

Deniable FHE

The notion of Deniable FHE

Deniable FHE

Deniable FHE

$$
c t_{0}=E n c\left(p k b_{0} ; r\right)=E n c\left(p k b_{b_{0} ; r^{\prime}}\right)
$$

$\underbrace{\left\{p k, \operatorname{Enc}\left(p k, b_{0} ; r\right), \overline{b_{0}}, r^{\prime}\right\}} \underbrace{}_{c} \underbrace{\left\{p k, \operatorname{Enc}\left(p k, \overline{b_{0}} ; r\right), \overline{b_{0}}, r\right\}}$
"Fake" Distribution

Bob, for whom did you vote?

Elections require Deniability \& FHE

- Benefit of Deniable Encryption in Elections:
- Honest Participation
- Benefit of Fully Homomorphic Encryption in Elections:
- Homomorphically compute the voting result

Deniable Encryption

- Introduced by Canetti, Dwork, Naor and Ostrovsky 1997
- construction from trapdoor permutations, unique SVP
- size of $c t$ is the inverse of the detection probability
- Weak Deniable Encryption
- can also lie about the encryption algorithm (Enc, Denc)
- construction with compact ct and negligible deniability
- Lower bound (Efficiency vs. Deniability)
- It seems inherent that the length of ct grows with the inverse of the detection probability in "separable" constructions.
- A significant step forward [SW14]
- construction from iO and OWF
- compact ct and negligible deniability

What does this mean given recent iO results?

Deniable Encryption

CDNO

Based on TDP

- CT size inverse of detection prob

SW

- Based on iO
- CT size indpt of detection prob

In full model, nothing else known!

Our Results

- Notion of Deniable FHE (full and weak)
- Constructions based on Learning With Errors
- Compact ct : size does not depend on detection probability!
- Our construction is separable (so not inherent)
- Total encryption time grows with the inverse of the detection probability!
- Support large message space
- All prior work encode large messages bit by bit
- Offline-Online Encryption
- Online time independent of the detection probability

Our Results: Deniable Encryption

CDNO, 1997

CT size inverse of detection prob

CT size indpt of detection prob

This Work

- CT size independent of detection prob
- (Offline) encryption time inverse of detection prob

Via special properties in Fully Homomorphic Encryption!

Fully Homomorphic Encryption

Can be built using LWE (BVII, BGVI2, GSW13...)

Expressive
Functionality:
Supports
arbitrary circuits
Compact
ciphertext,
independent of

circuit size \quad| Encryption and |
| :---: |
| function evaluation |
| commute! |
| $\operatorname{Enc}(f(x))=* f(\operatorname{Enc}(x))$ |

Adding Deniability to the Mix

- A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake)
- (Gen, Enc, Eval, Dec) is an FHE scheme
- (Gen, Enc, Dec, Fake) is a Deniable Encryption scheme

Deniable FHE

A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake) syntax

- Gen $\rightarrow(p k, s k)$
- $\operatorname{Enc}(p k, m ; r)=c t$
- $\operatorname{Dec}(s k, c t)=b$
$\cdot \operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right)=c t^{*}$
- Fake $(p k, b, r, \bar{b}) \rightarrow r^{\prime}$

Deniable FHE

A Deniable FHE scheme (Gen, Enc, Eval, Dec, Fake)

1. Correctness
2. CPA-Security
3. Deniability
4. Compactness

Correctness versus Deniability

Correctness:
For every \boldsymbol{f} and $\boldsymbol{m}_{\mathbf{1}}, \ldots, \boldsymbol{m}_{\boldsymbol{k}}$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{Dec}\left(s k, \operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right)\right)=f\left(m_{1}, \ldots, m_{k}\right)\right]=1-n e g l \\
& \text { where } \boldsymbol{c t _ { i }} \leftarrow \operatorname{Enc}\left(p k, m_{i}\right) \text { and }(p k, s k) \leftarrow G e n
\end{aligned}
$$

Cannot simultaneously satisfy perfect correctness and deniability

$\delta(\lambda)-$ Deniability

We consider (inverse) polynomial deniability

For every bit \boldsymbol{b}, and PPT adversary \boldsymbol{A}

$$
\mid \operatorname{Pr}[\underbrace{\boldsymbol{A}(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{E n c}(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{b} ; \boldsymbol{r}), \boldsymbol{b}, \boldsymbol{r})}_{\text {"Honest" Distribution }}]-\operatorname{Pr}[\underset{\text { "Fake" Distribution }}{\boldsymbol{A}(\underbrace{\boldsymbol{p} \boldsymbol{k}, \boldsymbol{E n c}(\boldsymbol{p} \boldsymbol{k}, \overline{\boldsymbol{b}} ; \boldsymbol{r}), \boldsymbol{b}, \boldsymbol{r}^{\prime}})] \mid \leq \boldsymbol{\delta}(\boldsymbol{\lambda})}
$$

where $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}, \boldsymbol{r} \leftarrow\{\mathbf{0}, \mathbf{1}\}^{\ell^{\prime}}$, and $\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{\operatorname { F a k e }}(\boldsymbol{p} \boldsymbol{k}, \overline{\boldsymbol{b}}, \boldsymbol{r}, \boldsymbol{b})$

Evaluation \& Deniability Compactness

a) For every \boldsymbol{f} and $\boldsymbol{m}_{\boldsymbol{1}}, \ldots, \boldsymbol{m}_{\boldsymbol{k}}$:
$\left|\operatorname{Eval}\left(p k, f, \boldsymbol{c t}_{1}, \ldots, \boldsymbol{c t}_{\boldsymbol{k}}\right)\right| \leq \operatorname{poly}$ where $\boldsymbol{c t}_{\boldsymbol{i}} \leftarrow \boldsymbol{\operatorname { E n c }}\left(\boldsymbol{p k}, \boldsymbol{m}_{\boldsymbol{i}}\right)$ and $(\boldsymbol{p k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$
b) For every m :

Independent of k and the complexity of f

Independent of the
detection probability
$|\operatorname{Enc}(\boldsymbol{p k}, \boldsymbol{m})| \leq \operatorname{poly}$
where $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$, regardless of the encryption running time

Deniable FHE
Our Construction of Deniable FHE
${ }_{2}^{2}$
嗌

FHE from LWE: A Very Brief Recap

- All* known FHE schemes add noise in CT for security.
- Homomorphic evaluation of CTs (eval(f, $\mathrm{ct}_{1} \cdots \mathrm{ct}$)) cause noise to grow
- Kills correctness after noise grows too much
- Limits number of homomorphic operations

How to keep going: Gentry's bootstrapping [Gen09]!

The Magic of Bootstrapping

- Assume that an FHE is powerful enough to support evaluation of its own decryption circuit Dec.
- By correctness of decryption, $\operatorname{Dec}\left(\mathrm{ct}_{\mathrm{x}}, \mathrm{sk}\right)=x$

$$
\operatorname{Dec}(x, s k)=x
$$

- Define circuit $\operatorname{Dec}_{c t}(s k)=\operatorname{Dec}(s k, c t)$
- By correctness of homomorphic evaluation, Eval(F, $\left.\operatorname{ct}_{x}\right)=\operatorname{ct}(F(x))$

$$
\operatorname{Eval}\left(\operatorname{Dec}_{a t a},-\frac{5 k}{}\right)=\operatorname{Dec}_{G}(s k)=x
$$

The Magic of Bootstrapping

- Originally introduced to reduce noise in evaluated ciphertext
- Homomorphic evaluation of decryption
- removes large old noise
- adds small new noise (size small since decryption shallow)

This work: Oblivious Sampling of FHE ciphertexts!

The Magic of Bootstrapping

- Assume that decryption always outputs 0 or 1
- even if input ct is not well formed
- Then, bootstrapping always outputs proper encryption of 0 or 1 !

$$
\operatorname{Eval}\left(\operatorname{Dec}_{\mathrm{ct}}, \mathrm{sk}\right)=\operatorname{Dec}_{\mathrm{ct}}(\mathrm{sk})=\mathrm{x}
$$

Even if input "ct" is a random element in ciphertext space!

The Magic of Bootstrapping

- Assume that decryption outputs 0 w.o.p for random input
- Then, bootstrapping outputs encryption of 0 w.o.p for random input

Given enc(sk), run dec homomorphically on random to generate encryption of 0 w.o.p!

But, wait a minute...

- Given encryption of 1 , decryption outputs 1 w.o.p
- Encryption of 1 is indistinguishable from random!

- Can pretend as if ctl = enc(l) is a random string

Pretend bootstrapping outputs enc(0) but actually enc(1)!

Can provide randomness R so it looks like Bootstrap $(R)=$ enc(0) but actually enc(1) OK... but why is this useful?

Leveraging our trick (binary msg space)

- Let $B(x)=\operatorname{Eval}\left(p k, D e c_{x}, c t_{s k}\right)$ the bootstrapping procedure - recall $\operatorname{Dec}_{x}(s k)=\operatorname{Dec}(s k, x)$
- Denote homomorphic addition $(\bmod 2)$ as

$$
\operatorname{Eval}\left(p k,+, c t_{a}, c t_{b}\right)=c t_{a} \oplus c t_{b}
$$

$$
B\left(R_{1}\right) \oplus \cdots \oplus B\left(R_{n}\right)=\operatorname{Enc}\left(\operatorname{Parity}\left(x_{1}, \ldots, x_{n}\right)\right.
$$

Construction

Gen:

1. $(p k, s k) \leftarrow G e n$
2. $c t_{s k} \leftarrow \operatorname{Enc}(p k, s k)$
3. Output $p k=\left(p k, c t_{s k}\right), s k=s k$

Construction

$$
\text { rand }=\left(x_{1}, \ldots, x_{n},\left\{R_{i}\right\}_{x_{i}=0},\left\{r_{i}\right\}_{x_{i}=1}\right)
$$

$\operatorname{Enc}(p k, b)$:

1. Sample $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ s.t. $\sum_{i} x_{i}=b(\bmod 2)$
2. For $x_{i}=0$, sample $R_{i} \leftarrow \mathcal{R}^{\ell}$
3. For $x_{i}=1$, sample $r_{i} \leftarrow\{0,1\}^{\ell^{\prime}}$ and set $R_{i}=\operatorname{Enc}\left(p k, 1 ; r_{i}\right)$
4. Compute $c t=B\left(R_{1}\right) \oplus \cdots \oplus B\left(R_{n}\right)$
5. Output $c t$
 encryption of 0 w.h.p

Construction

$$
\text { rand }=\left(x_{1}, \ldots, x_{n},\left\{R_{i}\right\}_{x_{i}=0},\left\{r_{i}\right\}_{x_{i}=1}\right)
$$

Fake $(p k, b$, rand, $\bar{b})$:

1. If $b=\bar{b}$, output rand
2. Sample $k \leftarrow[n]$ s.t. $x_{k}=1$
3. Set $x_{k}^{\prime}=0$ and $R_{k}^{\prime}=\operatorname{Enc}\left(p k, 1 ; r_{k}\right)$

4. For $i \neq k$, set $R_{i}^{\prime}=R_{i}$ and $r_{i}^{\prime}=r_{i}$
5. Output rand $=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}\right)$

By pretending one ciphertext enc (1) is random, parity flipped!

Statistical distance from honest dist is 1/poly(n)

Construction

$\operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right):$

1. Interpret $c t_{i}$ as special FHE ciphertext $c t_{i}$
2. Output Eval($\left.p k, f, c t_{1}, \ldots, c t_{k}\right)$

Dec (dsk, ct):

1. Interpret $c t$ as special FHE ciphertext $c t$
2. Output Dec $(s k, c t)$

As before!

Deniable FHE

Proof of Correctness, CPA-Security, Compactness, Deniability

Proof: Correctness

- The output is a ciphertext of the Special FHE.
- If with high probability $B\left(\mathcal{R}^{\ell}\right)$ is a valid encryption of 0 , then with high probability $\operatorname{Enc}(p k, b)$ is a valid encryption of b.
$\operatorname{Enc}(p k, b)$:

1. Sample $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ s.t. $\sum_{i} x_{i}=b(\bmod 2)$
2. For $x_{i}=0$, sample $R_{i} \leftarrow \mathcal{R}^{\ell}$
3. Correctness
4. For $x_{i}=1$, sample $r_{i} \leftarrow\{0,1\}^{\ell^{\prime}}$ and set $R_{i}=\operatorname{Enc}\left(p k, 1 ; r_{i}\right)$
5. Compute $c t=B\left(R_{1}\right) \oplus \cdots \oplus B\left(R_{n}\right)$
6. Output $c t$

For every \boldsymbol{f} and $\boldsymbol{m}_{\mathbf{1}}, \ldots, \boldsymbol{m}_{\boldsymbol{k}}$:
$\operatorname{Pr}\left[\operatorname{Dec}\left(s k, \operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right)=f\left(m_{1}, \ldots, m_{k}\right)\right]=1-n e g l\right.$
where $_{\boldsymbol{c t}}^{\boldsymbol{i}} \boldsymbol{\leftarrow} \leftarrow \boldsymbol{\operatorname { E n c }}\left(\boldsymbol{p k}, \boldsymbol{m}_{\boldsymbol{i}}\right)$ and $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$

Proof: CPA-Security

- The output is a ciphertext of the Special FHE.
- The public key is $\left(p k, c t_{s k}\right)$
- If the special FHE is circular secure, then the scheme is secure.

Proof: $\delta(\lambda)$-Deniability

- First, prove that $\operatorname{Enc}(p k, \bar{b} ; r)=\operatorname{Enc}\left(p k, b, r^{\prime}\right)$.
- We can remove the ciphertext from A^{\prime} s input.
- It is a function of A^{\prime} s input.
- Last, prove the distance is $\delta(\lambda)$

3. $\delta(\lambda)$-Deniability

For every bit \boldsymbol{b}, and PPT adversary \boldsymbol{A}

$$
\left|\operatorname{Pr}[A(\boldsymbol{p}, \boldsymbol{b}, \boldsymbol{r})]-\operatorname{Pr}\left[A\left(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{b}, \boldsymbol{r}^{\prime}\right)\right]\right| \leq \delta(\lambda)
$$

where $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}, \boldsymbol{r} \leftarrow\{\mathbf{0}, \mathbf{1}\}^{\}^{\prime}}$, and $\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{F a k e}(\boldsymbol{p} \boldsymbol{k}, \overline{\boldsymbol{b}}, \boldsymbol{r}, \boldsymbol{b})$

Proof: $\delta(\lambda)$-Deniability

- Prove that $\operatorname{Enc}(p k, \bar{b} ; r)=\operatorname{Enc}\left(p k, b, r^{\prime}\right)$
- uniform r and $r^{\prime} \leftarrow \operatorname{Fake}(p k, \bar{b}, \operatorname{Enc}(p k, b)$:

1. Sample $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ s.t. $\sum_{i} x_{i}=b(\bmod 2)$

- Real: $r=x_{1}, \ldots, x_{n},\left\{R_{i}\right\}_{x_{i}=0},\left\{r_{i}\right\}$
- r is uniform conditioned on $\sum x_{i}$

2. For $x_{i}=0$, sample $R_{i} \leftarrow \mathcal{R}^{\ell}$
3. For $x_{i}=1$, sample $r_{i} \leftarrow\{0,1\}^{\ell^{\prime}}$ and set $R_{i}=\operatorname{Enc}\left(p k, 1 ; r_{i}\right)$
4. Compute $c t=B\left(R_{1}\right) \oplus \cdots \oplus B\left(R_{n}\right)$
5. Output $c t$

- Fake: $r^{\prime}=x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}$
- r^{\prime} is equal to r except:
- $x_{k}^{\prime}=\overline{x_{k}}=0$ and $R_{k}^{\prime}=\operatorname{Enc}\left(p k, 1 ; r_{k}\right)$

Fake $(p k, b$, rand, $\bar{b})$:

1. If $b=\bar{b}$, output rand
2. Sample $k \leftarrow[n]$ s.t. $x_{k}=1$
3. Set $x_{k}^{\prime}=0$ and $R_{k}^{\prime}=\operatorname{Enc}\left(p k, 1 ; r_{k}\right)$
4. For $i \neq k$, set $R_{i}^{\prime}=R_{i}$ and $r_{i}^{\prime}=r_{i}$
$\sum x_{i}^{\prime}=b(\bmod 2)$
Output is identical
Output rand $=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}\right)$

Proof: $\delta(\lambda)$-Deniability

- Last, prove the distance is $\delta(\lambda)$
- If special FHE has pseudorandom ciphertext, then the following are computational indistinguishable
- Fake $r^{\prime}=x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}$ s.t.
- $R_{k}^{\prime}=\operatorname{Enc}\left(p k, 1 ; r_{k}\right)$ and $r_{k} \leftarrow\{0,1\}^{\}^{\prime}}$
- Mid $r^{\prime}=x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}$ s.t.
- $R_{k}^{\prime} \leftarrow \mathcal{R}^{\ell}$

Proof: $\delta(\lambda)$-Deniability

- Last, prove the distance is $\delta(\lambda)$

$$
\operatorname{set} n=\frac{1}{\delta(\lambda)^{2}}
$$

- The Statistical Distance of the following two distributions is $\frac{1}{\sqrt{n}}$
- Mid $r^{\prime}=x_{1}^{\prime}, \ldots, x_{n}^{\prime},\left\{R_{i}^{\prime}\right\}_{x_{i}^{\prime}=0},\left\{r_{i}^{\prime}\right\}_{x_{i}^{\prime}=1}$ s.t.
- Sample $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ such that $\sum x_{i}=\bar{b}(\bmod 2)$
- Sample $k \leftarrow[n]$ such that $x_{i}=1$
- Set $x_{k}^{\prime}=0$ and for $i \neq \mathrm{k}$ set $x_{i}^{\prime}=x_{i}$

- Real $r=x_{1}, \ldots, x_{n},\left\{R_{i}\right\}_{x_{i}=0},\left\{r_{i}\right\}_{x_{i}=1}$ s.t.
- Sample $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ such that $\sum x_{i}=b(\bmod 2)$

Proof: Compactness

- The output is a ciphertext of the Special FHE.

4. Compactness
a) For every \boldsymbol{f} and $\boldsymbol{m}_{\boldsymbol{1}}, \ldots, \boldsymbol{m}_{\boldsymbol{k}}$:

$$
\left|\operatorname{Eval}\left(p k, f, c t_{1}, \ldots, c t_{k}\right)\right| \leq p o l y
$$

Independent of k and the complexity of f
where $\boldsymbol{c t} \boldsymbol{t}_{\boldsymbol{i}} \leftarrow \boldsymbol{\operatorname { E n c }}\left(\boldsymbol{p k}, \boldsymbol{m}_{\boldsymbol{i}}\right)$ and $(\boldsymbol{p k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$
b) For every \boldsymbol{m} :

$$
|E n c(p k, m)| \leq p o l y
$$ faking probability

where $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$, regardless of the encryption running time

Special FHE

Weaker Special FHE

1. Pseudorandom Ciphertext
2. Deterministic evaluation and decry
3. Decryption always outputs a valid mes\%

$$
\operatorname{Pr}[\operatorname{Dec}(\operatorname{sk}, R)=0]=\mathbb{1} / \text { poly }
$$

where $\boldsymbol{R} \leftarrow \mathcal{R}^{\ell}$ and $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \leftarrow \boldsymbol{G e n}$
[BGV14] FHE satisfies all properties!

Instantiation of Special FHE

- In [BGV14] given the $s k$ one can check if $c t$ is well-formed
- We modify the decryption algorithm of [BGV14]:

If well-formed: then, output $\operatorname{Dec}(s k, c t)$, else output 0

Set q to be super polynomial, then $\frac{B}{q}$ is negligible

$$
\operatorname{Dec}(s k, c t)=\left[[\langle s k, c t\rangle]_{q}\right]_{2}
$$

Ciphertexts:

$$
[\langle s k, c t\rangle]_{q}=b+2 e
$$

where $|e|<B$
Random elements:

$$
[\langle s k, R\rangle]_{q}=b+2 e
$$

where $\operatorname{Pr}[|e|<B]=\frac{B}{q}$

Online-Offline Encryption

Bulk of the computation is independent of the message, and may be performed in an offline pre-processing phase.
$\operatorname{Enc}(d p k, b)$:

1. Select $x_{1}, \ldots, x_{n} \leftarrow\{0,1\}$ s.t. $\sum_{i} x_{i}=b(\bmod 2)$
2. For $x_{i}=0$, select $R_{i} \leftarrow \mathcal{R}^{\ell}$
3. For $x_{i}=1$, select $r_{i} \leftarrow\{0,1\}^{\ell^{\prime}}$ and set $R_{i}=\operatorname{Enc}\left(p k, 1 ; r_{i}\right)$
4. Output dct $=B\left(R_{1}\right) \oplus \cdots \oplus B\left(R_{n}\right)$
n-1 computations of $B\left(R_{i}\right)$ can be done offline: choose R_{n} depending on b and compute $B\left(R_{n}\right)$ online

Main Takeaway:

Evaluation compactness in FHE implies deniability compactness in DE!

Going Forward

- Compact CT \rightarrow compact encryption runtime?
- Analogy to FE [LPST16,GKPVZ13]
- Technical barrier: unidirectional cheating
- Need: Invertible oblivious sampling with bias
- SW construction may be viewed through this lens
- From LWE: can have oblivious sampling with bias (this work) or oblivious sampling with inversion but not both (so far).

