(𝑝𝑘, 𝑏):
1. Sample 𝑥!, … , 𝑥2 ← {0,1} s.t. ∑3 𝑥3 = 𝑏 (𝑚𝑜𝑑 2)
2. For 𝑥3 = 0, sample 𝑅3 ← ℛℓ

3. For 𝑥3 = 1, sample 𝑟3 ← 0,1 ℓ! and set 𝑅3 = 𝐸𝑛𝑐(𝑝𝑘, 1; 𝑟3)
4. Compute 𝑐𝑡 = 𝐵 𝑅! ⊕⋯⊕𝐵(𝑅2)
5. Output 𝑐𝑡

𝐵 ℛℓ is a valid 
encryption of 0 w.h.p

𝑟𝑎𝑛𝑑 = (𝑥!, … , 𝑥2, 𝑅3 '"56, 𝑟3 '"5!)

Construction
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Construction

𝐹𝑎𝑘𝑒(𝑝𝑘, 𝑏, 𝑟𝑎𝑛𝑑, X𝑏):
1. If 𝑏 = @𝑏, output 𝑟𝑎𝑛𝑑
2. Sample 𝑘 ← [𝑛] s.t. 𝑥" = 1
3. Set 𝑥"7 = 0 and 𝑅"7 = 𝐸𝑛𝑐 𝑝𝑘, 1; 𝑟"
4. For 𝑖 ≠ 𝑘, set 𝑅37 = 𝑅3 and 𝑟37 = 𝑟3
5. Output 𝑟𝑎𝑛𝑑7 = (𝑥!7 , … , 𝑥27 , 𝑅37 '"!56, 𝑟3

7
'"
!5!)

Pseudorandom 
Ciphertext

𝑟𝑎𝑛𝑑 = (𝑥!, … , 𝑥2, 𝑅3 '"56, 𝑟3 '"5!)

By pretending one ciphertext enc(1) is random, parity flipped!

30

Statistical distance from honest dist is 1/poly(n)



Construction

𝐸𝑣𝑎𝑙(𝑝𝑘, 𝑓, 𝑐𝑡*, … , 𝑐𝑡'):
1. Interpret 𝑐𝑡3 as special FHE ciphertext 𝑐𝑡3
2. Output 𝐸𝑣𝑎𝑙(𝑝𝑘, 𝑓, 𝑐𝑡!, … , 𝑐𝑡")

𝐷𝑒𝑐(𝑑𝑠𝑘, 𝑐𝑡): 
1. Interpret 𝑐𝑡 as special FHE ciphertext 𝑐𝑡
2. Output 𝐷𝑒𝑐(𝑠𝑘, 𝑐𝑡)

31

As before!



Deniable FHE
Proof of Correctness, CPA-Security, Compactness, Deniability



Proof: Correctness 

• The output is a ciphertext of the Special FHE.
• If with high probability 𝐵 ℛℓ is a valid encryption of 0, then 
with high probability 𝐸𝑛𝑐(𝑝𝑘, 𝑏) is a valid encryption of 𝑏.
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Proof: CPA-Security  

• The output is a ciphertext of the Special FHE.
• The public key is (𝑝𝑘, 𝑐𝑡&')
• If the special FHE is circular secure, then the scheme is secure.

34



Proof: 𝛿(𝜆)-Deniability   

• First, prove that 𝐸𝑛𝑐 𝑝𝑘, X𝑏; 𝑟 = 𝐸𝑛𝑐 𝑝𝑘, 𝑏, 𝑟" .
• We can remove the ciphertext from 𝐴’s input. 
• It is a function of 𝐴’s input.

• Last, prove the distance is 𝛿(𝜆)
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Proof: 𝛿(𝜆)-Deniability   

• Prove that 𝐸𝑛𝑐 𝑝𝑘, X𝑏; 𝑟 = 𝐸𝑛𝑐 𝑝𝑘, 𝑏, 𝑟"
• uniform 𝑟 and 𝑟7 ← 𝐹𝑎𝑘𝑒 𝑝𝑘, @𝑏, 𝑟, 𝑏

• Real: 𝑟 = 𝑥*, … , 𝑥+ , 𝑅, %"-., 𝑟, %"-*
• 𝑟 is uniform conditioned on ∑𝑥3 = @𝑏 (𝑚𝑜𝑑 2)

• Fake: 𝑟" = 𝑥*" , … , 𝑥+" , 𝑅," %"!-., 𝑟,
"
%"
!-*

• 𝑟7 is equal to 𝑟 except: 
• 𝑥!" = 𝑥! = 0 and 𝑅!" = 𝐸𝑛𝑐(𝑝𝑘, 1; 𝑟!)

∑𝑥37 = 𝑏 (𝑚𝑜𝑑 2) Output is identical
36



Proof: 𝛿(𝜆)-Deniability   
• Last, prove the distance is 𝛿(𝜆)

• If special FHE has pseudorandom ciphertext, then the 
following are computational indistinguishable    

• Fake  𝑟7 = 𝑥!7 , … , 𝑥27 , 𝑅37 '"!56, 𝑟3
7
'"
!5! s.t.

• 𝑅!" = 𝐸𝑛𝑐(𝑝𝑘, 1; 𝑟!) and 𝑟! ← 0,1 ℓ!

• Mid  𝑟7 = 𝑥!7 , … , 𝑥27 , 𝑅37 '"!56, 𝑟3
7
'"
!5! s.t.

• 𝑅!" ← ℛℓ

37



Proof: 𝛿(𝜆)-Deniability   
• Last, prove the distance is 𝛿(𝜆)

• The Statistical Distance of the following two distributions is *
+

• Mid  𝑟7 = 𝑥!7 , … , 𝑥27 , 𝑅37 '"!56, 𝑟3
7
'"
!5! s.t.

• Sample 𝑥$, … , 𝑥% ← 0,1 such that ∑𝑥& = B𝑏 (𝑚𝑜𝑑 2)
• Sample 𝑘 ← [𝑛] such that 𝑥& = 1
• Set 𝑥!" = 0 and for 𝑖 ≠ k set 𝑥&" = 𝑥&

• Real  𝑟 = 𝑥!, … , 𝑥2, 𝑅3 '"56, 𝑟3 '"5! s.t.
• Sample 𝑥$, … , 𝑥% ← 0,1 such that ∑𝑥& = 𝑏 (𝑚𝑜𝑑 2)

set 𝑛 = !
8 9 #

Ε ∑𝑥3 > Ε ∑𝑥37

38



Proof: Compactness  
• The output is a ciphertext of the Special FHE.

Deniability Compactness from Evaluation Compactness!
39



Special FHE
Definition and Instantiation 



Special FHE

Can be removed

Circular 
security 

𝐵 ℛℓ is a 
valid 

encryption 
of 0 w.h.p

41

Can be weakened
whp to wnnp

Usually 
OK

Pseudo-
random 
CT

Det. 
eval and 
dec



Weaker Special FHE
1. Pseudorandom Ciphertext
2. Deterministic evaluation and decryption algorithms 
3. Decryption always outputs a valid message and  

𝐏𝐫 𝑫𝒆𝒄 𝒔𝒌, 𝑹 = 𝟎 = 𝟏/𝒑𝒐𝒍𝒚

where 𝑹 ← 𝓡ℓ and 𝒑𝒌, 𝒔𝒌 ← 𝑮𝒆𝒏

Almost always the case

[BGV14] FHE satisfies all properties!
42



Instantiation of Special FHE 
• In [BGV14] given the 𝑠𝑘 one can check if 𝑐𝑡 is well-formed

• We modify the decryption algorithm of [BGV14]: 

If well-formed: 
then, output 𝐷𝑒𝑐(𝑠𝑘, 𝑐𝑡), 
else output 0

𝐷𝑒𝑐(𝑠𝑘, 𝑐𝑡) = 𝑠𝑘, 𝑐𝑡 : ;
Ciphertexts:

𝑠𝑘, 𝑐𝑡 : = 𝑏 + 2𝑒
where |𝑒| < 𝐵
Random elements:

𝑠𝑘, 𝑅 : = 𝑏 + 2𝑒
where Pr 𝑒 < 𝐵 = <

:

Set 𝑞 to be super polynomial, 
then <: is negligible 
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Online-Offline Encryption 

Bulk of the computation is independent of the message, and may 
be performed in an offline pre-processing phase.

𝐸𝑛𝑐(𝑑𝑝𝑘, 𝑏):
1. Select 𝑥!, … , 𝑥2 ← {0,1} s.t. ∑3 𝑥3 = 𝑏 (𝑚𝑜𝑑 2)
2. For 𝑥3 = 0, select 𝑅3 ← ℛℓ

3. For 𝑥3 = 1, select 𝑟3 ← 0,1 ℓ! and set 𝑅3 = 𝐸𝑛𝑐(𝑝𝑘, 1; 𝑟3)
4. Output 𝑑𝑐𝑡 = 𝐵 𝑅! ⊕⋯⊕𝐵(𝑅2)

44

n-1 computations of 𝐵 𝑅# can be done offline: 
choose 𝑅$ depending on b and compute 𝐵 𝑅$ online



Main Takeaway: 
Evaluation compactness in FHE implies deniability 

compactness in DE!



Going Forward
• Compact CT è compact encryption runtime?

• Analogy to FE [LPST16,GKPVZ13]

• Technical barrier: unidirectional cheating

• Need: Invertible oblivious sampling with bias
• SW construction may be viewed through this lens

• From LWE: can have oblivious sampling with bias (this work) or 
oblivious sampling with inversion but not both (so far).

46
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