
FINE-GRAINED ENCRYPTION FOR

UNIFORM MODELS OF COMPUTATION

A THESIS

submitted by

MONOSIJ MAITRA

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MARCH 2020

THESIS CERTIFICATE

This is to certify that the thesis titled FINE-GRAINED ENCRYPTION FOR UNI-

FORM MODELS OF COMPUTATION, submitted by Monosij Maitra, to the Indian

Institute of Technology, Madras, for the award of the degree of Doctor of Philosophy,

is a bona fide record of the research work done by him under my supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. Shweta Agrawal
Research Guide
Associate Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Madras,
600036.

Place: Chennai

Date: 26th March, 2020

To all who matter.

ACKNOWLEDGEMENTS

My PhD journey has been an interesting one right from the start. I got admission in IIT

Madras with a curiosity to learn about and do research in cryptography, about which I

had very little idea at first. I am extremely thankful to Prof. C. Pandu Rangan that he still

agreed to supervise me (with great enthusiasm) jointly with Dr. Rajsekar Manokaran,

who was my principal advisor initially. It took me some time to understand the basics

of the subject through some formal courses and some amount of self-reading. Slightly

more than a year later, I decided to change my supervisor when Rajsekar left and Dr.

Shweta Agrawal joined IIT Madras around the same time. The research phase in my

PhD began mainly with Shweta being my supervisor. There have been loads of fun

times as well as that of struggle and anxiety too in between but all of them proved to be

essential ingredients to help me evolve in life. All those times moulded me immensely

in changing my perspectives and also to expand my perceptions about many things, not

necessarily restricted only to academics. The last four and a half years have been the

finest learning and fun phase of my life till now and I would not want to barter it with

anything else.

First and foremost, I consider myself to be exceptionally fortunate to have Shweta as

my supervisor. This thesis would have been incomplete without her active involvement.

She has nurtured me from the beginning of my research in PhD similar to how a mother

takes care of her child. In my experience till now, I have always sensed a perpetual

compassion and an intense involvement from her towards everything and everybody,

whoever comes in touch with her. Apart from her integrity, boldness, outspoken and

energetic nature, what I admire most is her clarity of thinking. Going ahead in life, I

would consider myself quite lucky if I can build it in myself even to some small extent

and help others to do so. She has been providing me rare insights into many aspects of

life, aside from academic ones, for which I do not have enough words to convey my

gratitude. My experience as her student will always remain as a treasure trove for me.

I always had an interest in teaching even before coming to IIT Madras. This was

further stimulated by many professors in the Department of Computer Science and

i

Engineering (CSE), IIT Madras in various courses that I took as well as the ones for

which I served as a teaching assistant. Of special mention is Prof. C. Pandu Rangan’s

teaching. As a student, I consider myself lucky to have sat through and experienced his

lectures. My sincerest gratitude to him for his inspiring and absorbing way of teaching.

I am thankful to all the staffs and faculties in CSE for the help I got from them

during various situations. In particular, I would like to thank my doctoral committee

(DC) members: Dr. Meghana Nasre, Dr. Jayalal Sarma, Prof. P. Sreenivasa Kumar

(chairperson) from CSE as well as Prof. Andrew Thangaraj from the Department of

Electrical Engineering (EE) for their support, insightful comments and questions during

my seminars and DC meetings.

I gratefully acknowledge Dr. Nishanth Chandran from Microsoft Research India,

Prof. Damien Stehlé and Prof. Benoît Libert from ENS de Lyon for offering me an

internship in their respective research groups and providing me with generous financial

support during these periods. I thank them all for enhancing my experience in research.

I would also like to sincerely acknowledge both my co-authors Dr. Shota Yamada from

AIST Japan as well as Shweta for enriching me immensely about writing research papers.

I would like to thank all my lab-mates from Theoretical Computer Science (TCS)

lab for spending long hours on various stimulating discussions and for all the parties

and hangouts we made. Fondly referred to as the “Tea, Coffee and Snacks" lab by Prof.

C. Pandu Rangan, I am thankful for being a part of it all these years. In particular, I

would like to thank Suvradip Chakraborty, Arinjita Paul, Shreyas Shetty, Amit Rawat,

Manas Jyoti Kashyop, Rajesh Pandian, Vijayaraghunathan Ramamoorthi, Anshu Yadav,

Rajarshi Biswas, Rachit Garg, Kanika Gupta for being a part of my PhD journey. Of

special mention is Suvradip Chakraborty. He was a PhD student one year senior to me

and we grew up to be very good friends from several enjoyable technical discussions as

well as thought-provoking interactions we had on matters about life.

IIT Madras (and Chennai) is the place where I got the first experience of a hostel life.

When I joined here in 2015, the only friend I had (as well as the only person I knew)

in Chennai was Sankardeep Chakraborty. He was pursuing PhD at IMSc Chennai at

that time. I would like to thank him for all the help about various social and academic

aspects during my initial days here. Apart from lab-mates, I met many new souls from

other labs and departments some of whom are good friends now. Specifically, I would

ii

like to acknowledge Anurag Swarnkar, Rahul Bhattacharya and Suchetana Gupta for

their help with various technical and non-technical issues during my period of stay here.

The IIT campus had stunned me from the very first day with its thriving nature. To

this day, I still get amazed as to how such a beautifully serene campus with such rich

flora and fauna can exist amidst quite a busy place in Chennai. I am deeply grateful to

all the twists of fate that landed me up here in Chennai and IIT Madras and for the major

events that followed. The first such event that affected my life positively was when my

wife, Ananya joined IIT Madras for PhD in 2016. It was a joyful moment and possibly

one of the best things that could have happened for both of us. Despite going through her

world of experiences of an entirely different kind of research, I am extremely grateful

for her enormous support at all levels with everything I am doing today. Our exploration

together, of southern India in terms of the lush greenery it offers as well as the cultural

vibrancy and spiritual ethos of the place has etched several memories that we will cherish

forever. Secondly, I am deeply indebted to the book by Swami Vivekananda on the path

of Raja yoga (for the profound science of what it is) and Sadhguru Jaggi Vasudev (and

Isha foundation) for introducing me to this path through some initiatory practices. On

top of that, the tranquillity of the IIT Madras campus has helped me to reflect inward for

which I would forever be grateful to this place.

Finally, yet importantly, this section would be vastly incomplete without acknowl-

edging my family – my parents as well as parents-in-law, my brother and brother-in-law.

Their endless love and constant encouragement for all these years have motivated and

shaped me greatly to what I am today. In particular, not enough can be said about my

mother. Aside from being a very broad-hearted person, she has put tireless efforts in

raising us to push our way forward in whatever we wanted to do. The same holds for

my father, he being the backbone of the social and financial support that my mother has

been able to provide us. Any number of words will always fall short of expressing my

reverence towards them.

iii

ABSTRACT

KEYWORDS: Functional encryption, Attribute based encryption, Uniform models

of computation, Turing machine, Finite automata, LWE, DLIN

The rise of cloud computing and big data technologies in the last two decades has

facilitated the tasks of data storage, sharing and outsourcing computations enormously.

In particular, these technologies have a tremendous number of applications in the spheres

of healthcare, education, transportation, social media and entertainment, and such others.

However, sharing sensitive data in the clear puts the clients’ trust implicitly on the

service provider. This has led to several real time security breaches such as [Cambridge-

Analytica, (2018); Doe (2019)]. In fact, a recent survey by [PTI, (2019)] found that

around five hundred Indian organizations suffered a whopping loss of Rs. 12.8 crore

due to data breaches between July 2018 and April 2019. The situation is aggravated

to such an extent that security experts are now predicting cyber-security trends and

possible threats that the world is going to witness in 2019 and beyond [Vishwanath

(2019); Thompson and Trilling, (2018)]. To curb this menace while retaining the benefits

of such technologies, an urgent treatment is needed which this thesis attempts to address

in part.

In this thesis, we study methods of encrypting data that still permits service providers

to perform authorized computations over it, while leaking no other information about

the underlying data. This leads us to study more “expressive” cryptographic primitives

like functional encryption (FE) and attribute based encryption (ABE) as generalizations

of traditional public key encryption (PKE). In practice, data comes with arbitrary size.

Therefore, we represent algorithms operating over the encrypted data with uniform

models of computation like Turing machines and finite automata.

The overall thesis can be broadly viewed in two parts.

In the first part, we develop new techniques to construct FE and its generalization to

multi-input FE (and the related primitive of indistinguishability obfuscation (iO)) for

Turing Machines generically, from minimal assumptions. Our FE and multi-input FE

v

constructions support unbounded length inputs and achieve optimal parameters. All the

constructions overcome the barrier of sub-exponential loss incurred by all prior work.

Further, our techniques are new and from first principles that avoid usage of sophisticated

iO specific machinery used by all relevant prior work.

In the second part, we develop new techniques to construct ABE schemes supporting

finite automata based on concrete assumptions from lattices and bilinear maps.

In particular, we construct the first symmetric key ABE scheme for nondeterministic

finite automata (NFA) from the learning with errors (LWE) assumption over lattices. Our

scheme supports unbounded length inputs, unbounded length machines and unbounded

key requests. Further, we leverage our ABE to achieve (restricted notions of) attribute

hiding analogous to the circuit setting, obtaining the first predicate encryption (PE)

and bounded key FE schemes for NFA from LWE. We achieve machine hiding in

the single/bounded key setting to obtain the first reusable garbled NFA from standard

assumptions. In terms of lower bounds, we show that secret key FE even for deterministic

finite automata (DFA), with security against unbounded key requests implies iO for

circuits; this suggests a barrier in achieving full fledged FE for NFA.

We continue in the same thread to study ABE for DFA. Here, we construct the

first ABE scheme for DFA from a standard, static assumption on pairings, namely, the

decisional linear (DLIN) assumption. Our scheme supports unbounded length inputs,

unbounded length machines and unbounded key requests. Our techniques are at least as

interesting as our final result. We present a simple compiler that combines constructions

of unbounded ABE schemes for monotone span programs (MSP) in a black box way

to construct ABE for DFA. Our construction uses its building blocks in a symmetric

way – by swapping the two crucial underlying tools of an unbounded key-policy and an

unbounded ciphertext-policy ABE for MSPs we also obtain a construction of ciphertext-

policy ABE for DFA from static assumptions for the first time. At the heart of our work

is the observation that unbounded, multi-use ABE for MSP already achieve most of what

we need to build ABE for DFA.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT v

LIST OF TABLES xi

LIST OF FIGURES xiv

NOTATION xv

1 Introduction 3

1.1 Motivation . 3

1.2 Overview of the thesis . 7

1.3 Organization . 9

2 Functional Encryption and Indistinguishability Obfuscation for Turing
Machines from Minimal Assumptions 11

2.1 Introduction . 11

2.2 Our Contributions . 12

2.3 Additional Prior Work . 13

2.4 Our Techniques . 14

2.5 Organization . 21

2.6 Preliminaries . 21

2.6.1 Definitions: Turing Machines 21

2.6.2 Definitions: FE for Circuits 22

2.6.3 Definitions: FE for Turing Machines 27

2.6.4 Constrained Pseudorandom Functions 32

2.7 Construction: Single-Input FE for Turing Machines 34

2.7.1 Construction of Single-Input TMFE 34

2.7.2 Correctness and Efficiency of Single-Input TMFE 39

2.7.3 Proof of Security for Single-Input TMFE 41

vii

2.7.4 Constructing the cPRF. 47

2.8 Construction: Multi-Input FE for Turing Machines 48

2.8.1 Construction of Multi-Input TMFE 50

2.8.2 Correctness and Efficiency of Multi-Input TMFE 56

2.8.3 Proof of Security for Multi-Input TMFE 58

2.9 Indistinguishability Obfuscation for Turing Machines 59

2.9.1 Construction . 60

2.9.2 Proof of Security . 61

3 Attribute Based Encryption and its Generalizations for Nondeterministic
Finite Automata from Lattices 63

3.1 Introduction . 63

3.2 Our Contributions . 65

3.3 Our Techniques . 65

3.4 Organization . 72

3.5 Preliminaries . 73

3.5.1 Definitions: Non Deterministic Finite Automata 73

3.5.2 Definitions: Secret-key Attribute Based Encryption for NFA 73

3.5.3 Definitions: Attribute Based Encryption and Functional Encryp-
tion for circuits . 75

3.6 Attribute-based Encryption for NFA 81

3.6.1 NFA as NC circuit . 81

3.6.2 Construction: SKABE for Bounded Size NFA 84

3.6.3 Correctness of NfaABE . 86

3.6.4 Proof of Security for NfaABE 89

3.6.5 Extensions . 96

3.7 Attribute based Encryption for NFA with Unbounded Size Machines
and Inputs . 96

3.7.1 Construction of uNfaABE 97

3.7.2 Correctness of uNfaABE 98

3.7.3 Proof of Security for uNfaABE 99

3.8 FE for DFA implies iO . 106

3.8.1 Preliminaries on DFA and Branching Programs 107

3.8.2 SKFE for DFA implies iO 108

viii

4 Attribute based Encryption for Deterministic Finite Automata from Stan-
dard Static Assumptions 111

4.1 Introduction . 111

4.2 Our Contributions . 111

4.3 Our Techniques. 112

4.4 Related Work. 118

4.5 Concurrent Work. 119

4.6 Organization . 120

4.7 Preliminaries . 120

4.7.1 Definitions: Monotone Span Programs 120

4.7.2 Definitions: Deterministic Finite Automata 121

4.7.3 Definitions: Attribute-Based Encryption 121

4.7.4 Embedding Lemma for ABE 124

4.8 Attribute-based Encryption for DFA 125

4.8.1 Construction: ABE for DFA 126

4.8.2 Construction of DfaABE≤ 127

4.8.3 Construction of DfaABE> 129

4.9 Mapping DFA Computation to Monotone Span Programs 130

4.9.1 Encoding DFA to Monotone Span Programs 130

4.9.2 Encoding DFA Input Strings to Monotone Span Programs . 134

4.10 Putting it all together: ABE for DFA 137

5 Conclusions 139

A Appendices for Chapter 2 141

A.1 Missing Details in Proof of Theorem 2.7.1 141

A.2 Missing Details in Proof of Theorem 2.8.1 164

A.3 Constrained PRF for our Function Family 168

A.4 Constructing DI Secure Functional Encryption 171

A.5 Constructing Decomposable Functional Encryption for Circuits . . . 175

A.5.1 Decomposable Functional Encryption for Circuits: Instantiations 181

B Appendices for Chapter 3 185

B.1 Definitions: Predicate and Functional Encryption 185

ix

B.1.1 Predicate and Bounded Key Functional Encryption for Circuits 185

B.1.2 Predicate Encryption and Bounded Key Functional Encryption
for NFA . 189

B.1.3 Symmetric Key Functional Encryption 191

B.2 Construction: Predicate and Bounded Key Functional Encryption for
NFA . 192

B.3 Definitions: Reusable Garbled Nondeterministic Finite Automata . . 198

B.4 Construction: Reusable Garbled NFA 200

C Appendices for Chapter 4 209

C.1 Instantiating the Ingredients . 209

C.1.1 Preliminaries . 209

C.1.2 The Construction of Ingredient KP-ABE 210

C.1.3 Security Proof . 212

C.1.4 The Construction of Ingredient CP-ABE 221

C.1.5 Security Proof . 222

LIST OF TABLES

3.1 Prior work and our results. Above, we say that input length supported by
a construction is bounded if the parameters and key lengths depend on
the input size. For attribute hiding, yes∗ indicates hiding in the restricted
security games of predicate or bounded key functional encryption. . 66

4.1 Comparison with prior work supporting unbounded input length. KP
and CP indicate key-policy and ciphertext-policy respectively. . . . 112

4.2 Encoding a DFA M to matrix LM 132

4.3 Submatrix LM,w defined by Sw and LM 133

4.4 Submatrix [S`‖T`] with its row label map 136

4.5 Encoding a string x to matrix Lx 136

4.6 Submatrix LM,x defined by SM and Lx 137

xi

LIST OF FIGURES

2.1 Prior work and our results. The reductions with subexponential loss are
specified, no specification implies standard polynomial loss. The dashed
blue lines indicate primitives that are not actually used by the work in
question; we add these to elucidate the relationship between primitives.
We do not include [Badrinarayanan et al. (2015)] here since it relies on
public coin diO. 15

2.2 This circuit re-randomizes the ciphertexts provided during encryption to
use randomness derived from a cPRF. The seed for the cPRF is specified
in the ciphertext and the input is specified by the key. This ensures that
each ciphertext, key pair form a unique “thread” of execution. . . . 36

2.3 Subroutine handling the trapdoor modes in ReRand. This is “active"
only in the proof. 37

2.4 Function to mimic TM computation. It reads the current symbol, state
pair and outputs an encryption of the new state and symbol to be written
under the appropriate randomness generated using a cPRF. 38

2.5 Subroutine handling the trapdoor modes in Next. This is “active" only
in the proof. 39

2.6 Data Structure Trap used for Proof 42

2.7 This circuit aggregates and re-randomizes the ciphertexts provided dur-
ing encryption to use randomness derived from a cPRF. The seed for
the cPRF is specified in the ciphertext for first party and the input is
specified by the key. This ensures that each ciphertext, key pair form a
unique “thread” of execution. 52

2.8 Subroutine handling the trapdoor modes in Agg. This is “active" only in
the proof. 53

2.9 Function to mimic TM computation. It reads the current symbol, state
pair and outputs an encryption of the new state and symbol to be written
under the appropriate randomness generated using a cPRF. 54

2.10 Subroutine handling the trapdoor modes in Next. This is “active" only
in the proof. 55

3.1 The Circuit To-Circuit. 82

3.2 The Circuit M2j(x). 82

3.3 The Circuit M̂`(x̂). 83

3.4 Circuit Cs,2i , supported by the FE scheme. Cs,2i takes NFA M as input
and outputs a secret key for the universal circuit U [M̂2i] (hardwired with
M̂2i) under the ABE scheme. 86

xiii

A.1 Trap1 configuration inH(1, 1) . 142

A.2 Trap1 configuration inH(1, 3) . 144

A.3 Trap1 configuration inH(2, 1) . 150

A.4 Trap1 configuration inH(2, 3) . 153

A.5 Trap1 configuration inH(3, 1) . 158

A.6 Trap1 configuration inH(T − `, 3) 162

A.7 Data Structure Trap used for Proof 165

A.8 To puncture i∗ = 010 draw path from root to i∗ and reveal nodes
that are siblings along the path. To puncture interval [1, 2] ∪ {i∗} =
{000, 001} ∪ {010}, compute the set Grey = {000, 001, 00} and the
punctured set P = {00, 010}. Further compute the initial revealed set
R0 = {(1, 01), (1, 00, 011)} and replace 00 and 01 by 011 to get the
final revealed setRf = {1, 011}. 169

A.9 Functionality f ′f,CT . 172

A.10 Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ 177

B.1 Circuit Cs,2i , supported by the FE scheme. Cs,2i takes NFA M as input
and outputs a secret key for the universal circuit U [M̂2i] (hardwired with
M̂2i) under the PE+ scheme. 194

B.2 Circuit Cs,2i , supported by the FE scheme. Cs,2i takes SKE.ct (encoding
NFA M) as input and outputs a secret key under the F̂E scheme for
another circuit Ds,2i that is also hardwired with SKE.ct. 202

B.3 Circuit Ds,2i [SKE.ct], supported by the F̂E scheme. Ds,2i [SKE.ct] takes
a secret key S (encoding NFA M) and x̂ as input. It computes and
outputs M(x) after decrypting M using S and SKE.ct. 202

xiv

NOTATION

Below, we summarize the common notations and definitions used across the thesis.

1. Vectors and matrices are denoted by bold-faced small letters (eg., a,w,x,y, z
etc.) and capital letters (eg., A,B,D, I,W,V etc.) respectively.

2. A function poly(n) is called a polynomial function in n if it is O(nc) for some
constant c > 0.

3. A function negl(n) is called a negligible function if it is O(n−c) for all c > 0. An
event occurs with overwhelming probability if its probability is 1− negl(n).

4. Probabilistic polynomial time is abbreviated as PPT.

5. The function log x is the base 2 logarithm of x.

6. For any finite set S, P(S) denotes the power set of S.

xv

1

CHAPTER 1

Introduction

1.1 Motivation

The internet of today’s world contains a plethora of applications like e-commerce, social

networks, online banking, crowdfunding, multiplayer online games and so on. The rise

of cloud computing and big data management has led to all these applications resulting

in massive amounts of information stored in physical servers that are located remotely.

Although most of these applications have turned out to be quite beneficial, privacy

breaches are abound in these contexts. Therefore, a central challenge in cryptography

today is how to retain the benefits of all these applications while safeguarding privacy

and security. This prompts us naturally to seek sound methods for controlling disclosure

to sensitive information while performing authorized computation over it. Towards ad-

dressing this challenge, this thesis develops secure methods for performing computations

over encrypted data. In particular, we study the notion of functional encryption (FE),

which is a generalization of traditional public-key encryption (PKE) [Diffie and Hellman,

(1976); Rivest et al. (1978)], as explained below.

In the conventional PKE setting, any user, say Alice, generates a public and private

key pair that are mathematically related. As the name suggests, the public key is an-

nounced to everyone and the secret key is kept private. A user who wants to communicate

with Alice, say Bob, will encrypt his message using Alice’s public key to send her a

ciphertext. On receipt of this ciphertext, Alice can use her secret key to decrypt and

read Bob’s message. While this technology has been widely accepted and deployed

successfully for over two decades now, it remains insufficient for modern purposes. Let

us understand this with a toy example.

Bob needs to share a large set of files containing confidential information with some of

the users of his choice in a network. Additionally, he also wants to enforce an access

control mechanism so that any user will be able to decrypt and read only those files

which they are individually authorized to access.

Employing PKE to solve this problem means Bob needs to encrypt a subset of files

from this collection under separate public keys corresponding to individual users with

whom he wants to share this set. So, there is a replication of the same message being

encoded as different ciphertexts. Even if Bob needs to give access to two distinct subsets

of files without any intersection, to two different users, he still needs to encrypt each

subset separately under the appropriate public key of the respective user. This provides

a highly inefficient solution. Abstracted out, this problem stems from the fact that the

decryption in any PKE system follows an “all-or-nothing” paradigm, i.e.,

• Any user with a valid secret key can always learn the whole underlying plaintext
(the entire collection in this case) by the functionality of PKE.

• Users, not in possession of a valid secret key, can learn nothing about the plaintext
(except its length) by the security of PKE.

Hence, the notion of PKE is insufficient for such applications.

Faced with the above goals, it is natural to ask if there is a way to perform fine-

grained access control mechanisms over encrypted data. Note that a whole body of

theory and its implementation have already been developed and deployed for access

control mechanisms over databases. In this case, it is only required to store the database

in plaintext form. When the database is kept and maintained in a third-party cloud

server for storage issues, these access control mechanisms fall short of retaining database

privacy. So, the question that we ask here is whether we can first encrypt the database

to store as ciphertext in the cloud and later hope to perform selective computation over

this encrypted database. This question gave birth to the area of functional encryption

in the work of [Sahai and Waters (2005)]. Later, [Boneh et al. (2011); O’Neill (2010)]

formalized the notion of FE as a generalization that encompasses a broad view of

encryption systems like Identity-based Encryption (IBE), ABE and Predicate Encryption

(PE). FE generalizes even PKE in the sense that it allows secret keys to correspond

to “functions” rather than users. For example, a ciphertext can encode the database

of grades for all students who appeared in an examination conducted across various

physical locations countrywide. In this setting, a function secret key could correspond

to an “Average” function, so that decryption reveals only the average grade of all the

students. The security goal of such a system aims to prevent any further information

leakage about the database other than what is already revealed from the function and

its output. It is easy to see that this kind of encryption system helps to solve the toy

4

example described before. Bob simply encrypts his collection of files as a whole and

publishes this ciphertext. The secret key will correspond to a function that takes the

collection of files as input and outputs only a subset of files as per its description. Any

user in possession of such a secret key can decrypt and learn the contents of only those

files in the collection that it was authorized to know individually.

The three major aspects of any cryptographic primitive are its functionality, security,

and efficiency. For FE schemes, the supported class of functions is evidently an important

parameter. In particular, representing a class of functions meaningfully, for which

function secret keys need to be generated, plays a pivotal role in the practical usefulness

of the primitive. The theory of computing represents functions or algorithms via models

of computation that can be divided broadly between two classes, non-uniform and

uniform. We describe them below briefly.

Non-uniform models of computation: The description of such a model depends inher-

ently on the input length. Hence, the same functionality handling two different input

lengths have different descriptions. Boolean circuits are a widely studied example of

such a model. Here, the computation is executed by a bunch of basic logic gates from

{AND,OR,NOT} arranged in a certain topological order demanded by the requirement

of the function description. In terms of graphs, any circuit is represented via a directed

acyclic graph (DAG) [Arora and Barak (2009)] consisting of input vertices (with in-

degree = 0) labelled with literals taking values from {0, 1} and internal vertices labelled

by Boolean operators from {AND,OR,NOT}. For each internal vertex, values on its

incoming edges are examined and then the boolean operation that this node is labelled

with, is applied on those values. This assigns a value to each node propagating according

to a breadth-first search (BFS) traversal on the DAG, until the last step where the value

assigned to the final vertex is taken as the circuit output.

Uniform models of computation: As hinted from the name, the description of this

computation model is independent of any input length. Hence, a single, fixed description

of such a model corresponding to a function can handle inputs of arbitrary length.

Examples of such models include finite automata (FA), Turing machine (TM) and random

access machine (RAM). In these models, any computation is executed as dictated by a

transition function that forms the core component in the description of these machines

[Sipser (1996); Hamlin et al. (2019)]. In particular, the transition function dictates the

5

states that the computation can be in at any time step after reading (and/or writing, in

case of TM and RAM).

While circuits are a powerful model of computation, they suffer from two major

drawbacks. The first one, as already described above, is that circuits only support fixed

input lengths and that their description changes based on different input lengths. Real-

world, large-scale data rarely come with an apriori known bound on its length. On

top of that, FE systems where functions are represented as circuits, must also supply

different secret keys for the same function, if the input lengths vary1. Secondly and

more importantly, circuits always incur worst-case runtime over all inputs of a fixed

length. In particular, any uniform model like FA, TM or RAM can be converted into a

circuit essentially by unrolling loops and accounting for all branches of the underlying

computation. But this transformation results in the worst-case runtime over all inputs

of a fixed length which makes any application inherently slow in practice, even if there

were no cryptographic overheads to deal with. Ideally, we want an algorithm to run

in time depending on the exact input that it has been fed with. We call such a runtime

as input-specific runtime that we cannot hope to obtain for circuits. In general, such

a limitation on non-uniform computation poses an implicit and severe barrier in the

practical deployment of computations on encrypted data. On the flip side, none of these

disadvantages is there when we represent functions as uniform computation models.

Specifically, they have fixed descriptions that can handle inputs of any length. Hence,

FE systems supporting such models of computation have to issue only a single secret

key per functionality that would work with any input length. Further, they work akin to

real-world algorithms and programs incurring input-specific runtime. Therefore, while

designing FE systems, we would like to model the underlying functions as a uniform

model which directly impacts the efficiency of such systems.

Modern cryptography leverages security from the conjectured intractability of some

mathematical problems. The formal way to argue security is to construct a polynomial

time reduction to some problem with conjectured hardness, from the cryptographic

primitive in context. This reduction is modelled as a game (or experiment) between

two imaginary entities (technically, two randomized polynomial time algorithms) called

“challenger” and an “adversary”. The adversary wishes to break the primitive while

1A trivial workaround would be to fix the input length to some fixed upper bound and pad all data to
this bound; but this solution incurs substantial overhead (besides being inelegant).

6

the challenger has a dual role to play. On one hand, it runs the cryptographic scheme

honestly to simulate adversary’s view of the system. At the same time, it also encodes an

instance of some hard problem cleverly within the components that the adversary gets

to see in its view. Ensuring this is the case, it uses the adversary’s output to construct a

solution to the underlying problem instance, that is conjectured to be hard. This way we

obtain provable security guarantees for the primitive at hand.

From its advent till now, modern cryptography continues to evolve with solid foun-

dations as well as several applications. All of it (except a few primitives that aim for

unconditional security) comes with an underlying bunch of computational assumptions

on which security relies on. Today such computational assumptions range from widely

believed ones like factoring of integers, computing discrete logarithm in certain groups,

various assumptions on bilinear maps, finding short vectors in lattices and such others

to some new, non-standard ones like reliance on multilinear maps, indistinguishability

obfuscation (iO) and the like. Naturally, we desire to build cryptography based on weaker

and well-understood hardness assumptions. To this end, the work done in this thesis

constructs new FE and ABE schemes for TM and FA models of computation respectively

from weaker assumptions. In particular, all our constructions rely on cryptographic

assumptions that are weaker than the ones that existing constructions relied on in the

literature. We now present a brief overview of the thesis below.

1.2 Overview of the thesis

We start with studying FE schemes supporting the TM model of computation. In this

context, we should first elucidate a bit on the related notion of iO here. The notion

of iO, originating in the work of [Barak et al. (2001)], seeks to garble programs such

that the obfuscations of any two functionally equivalent programs are indistinguishable.

While non-obvious at first what such a guarantee is good for, iO has emerged as a

surprisingly powerful notion in cryptography, leading to many advanced cryptographic

applications that were previously out of reach [Garg et al. (2013a); Sahai and Waters

(2014); Canetti et al. (2015, 2014); Bitansky et al. (2015a); Koppula et al. (2015);

Bitansky et al. (2015b); Lin et al. (2016); Cohen et al. (2016); Carmer et al. (2017); Liu

and Zhandry (2017)]. The list of applications of iO shown here is not at all exhaustive

7

and continues to grow even today. It is well known that FE for circuits has been shown to

imply iO for circuits, albeit with sub-exponential loss [Ananth and Jain (2015); Bitansky

and Vaikuntanathan (2015)]. Over the last few years, both FE and iO have received

significant attention, with a rich body of work that attempts to support uniform models of

computation [Bitansky et al. (2015a); Canetti et al. (2014); Koppula et al. (2015); Chen

et al. (2015b); Canetti et al. (2016); Ananth et al. (2016); Canetti and Holmgren (2016)],

rely on weaker assumptions [Brakerski et al. (2016); Garg and Srinivasan (2016); Li

and Micciancio (2016); Bitansky et al. (2016); Komargodski and Segev (2017); Ananth

and Sahai (2017); Lin (2017); Lin and Tessaro (2017); Kitagawa et al. (2017, 2018a,b)],

achieve stronger security [Ananth et al. (2015a); Brakerski et al. (2016)] and greater

efficiency [Ananth et al. (2017)]. In our work in [Agrawal and Maitra (2018)], we make

further progress towards the goal of basing both FE and iO on minimal assumptions, in

the TM model of computation. This question has been studied extensively [Goldwasser

et al. (2013a); Ananth and Sahai (2016); Bitansky et al. (2015a); Canetti et al. (2014);

Koppula et al. (2015); Chen et al. (2015b); Canetti et al. (2016); Ananth et al. (2016);

Canetti and Holmgren (2016); Ananth et al. (2017)] - we refer an interested reader to

[Ananth and Sahai (2016); Ananth et al. (2017)] for a detailed discussion. We construct

FE and iO for TMs from the minimal assumption of compact FE for circuits. In particular,

our constructions overcome the barrier of sub-exponential loss incurred by all prior work.

Next, we study ABE schemes supporting the FA model of computation. Let us start

with a high-level view of what ABE as an emerging paradigm of encryption aims to

achieve. ABE [Sahai and Waters (2005); Goyal et al. (2006)] comes in two different

modes, namely ciphertext-policy ABE (CPABE) and key-policy ABE (KPABE). In a

CPABE system, a ciphertext of a message m is labelled with a Boolean function f

and secret keys are labelled with public attributes x. Alternately, in a KPABE system

the role of f and x gets swapped, i.e., a ciphertext embeds a public attribute x while

secret keys embed Boolean functions f . In both cases decryption succeeds to yield the

hidden message m if and only if the attribute satisfies the function, namely f(x) = 1.

Constructing ABE for uniform models of computation from standard assumptions, is an

important problem, about which very little is known. The only known ABE schemes in

this setting that i) avoid reliance on multilinear maps or indistinguishability obfuscation,

ii) support unbounded length inputs and iii) permit unbounded key requests to the

adversary in the security game, are by [Waters (2012)] and its variants. Waters provided

8

the first ABE for deterministic finite automata (DFA) satisfying the above properties,

from a parametrized or “q-type” assumption over bilinear maps. Generalizing this

construction to nondeterministic finite automata (NFA) was left as an explicit open

problem in the same work, and has seen no progress to date. Although we know of

constructions from non-standard assumptions [Ananth and Sahai (2017); Agrawal and

Maitra (2018); Kitagawa et al. (2019)] for the more general class of TMs, constructions

from other concrete assumptions such as more standard pairing based assumptions, or

lattice based assumptions has also proved elusive. In our work in [Agrawal et al. (2019a)],

we construct the first symmetric key KPABE scheme for NFA and its generalizations to

PE, bounded key FE and reusable garbling scheme from the learning with errors (LWE)

assumption in lattices. We also illuminate a barrier in generalizing further to obtain fully

collusion-resistant symmetric key FE in the sense that it would imply iO for circuits.

We continue in the same thread as before but turn our focus towards ABE schemes

for DFA from assumptions on bilinear maps. As mentioned earlier, the only other

full-fledged KPABE construction for DFA in the literature before 2019 was by [Waters

(2012)], which had to rely unfortunately on a parametrized assumption over bilinear

maps. Obtaining a construction from static assumptions has been elusive, despite much

progress in the area of ABE in general. In our work [Agrawal et al. (2019b)], we

construct the first ABE scheme for DFA from static assumptions on pairings, namely, the

decision linear (DLIN) assumption. We obtain new techniques to simulate DFAs through

monotone span programs (MSP) and use existing constructions of some special ABE

schemes for MSP. Our work also leverages a technique from [Agrawal et al. (2019a)]

to construct ABE that support unbounded DFA machines and unbounded inputs by

combining ABE schemes that are bounded in one co-ordinate. Further, our construction

is a generic compiler and yields both KPABE and CPABE schemes for DFA from the

DLIN assumption. We note that CPABE for DFA from standard, static assumptions was

an open problem and our work is the first one which addresses and constructs it.

1.3 Organization

The thesis is organized in five chapters. Chapter 1 consists of the motivation and an

overview of the thesis. The prerequisite definitions that are needed to understand the

9

work will be introduced in the respective chapters as and when required. In Chapter 2,

we describe our results for FE in the TM model. Chapters 3 and 4 describes our results

on ABE for NFA and DFA respectively. We conclude the thesis in Chapter 5. Appendices

A, B and C contain the supplementary material for Chapters 2, 3 and 4 respectively.

Remarks.

1. We clarify the difference between homomorphic encryption (HE) and FE and
ABE as follows, as asked by a reviewer. Homomorphic encryption is a paradigm
that allows to compute a function homomorphically over encrypted data. The
result of such computations are ciphertexts which do not reveal even the function
output of the underlying data to a user who does not posses a secret key for
decryption. On the contrary, the work done in this thesis is on FE and ABE
schemes. Both ABE and FE systems allow to generate constrained secret keys
which can decrypt ciphertexts to reveal information about the plaintext in the
clear. Compared to these systems, HE schemes allow to compute only ciphertexts
encoding function outputs and reveals nothing about the original plaintexts as well
as function outputs.

2. The initial thesis title, “Encrypted Computation for Uniform Models" has been
changed to “Fine-grained Encryption for Uniform Models of Computation" as per
one of the reviewer’s suggestion. We discuss the reason for this change in title
below.

The initial title aimed to highlight the research theme succinctly, which is to study
computing functions on encrypted data when they are represented by uniform
models of computation. As pointed by one of the reviewers, the main contents
of Chapters 3 and 4 focuses on attribute-based encryption, where the computing
is done on a public attribute and not on encrypted data (with the exception in
Chapter 2). Note that we generalize our ABE scheme for finite automata to
support predicate encryption, bounded-key functional encryption and reusable
garbling variants, where the attribute is indeed hidden on which the computation
is done (except in Chapter 4, where we construct ABE only for deterministic finite
automata). But, since these generalizations are presented in the Appendices only,
we have changed the title as per suggestion, as it fits better with the main content
of the thesis.

3. In Chapter 2, we construct FE, multi-input FE and iO for Turing machines from the
minimal assumptions of compact, polynomially secure FE and sub-exponentially
secure FE for circuits respectively. In this context, our choice of the word “mini-
mal" stems from the following facts:

1. Our FE and iO for Turing machines constructions avoid the sub-exponential
loss barrier incurred by all prior work, thus improving the security assumptions
required to build them from compact FE for circuits only.

2. Our multi-input FE for Turing machines construction (restricted to the bounded
arity setting) relies only on sub-exponentially secure FE for circuits. Prior to
our work, we only knew such a construction from public coin differing inputs
obfuscation (which is a strong knowledge type assumption).

In essence, we get asymptotically tight reductions for FE, multi-input FE, and iO
for Turing machines from the same assumptions as needed for circuits.

10

CHAPTER 2

Functional Encryption and Indistinguishability

Obfuscation for Turing Machines from Minimal

Assumptions

2.1 Introduction

In this chapter, we study functional encryption (FE), multi-input FE (miFE) and indistin-

guishability obfuscation (iO) in the Turing machine model of computation.

Functional encryption (FE) [Sahai and Waters (2005); Boneh et al. (2011); O’Neill

(2010)] is a generalization of public key encryption that enables fine grained access

control on encrypted data. In FE, a secret key corresponds to a function f and ciphertexts

correspond to strings from the domain of f . Given a function secret key SKf and

a ciphertext CTx, the decryptor learns f(x) and nothing else. FE can be naturally

generalized to a multi-input setting where there are multiple parties, say p1, . . . , pn

encrypting their own messages x1, . . . ,xn. A function secret key now corresponds to

function f of arity n. As before, given SKf and ciphertexts from n parties, namely

CTx1 , . . . ,CTxn , the decryptor learns f(x1, . . . ,xn) and nothing else.

Program obfuscation [Barak et al. (2001)] aims to alter a program into an unintel-

ligible one such that its functionality is still preserved. [Barak et al. (2001)] showed

that the most general notion of such obfuscation is impossible to construct for all Turing

machines. Faced with this impossibility, they proposed the notion of indistinguishability

obfuscation (iO). iO seeks to garble programs such that the obfuscation of any two

functionally equivalent programs of roughly the same size are indistinguishable. FE has

been shown to imply iO, albeit with sub-exponential loss by [Ananth and Jain (2015);

Bitansky and Vaikuntanathan (2015)].

Our work provides new constructions of FE,miFE and iO for Turing machines from

minimal assumptions. Before stating our contributions in detail, we first summarize

below the state of art prior to our work:

1. For single input FE for TMs that accept unbounded length inputs and place no
restriction on the description size or space complexity of the machine, the state of
art was the work of [Ananth and Sahai (2016)], which relies on the existence of iO
for circuits.

2. For multi-input FE in the TM model, the only known construction till now is [Badri-
narayanan et al. (2015)], which relies on the existence of public coin differing
inputs obfuscation (diO).

3. iO for Turing Machines with unbounded memory and bounded inputs are con-
structed in the works of Koppula et al. and Ananth et al. [Koppula et al. (2015);
Ananth et al. (2017)]. Both works rely on the existence of sub-exponentially
secure iO for circuits along with other standard assumptions. We note that FE for
circuits implies iO with sub-exponential loss, so when relying on FE for circuits,
these works incur sub-exponential loss from two sources.

2.2 Our Contributions

An FE scheme for circuits is called compact if the running time of the encryption

algorithm depends only on the security parameter and the input. We denote such a

scheme by CktFE. We construct FE, miFE and iO for TMs from the minimal assumption

of compact FE for circuits. Our constructions overcome the barrier of sub-exponential

loss incurred by all prior work. Our contributions are the following.

1. We provide a new construction of single input FE for TMs with unbounded inputs,
achieving optimal parameters from polynomially secure, compact FE for circuits.
The previously best known construction by [Ananth and Sahai (2016)] relies on iO
for circuits, or equivalently, sub-exponentially secure FE for circuits. We note that
iO for circuits implies decomposable compact FE for circuits [Garg et al. (2013a)]
(please see Appendix A.5), so our construction also implies FE for TMs from iO
for circuits.

2. We provide a new construction of multi-input FE for TMs. Our construction
supports a fixed number of encryptors (say k), who may each encrypt a string xi
of unbounded length. We rely on sub-exponentially secure FE for circuits, while
the only previous construction [Badrinarayanan et al. (2015)] relies on a strong
knowledge type assumption, namely, public coin differing inputs obfuscation. The
arity k supported by our scheme depends on the underlying multi-input CktFE
scheme, for instance using [Komargodski and Segev (2017)], we can support
k = polylog(λ).

12

3. We construct iO for TMs with bounded inputs and unbounded memory from
the same assumptions as required by iO for circuits, namely, sub-exponentially
secure FE for circuits. The previous best constructions [Koppula et al. (2015);
Ananth et al. (2017)] require sub-exponentially secure iO for circuits, which in
turn requires sub-exponentially secure FE for circuits [Ananth and Jain (2015);
Bitansky and Vaikuntanathan (2015)], resulting in double sub-exponential loss.

Our constructions make use of FE for circuits that satisfy a mild property called

decomposablity, which we show how to construct generically from FE for circuits.

Decomposable FE, analogously to decomposable randomized encodings [Applebaum

et al. (2014)], roughly posits that a long string be encrypted bit by bit using shared

randomness across bits. This property is already satisfied by all known constructions of

CktFE in the literature to the best of our knowledge, please see Appendix A.5.1.

Our techniques are new and from first principles, and avoid usage of sophisticated iO

specific machinery such as positional accumulators and splittable signatures that were

used by all prior work [Koppula et al. (2015); Ananth and Sahai (2016); Ananth et al.

(2017)]. Our work leverages the security notion of distributional indistinguishability

(DI) for CktFE which was first considered by [Gentry et al. (2014)], who provided a

construction for single input FE satisfying DI security assuming the existence of iO. We

strengthen this result by constructing DI secure CktFE from standard CktFE. Please see

Figure 2.1 for an overview of our results.

2.3 Additional Prior Work

Since iO is considered an inherently sub-exponential assumption and much stronger

than the polynomial assumption of compact FE, replacing iO by FE in cryptographic

constructions has already been studied extensively, for instance in the context of PPAD

hardness [Garg et al. (2016)], multi-input FE for circuits [Brakerski et al. (2016);

Komargodski and Segev (2017)] as well as trapdoor one-way permutations and universal

samplers [Garg et al. (2017)]. We note that aside from reliance on weaker, better

understood assumptions, avoiding sub-exponential loss results in significantly more

efficient schemes. We refer the reader to [Garg et al. (2017)] for a detailed discussion.

Distributional indistinguishability was also considered in the context of output com-

pressing randomized encodings Lin et al. (2016); indeed, this work implies that achieving

13

DI security for FE for Turing machines with long outputs is impossible in the plain model.

We note that our construction sidesteps this lower bound by considering Turing machines

with a single output bit.

iO for TMs with unbounded memory has been constructed by [Koppula et al. (2015);

Ananth et al. (2017)] as discussed above, other prior works were limited to bounded

space constraints. We note that [Ananth et al. (2017)] additionally achieve constant

overhead in the size of the obfuscated program as well as amortization, which we do

not consider in this work. We also note that the work of [Badrinarayanan et al. (2015)]

achieve miFE for TMs where the number of encrypting parties can be arbitrary, whereas

we only support a-priori fixed, bounded number of parties.

The approach of using decomposable FE for circuits to construct FE for deterministic

finite automata (DFA) in the single key setting was suggested by [Agrawal and Singh

(2017)]. In this work we develop and significantly generalize their ideas. In particular,

we handle the unbounded key setting in FE for TMs which necessitates dealing with

the much more complex indistinguishability style definition, for which we develop

new proof techniques which use a novel “sliding trapdoor” approach and leverage

distributional indistinguishability. In contrast, since [Agrawal and Singh (2017)] use

simulation security for single key FE, their proof must not contend with any of these

challenges. Please see below for details.

2.4 Our Techniques

We describe an overview of our constructions, starting with single input FE, generalizing

to multi-input FE and then building iO. All our constructions support the Turing machine

model of computation. Our constructions rely on a single input FE scheme for circuits,

denoted by CktFE, which satisfies decomposability. We will also show later in Appendix

that decomposable FE for circuits is implied by FE for circuits. Intuitively, decompos-

ability means that the ciphertext CTx for a multi-bit message x be decomposable into

multiple ciphertext components CTi for i ∈ |x|, one for each bit xi of the message.

Moreover, the ciphertext components encoding individual bits of a single input are tied

together by common randomness, that is CTi = E(PK, r, xi) where E is an encoding

14

iO for TMs

FE for circuits

iO for circuits

Subexp

Subexp

Rerandomizable

encryption

DDH, LWE, etcFE for circuits

iO for circuits

FE for TMs

Subexp

AS16 AJS17 This

iO for circuitsFE for circuits

FE for TMs MIFE for TMs

iO for TMs

Subexp

Subexp

Poly

Subexp

Figure 2.1: Prior work and our results. The reductions with subexponential loss are
specified, no specification implies standard polynomial loss. The dashed
blue lines indicate primitives that are not actually used by the work in
question; we add these to elucidate the relationship between primitives. We
do not include [Badrinarayanan et al. (2015)] here since it relies on public
coin diO.

function and r is common randomness used for all i ∈ |x|1. The notion of decompos-

ability has been widely studied and used in the context of randomized encodings, which

may be seen as a special case of functional encryption; please see [Applebaum et al.

(2014)] as an example. We note that all known FE schemes in the literature are already

decomposable to the best of our knowledge, please see Appendix A.5.1 for a discussion.

Single Input TMFE. Recall that a Turing machine at any time step reads a symbol,

state pair and produces a new symbol which is written to the work tape, a new state and

a left or right head movement. By assuming the Turing machine is oblivious, the head

movements of the TM may be fixed; thus, at any given time step when a work tape cell is

read, we can compute the next time step when the same work tape cell will be accessed.

This reduces the output at any time step t to a symbol, state pair, where the state is read

in the next time step t+ 1 and the symbol is read at a future (fixed) time step t′ > t.

Our construction uses two CktFE schemes, 1FE1 and 1FE2, where 1FE2 is decom-

1Encoding of each bit may also use additional independent randomness, which is not relevant to the
discussion here, and hence omitted.

15

posable. Intuitively, 1FE1 is used by the encryptor to encode the unbounded length input,

while 1FE2 is used to mimic the computation of the Turing machine, as we describe

next. The ciphertext of 1FE2 is divided into two parts, encoding input components (t, σ)

and q respectively. Here, t is the current time step in the computation and σ, q are the

current work-tape symbol and state respectively. We maintain the invariant that at any

time step t in the computation, both components of the ciphertext have been computed

using common randomness derived from PRFK((t‖salt)), where salt is an input chosen

by the key generator and the PRF key K is chosen by the encryptor.

Now, to mimic the TM computation, we provide a function key for the Next func-

tionality, that stores the transition table, receives as input the current (symbol, state) pair,

computes the symbol to be written on the work tape and the next state using the transition

table, derives the randomness using the PRF for the appropriate time step and outputs

the encodings of the new (symbol, state) pair. In more detail, say the encryptor provides

encodings of each input symbol xi, for i ∈ [|x|], in addition to an encoding for the

first (fixed) state qst, where the encodings of (1, x1) and qst share the same randomness

so that they may be concatenated to yield a complete ciphertext for (1, x1, qst). Now,

the function key may read input (1, x1, qst), lookup the transition table and produce an

encryption of the next state q2 and the symbol to be written x′2. The randomness used to

encrypt q2 is derived using a PRF as described above, and is the same as the randomness

used by the encryptor to encode (2, x2). Hence, the two ciphertext components encoding

(2, x2) and q2 may be concatenated to yield a complete 1FE2 ciphertext which may be

again decrypted using the function key.

Now consider how to support writing on tape. Say the symbol x′2 will be read at future

fixed time step t′. Then the function key encodes the tuple (t′, x′2) using randomness

PRFK((t′‖salt)). The state for time step t′, say q′ is computed at time step t′ − 1, also

using randomness PRFK((t′‖salt)). Thus, encodings of (t′, x′2) and q′ may be joined

together to yield a complete 1FE2 ciphertext which may be decrypted to propagate the

computation.

A detail brushed away by the above description is that the encryptor, given input x,

cannot compute randomness generated by a PRF which has input a value salt chosen by

the key generator. This is handled by making use of an additional scheme 1FE1, which

re-encrypts ciphertexts provided by the encryptor via a ReRand functionality, using the

16

requisite randomness. Note that we support inputs of unbounded length by leveraging the

fact that CktFE schemes 1FE1, 1FE2 support encryption of unbounded number of inputs,

even if each must be of bounded length. Thus, the encryptor provides an unbounded

number of 1FE1 ciphertexts which are rerandomized and translated to ciphertexts under

1FE2 using the ReRand function key provided by the key generator.

Decomposability. The above construction relies on the underlying CktFE scheme

satisfying the property of decomposability. As already mentioned before, decompos-

ability is a mild assumption and already satisfied by all known CktFE constructions in

the literature to the best of our knowledge (please see Appendix A.5.1 for a discussion).

We can also remove the requirement of decomposability with the minimal assumption

of one-way functions but at the expense of making our compiler more complicated2.

However, a cleaner approach is to build decomposable FE generically from standard FE,

by using decomposable randomized encodings, which may be constructed from one way

functions. Please see Appendix A.5 for details.

Encoding the PRF key. The above informal description hides an important detail –

for the function key to produce ciphertext components using a PRF, it must have the key

of the PRF, chosen by the encryptor3, passed to it as input. Thus the ciphertext must

additionally encode the PRF key along with inputs (t, x, q). However, the ciphertext is

constructed using randomness derived from the same PRF- resulting in circularity. We

resolve this difficulty by using constrained PRFs [Boneh and Waters (2013); Kiayias

et al. (2013); Boyle et al. (2014)], and having a ciphertext encode a PRF key that only

allows computation of randomness for time steps of the future; this does not compromise

its own security. For this constraint family, we provide a construction of cPRFs from

one-way functions. We believe this construction and the method of its application may

be useful elsewhere4.

More formally, our construction makes use of constrained, delegatable PRF for the

2Intuitively, we use decomposability because the “symbol" and “state" components of the ciphertext
are generated during different times in decryption, say T1 and T2. However, since the underlying CktFE is
compact, generating longer outputs comes for free. Hence, we can have the CktFE generate the complete
(symbol, state) CT for the relevant symbol and all possible states at time T1. Given in the clear, this would
be insecure but this can be fixed by further nesting these CTs within a symmetric key encryption scheme
and outputting them (in randomly permuted order). Later, at time T2, when the state is computed, the
decryption can output the SKE key to unlock the appropriate CktFE CT.

3Note that the PRF key must be encoded in the ciphertext rather than function key since it is required
to be hidden.

4For instance, a similar situation w.r.t circularity arises in the original garbled RAM construction of Lu
and Ostrovsky [Lu and Ostrovsky (2013)].

17

function family ft : {0, 1}2·λ → {0, 1} defined as follows.

ft(x‖z) = 1 if x ≥ t

= 0 otherwise

We denote the constrained PRF key Kft by Kt for brevity. By the delegation property

of constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from Kt. The

proof requires the PRF to be punctured at a fixed point in each hybrid, we provide a

construction of delegatable punctured PRF in Appendix A.3.

Proof Overview. While the above description of single input TMFE is natural and

intuitive, the proof of indistinguishability based security is quite subtle and requires new

techniques as we discuss next. For ease of exposition, we describe the proof overview for

the case where the adversary makes a single key request corresponding to some TM M .

We must argue that the challenge ciphertext, which is a sequence of 1FE1 ciphertexts,

together with ReRand and Next keys corresponding to a TM M , do not distinguish the

bit b.

As discussed above, the 1FE1 ciphertexts are decrypted using the ReRand key to

produce a sequence of 1FE2 ciphertexts, each corresponding to a time step in the TM

execution (when the encoded symbol is read), which are in turn decrypted by Next

keys to compute new 1FE2 ciphertexts for future time steps. We may view the 1FE2

ciphertexts as forming a chain, with each link of the chain corresponding to a single step

of the TM computation, and each ciphertext producing (via decryption) a new ciphertext

for the next time step, finally yielding the output when the TM halts (after T steps, say).

Intuitively, since the output of the TM does not distinguish the bit b by admissibility

of the TMFE adversary, we may argue by security of 1FE2 that the ciphertext at the

penultimate step T − 1 also does not distinguish b, which implies that the ciphertext at

step T − 2 hides b and so on, ultimately yielding indistinguishability of the entire chain,

and hence of the 1FE1 challenge ciphertext.

Formalizing this intuitive argument is quite tricky. A natural approach would be to

consider a sequence of hybrids, one corresponding to each link in the chain, and switch

the 1FE2 ciphertexts one by one starting from the end of the chain. While intuitive, this

idea is misleading – note that a naive implementation of this idea would lead to a chain

18

which is “broken”: namely, its first links correspond to b = 0, and last links to b = 1.

Since the ciphertext at a given step is decrypted to compute the ciphertext at the next

step, a ciphertext corresponding to b = 0 cannot in general output a ciphertext for b = 1.

A standard approach to deal with this difficulty is to embed a “trapdoor” mode within

the functionality [Ananth et al. (2015a); Ananth and Jain (2015); Brakerski et al. (2016)]

which lets us “hardwire” the ciphertexts that must be output by decryption directly in the

key, allowing decryption to yield an inconsistent chain. However, this approach also fails

in our case, since the length of the chain is unbounded and there isn’t sufficient space in

the key to incorporate all its values.

Our Approach: “Sliding” Trapdoors. We deal with this difficulty by designing a

novel “sliding-window” trapdoor approach which lets us hardwire the decryption chain

“piece by piece”. In more detail, we start with the last two time steps (T, T −1), program

the key to produce the output corresponding to b = 1 for time step T and b = 0 for

T − 1, then transition to a world where the output corresponds to b = 1 for both T and

T − 1. At this point, the hardwiring of the output for time step T is redundant, since the

ciphertext output by the decryption process at time step T − 1 automatically computes

the output coresponding to b = 1 at time step T . Thus, we may now slide the trapdoor to

program to the next pair (T − 1, T − 2), switching the decryption output at time step

T − 2 to b = 1 and so on, until the entire chain corresponds to b = 1.

Intuitively, we are “programming” the decryption only for outputs at both ends of the

“broken link”, so that preceding links are generated using b = 0 and subsequent links

are generated using b = 1. We leverage the fact that the chain links corresponding to

future time-steps are encoded implicitly in a given time step – hence if we manage to

hide the chain inconsistency at a certain position i, this implies that the remainder of the

chain is constructed using the bit encoded at step i. Formalizing this argument requires

a great deal of care, as we must keep track of the “target” time steps corresponding to

the two ends of the broken link that are being programmed, the time steps at which the

symbol and state ciphertexts are generated to be “consumed” at the target time-steps, the

particular values that must be encoded in the symbol, state fields in both cases as well as

the key that is being handled at a given time in the proof. This technique allows us to

obtain a proof for selective security for the single input TMFE scheme. We defer the

details to the full proof in Section 2.7.3.

19

Generalising to Multi-Input FE for Turing machines. For the k party setting, a

natural idea is to have each party encrypt its own input xi, and use a k input CktFE

scheme kFE [Brakerski et al. (2016); Komargodski and Segev (2017)], to “aggregate”

these into the “input” ciphertext CT(x) for one long input x = (x1‖x2‖ . . . ‖xk), under

a different CktFE scheme 1FE. Note that the length of x is unknown hence it may not be

encoded “all at once” but must be encoded bit by bit as in the previous scheme. Now, by

additionally providing the 1FE ciphertext encoding the start state of the Turing machine

CT(qst), and a function key to compute the transition table of the TM as in the previous

scheme, we may proceed with the computation exactly as before.

Formalizing this idea must contend with several hurdles. In the multi-input setting,

the ith encryptor may encode multiple inputs and functionality permits “mix and match”

of ciphertexts in the sense that any input encoded by party i may be combined with

any input encoded by parties j ∈ [k], j 6= i. Therefore, if each of k parties encodes T

ciphertexts, there are T k valid input combinations that the TM may execute on. However,

when the TM is executing on any input combination, we must ensure that it cannot

mix and match symbol, state pairs across different input combinations. Moreover,

an encryption for a symbol, state pair produced by some machine Mi should not be

decryptable by any machine Mj for j 6= i. These issues are handled by careful design of

the aggregate functionality to ensure that an execution thread of any input combination

by any machine is separate from any other. We prove selective security for this scheme,

which extends naturally from the single input case. Please see Section 2.8 for details.

Distributional Indistinguishability. As discussed above, our constructions rely on the

security notion of distributional indistinguishability (DI) for functional encryption for

circuits [Gentry et al. (2014)]. Intuitively, this notion says that if the outputs produced

by a circuit on two input distributions are merely indistinguishable (as against exactly

equal), then the ciphertexts encoding those inputs must also be indistinguishable. We

defer the details of how to construct DI secure single input FE from standard FE later. In

Appendix A.4 we give a construction of DI secure single input FE from standard FE.

Indistinguishability Obfuscation. Constructing iO for TMs given miFE for TM is

straightforward, and adapts the miFE to iO circuit compiler by [Goldwasser et al. (2014)]

to the TM setting. As in the circuit case, an miFE for TM that supports two ciphertext

20

queries and a single key query suffices for this transformation. Our security proof for

miFE for TM is tight and thus this compiler yields iO for TM from sub-exponentially

secure FE for circuits rather than sub-exponentially secure iO for circuits.

2.5 Organization

We organize the rest of the chapter as follows. In Section 2.6 we provide the prequisite

definitions used by our constructions. In Section 2.7, we provide our construction for

single input FE for Turing machines. In Section 2.8, we provide our construction for

multi-input FE for Turing machines for any fixed arity k and in Section 2.9 we describe

the construction of iO for Turing machines for bounded inputs. Our constructions use

constrained PRFs which are instantiated in Appendix A.3 and decomposable FE which

is constructed in Appendix A.5.

2.6 Preliminaries

In this section, we recall some necessary definitions that we require to build our results.

2.6.1 Definitions: Turing Machines

We recall the definition of a Turing machine (TM). A TM M is represented by the

tuple (Q,Γ, β,Σ, δ, qst, F) where Q is a finite set of states, Γ is a finite alphabet, β ∈ Γ

is the blank symbol, Σ ⊆ Γ \ {β} is the set of input symbols, qst is the start state,

F = {qacc, qrej} where qacc ∈ Q is the accept state, qrej ∈ Q is the reject state and

δ : Q \ F × Γ → Q × Γ × {L,R} is the transition function (stored as a table). Upon

input w = (w1, . . . , wk) ∈ Σk for some arbitrary polynomial k, the machine M accepts

the input if and only if given a tape initialised with the input w and the head at w1,

following the TM’s transition function leads to qacc. We say M(w) = 1 iff M accepts w

and 0 otherwise. We also denote the runtime of a TM M (i.e. number of steps the head

takes) on an input w by runtime(M,w).

Oblivious Turing Machines

Our constructions make use of oblivious Turing machines.

21

Definition 2.6.1 (Oblivious Turing Machine [Pippenger and Fischer, (1979); Impagliazzo

(2011)]). An Oblivious Turing Machine (OTM) is a Turing Machine for which there

exists a function t such that, at every timestep i the machine head is at cell t(i) regardless

of the input.

There exist efficient transformations that convert any Turing machine M that takes

time T to decide an input to an oblivious one that takes time T log T to decide the same

input [Pippenger and Fischer, (1979)]. Here, we describe a simple transformation that

incurs a quadratic blowup in running time.

Given a TM M , a simple OTM construction adds an additional marker for the head

location. Now, to simulate step i in the TM, the OTM, scans from cell 1 to cell i, ensuring

that it reads the current head location. Now, it moves back from cell i to 1, writing

the correct symbol for the next step, while also updating the state. Once back at cell

1, simulation of step i is complete, and the OTM moves to a state simulate qi+1 and if

qi+1 is not an accepting or rejecting state, it moves to simulating step i + 1. Since in

step i, we would need to scan at most i cells (as that is the farthermost the head could

have moved), a O(t) computation, now takes O(t2). Also, if we are willing to reveal the

runtime of the given input on the Turing Machine, then we can stop simulating after the

last timestep t. A more efficient transformation due to [Pippenger and Fischer, (1979)]

reduces the time required to O(t log t).

We note that a slightly different definition of OTMs [Arora and Barak (2009)]

requires that the head movements are the same for all inputs of the same size, which

would imply that the OTM runs in worst case time. However, if we are willing to reveal

the running time of a machine on a given input, then the OTM can be made to halt once

the input has been decided. In particular, if runtime(M1,w1) = runtime(M2,w2), then

the head movements of the OTMs corresponding to M1 and M2 are exactly the same.

In our construction, the OTM will be provided the input length of the message as an

explicit input, and can use this to compute the head movements at any given time step.

2.6.2 Definitions: FE for Circuits

In this section, we define functional encryption for circuits, in both the single and multi-

input setting. Our definitions follow a syntax that will be convenient for constructing our

schemes in this chapter.

22

Single Input Functional Encryption for Circuits

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a

finite set. Let F =
{
Fλ
}
λ∈N denote an ensemble where each Fλ is a finite collection of

circuits, and each circuit f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.

A functional encryption scheme CktFE for F consists of four algorithms

CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

• CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation
of the security parameter and outputs the master public and secret keys (PK,MSK).
Sometimes, the CktFE.Setup algorithm may also accept as input a parameter 1`,
denoting the length of the input. In this case, the input lives in domain X `.

• CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret
key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• CktFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key
PK and an input message x ∈ Xλ and outputs a ciphertext CT.

• CktFE.Dec(SKf ,CTx) is an (a deterministic) algorithm that takes as input the
secret key SKf and a ciphertext CTx and outputs f(x).

Definition 2.6.2 (Correctness). A functional encryption scheme CktFE is correct if for

all λ ∈ N, all f ∈ Fλ and all x ∈ Xλ,

Pr

[
(PK,MSK)← CktFE.Setup(1λ);

CktFE.Dec
(

CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)
)
6= f(x)

]
= negl(λ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and

CktFE.Enc.

Definition 2.6.3 (Compactness [Ananth and Jain (2015)]). A functional encryption

scheme for circuits is said to be compact if for any input message x, the running time of

the encryption algorithm is polynomial in the security parameter and the size of x. In

particular, it does not depend on the circuit description size or the output length of any

function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE, allows

the run time of the encryption algorithm to depend on the output length of the functions.

Equivalently, a semi-compact FE scheme is simply a compact FE scheme when we

restrict our attention to functions with single-bit outputs.

23

Distributional Indistinguishability for Circuit FE. In this section we define the

notion of distributional indistinguishability for functional encryption for circuits. The

notion was first defined by [(Gentry et al., 2014, Sec 3.4)] in the context of reusable

garbled circuits, i.e. single key functional encryption, but may be generalized to the

multi-key setting in a straightforward way. Intuitively, this notion says that if the outputs

produced by a circuit on two input distributions are indistinguishable, then the ciphertexts

encoding those inputs must also be indistinguishable.

Definition 2.6.4. A functional encryption scheme F for a circuit family G is secure in

the distributional indistinguishability game, if for all PPT adversaries A, the advantage

of A in the following experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: Amay adaptively request keys for any circuits gi ∈ G.
In response, A is given the corresponding keys SKgi . This step may be repeated
any polynomial number of times by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two ensembles of challenge distribu-
tions

(
D0(λ), D1(λ)

)
5 to the challenger, subject to the restriction that for any

x0 ← D0,x1 ← D1, it holds that gi(x0)
c
≈ gi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a
random bit b, samples xb ← Db and returns the ciphertext CTxb .

5. Key Queries: The adversary may continue to request keys for additional functions
gi, subject to the same restriction that for any x0 ← D0,x1 ← D1, it holds that
gi(x0)

c
≈ gi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success

probability and 1/2. In the selective game, the adversary is required to declare the

challenge distributions in the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard insitin-

guishability game is implied by the above by restricting the adversary to choose distribu-

tions D0, D1 above to simply be two messages x0,x1 with probability 1 and requesting

keys that satisfy gi(x0) = gi(x1) for all i, which is a special case of gi(x0)
c
≈ gi(x1).

5We omit the parameter λ in what follows for brevity of notation.

24

Decomposable functional encryption for circuits In this section, we recall the no-

tion of decomposable functional encryption (DFE) defined by [Agrawal and Singh

(2017)]. Decomposable functional encryption is analogous to the notion of decompos-

able randomized encodings [Applebaum et al. (2014)]. Intuitively, decomposability

requires that the public key PK and the ciphertext CTx of a functional encryption scheme

be decomposable into components PKi and CTi for i ∈ [|x|], where CTi depends on a

single deterministic bit xi and the public key component PKi. In addition, the ciphertext

may contain components that are independent of the message and depend only on the

randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable

if there exists a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈
P for i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption.
Apart from the common randomness r, each CTi may additionally make use of
independent randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k components for

inputs of size k, it is also decomposable into components corresponding to any partition

of the interval [k]. Thus, we may decompose the public key and ciphertext into any

i ≤ k components of length ki each, such that
∑
ki = k. We will sometimes use Ē(y)

to denote the tuple of function values obtained by applying E to each component of

a vector, i.e. Ē(PK,y, r) ,
(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k.

We assume that given the security parameter, the spaces P , R1, R2, C are fixed, and

the length of the message |x| can be any polynomial.

Multi-Input Functional Encryption for Circuits

We define the notion of private-key t-input functional encryption for circuits here. Our

definition follows that of [Brakerski et al. (2016); Komargodski and Segev (2017)].

Let ∀i ∈ [t],Xi = {(Xi)}λ∈N and Y = {Yλ}λ∈N be ensembles of finite sets, and let

F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each λ ∈ N, each

25

function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . ,xt ∈ (Xt)λ, and outputs a

value f(x1, . . . ,xt) ∈ Yλ.

A private-key t-input functional encryption scheme t-CktFE for F consists of four al-

gorithms t-CktFE = (t-CktFE.Setup, t-CktFE.Keygen, t-CktFE.Enc, t-CktFE.Dec) de-

fined as follows.

• t-CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation
of the security parameter and outputs the master secret key MSK.

• t-CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret
key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• t-CktFE.Enc(MSK,m, ind) is a PPT algorithm that takes as input the master
secret key MSK, an input message m = xi ∈ (Xi)λ if ind = i, i ∈ [t], and outputs
a ciphertext CTind.

• t-CktFE.Dec(SKf , (CT1, . . . ,CTt)) is an (a deterministic) algorithm that takes
as input the secret key SKf and t ciphertexts CT1, . . . ,CTt and outputs a string
y ∈ Yλ ∪ ⊥.

Definition 2.6.5 (Correctness). A private-key t-input functional encryption scheme

t-CktFE is correct if for all λ ∈ N, f ∈ Fλ and all (x1, . . . ,xt) ∈ (X1)λ × . . .× (Xt)λ,

Pr

[
t-CktFE.Dec

(
t-CktFE.Keygen(MSK, f),

(
t-CktFE.Enc(MSK,x1, 1), . . . ,

t-CktFE.Enc(MSK,xt, t)
))
6= f(x1, . . . ,xt)

]
= negl(λ)

Here, MSK ← t-CktFE.Setup(1λ) and probability is taken over the random coins of

t-CktFE.Setup, t-CktFE.Enc and t-CktFE.Keygen.

Distributional Indistinguishability. We define the notion of distributional indistin-

guishability for a t-input functional encryption scheme for circuits. To begin, we describe

a valid t-input adversary.

Definition 2.6.6 (Valid t-Input Adversary). A PPT algorithm A is a valid t-input ad-

versary if for all private-key t-input functional encryption schemes over message space

(X1)λ × . . . × (Xt)λ, and a circuit space F , for any (f0, f1) queried by the adversary,

and any t pairs of input distribution ensembles (D01(λ), D11(λ)), . . . , (D0t(λ), D1t(λ))6

output by the adversary such that Dbj is a distribution over Xj for b ∈ {0, 1}, j ∈ [t], it

holds that

f0(x01, . . . ,x0t)
c
≈ f1(x11, . . . ,x1t),

6We omit the argument λ where it is implicit for notational brevity.

26

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [t].

We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for pairs of functions
(f0, f1) ∈ F . In response, A is given the corresponding keys SKfb for some
random bit b chosen by the challenger. This step may be repeated any polynomial
number of times by the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for pairs of challenge dis-
tribution ensembles (D01, D11), . . . , (D0t, D1t) to the challenger. The challenger
samples xj ← Dbj for j ∈ [t] and returns t-CktFE.Enc(MSK,xj, j),∀j ∈ [t].
This step may be repeated any polynomial number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any

order. The advantage of A is the absolute value of the difference between its success

probability and 1/2. In the selective game, the adversary is required to declare the

challenge ciphertext distributions in the very first step, without seeing the public key.

Definition 2.6.7. A t-input functional encryption scheme t-CktFE for a circuit family F

is secure in the distributional indistinguishability game, if for all valid PPT adversaries

A, the advantage of A in the above game is negligible in the security parameter λ.

We note that the standard indistinguishability game is the special case where the

adversary submits challenge messages rather than distributions and all queried functions

must output exactly the same rather than indistinguishable values.

2.6.3 Definitions: FE for Turing Machines

The definition of Turing machines and oblivious Turing machines was already recalled in

Section 2.6.1. In this section, we will define functional encryption for Turing Machines

(TM). Functional encryption for TMs is defined analogously to functional encryption for

circuits, except that secret keys correspond to TMs rather than circuits. Thus, secret keys

can be used to decrypt ciphertexts of messages of arbitrary length and the decryption

time depends only the input-specific run time of the TM on the message, not the worst

case run time. We denote the runtime of a TM M (i.e. number of steps the head takes)

on an input w by runtime(M,w).

27

Single Input Functional Encryption for Turing Machines

Let M = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N
and the running time upper-bounded by a polynomial in λ. A functional encryption

scheme TMFE for a Turing machine familyM consists of four algorithms TMFE =

(TMFE.Setup,TMFE.KeyGen, TMFE.Enc,TMFE.Dec) defined as follows.

• TMFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation
of the security parameter and outputs the master public and secret keys (PK,MSK).

• TMFE.KeyGen(MSK,M) is a PPT algorithm that takes as input the master secret
key MSK and a TM M and outputs a corresponding secret key SKM .

• TMFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key
PK, and an input message x ∈ Σ∗λ of arbitrary length, outputs a ciphertext CTx.

• TMFE.Dec(SKM ,CTx) is an (a deterministic) algorithm that takes as input the
secret key SKM and a ciphertext CTx and outputs a bit b.

Definition 2.6.8 (Correctness). A functional encryption scheme TMFE is correct if for

all M ∈M and all x ∈ Σ∗,

Pr

[
(PK,MSK)← TMFE.Setup(1λ);

TMFE.Dec
(

TMFE.KeyGen(MSK,M),TMFE.Enc(PK,x)
)
6= M (x)

]
= negl(λ)

where the probability is taken over the coins of TMFE.Setup, TMFE.KeyGen, and

TMFE.Enc.

Efficiency [Ananth and Sahai (2016)]. The efficiency property of a public-key FE

scheme for Turing machines says that the algorithm TMFE.Setup on input 1λ should run

in time polynomial in λ, TMFE.KeyGen on input the Turing machine M and the master

key MSK should run in time polynomial in (λ, |M |), TMFE.Enc on input a message x

and the public key should run in time polynomial in (λ, |x|). Finally, TMFE.Dec on

input a functional key of M and an encryption of x should run in time polynomial in

(λ, |M |, |x|, runtime(M,x)).

Distributional Indistinguishability for TMFE. In this section we define the notion

of distributional indistinguishability based security for functional encryption for Turing

machines. This notion was first considered by [Gentry et al. (2014)] in the context of

single key FE for circuits.

28

Definition 2.6.9. A functional encryption scheme F for a TM familyM is secure in the

distributional indistinguishability game, if for all PPT adversaries A, the advantage of

A in the following experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: Amay adaptively request keys for any TMs Mi ∈M.
In response, A is given the corresponding keys SKMi

. This step may be repeated
any polynomial number of times by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two challenge distribution ensembles
(D0(λ), D1(λ))78 to the challenger, subject to the restriction that for any x0 ←
D0,x1 ← D1, it holds that Mi(x0)

c
≈Mi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a
random bit b, samples xb ← Db and returns the ciphertext CTxb .

5. Key Queries: The adversary may continue to request keys for additional functions,
subject to the same restriction that for any x0 ← D0,x1 ← D1, it holds that
Mi(x0)

c
≈Mi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success

probability and 1/2. In the selective game, the adversary is required to declare the

challenge distributions in the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard indis-

tinguishability game is implied by the above by restricting the adversary to choose

distributions D0, D1 above to simply be two messages x0,x1 with probability 1 and

requesting keys that satisfy Mi(x0) = Mi(x1) for all i.

Multi-Input Functional Encryption for Turing Machines

In this section, we define multi input functional encryption (miFE) for Turing machines.

Our definition generalizes the CktFE definitions of [Brakerski et al. (2016); Komargodski

and Segev (2017)]. Our definition supports a fixed number of encryptors, where each

of k (say) encryptors is associated with an index ind ∈ [k]. An encryptor may choose

an input string of unbounded length, denoted by `ind. We note that our definition is

weaker than that of [Badrinarayanan et al. (2015)], who allow for unbounded number of
7We omit the argument λ where it is implicit for notational brevity.
8Describing these distributions by efficiently computable circuits is enough for our purposes.

29

encryptors and each encryptor to have a unique encryption key, a subset of which may

be requested by the adversary. By contrast, our definition, following [Brakerski et al.

(2016)], requires all encryptors to use the same MSK and evidently cannot allow the

attacker to request this.

LetM = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N
and the running time upper-bounded by a polynomial in λ. A multi-input functional

encryption scheme for M is represented as a tuple of four algorithms kTMFE =

(kTMFE.Setup, kTMFE.KeyGen, kTMFE.Enc, kTMFE.Dec) defined as follows.

• kTMFE.Setup(1λ, 1k) is a PPT algorithm that takes as input the unary representa-
tion of the security parameter and the number of users k and outputs the master
secret key MSK.

• kTMFE.KeyGen(MSK,M) is a PPT algorithm that takes as input master secret
key MSK and a TM M and outputs a corresponding secret key SKM .

• kTMFE.Enc(MSK,xind, ind) is a PPT algorithm that takes as input the master
secret key MSK, an index ind ∈ [k] denoting the party number, and an input
message xind of arbitrary length and outputs a ciphertext CTwind

.

• kTMFE.Dec(SKM , {CTxind
}ind∈[k]) is an (a deterministic) algorithm that takes as

input the functional secret key SKM and k ciphertexts CTx1 , . . . ,CTxk and outputs
a bit b.

Definition 2.6.10 (Correctness). A functional encryption scheme kTMFE is correct if

for all M ∈M and all xi ∈ Σ∗ for i ∈ [k],

Pr

[
kTMFE.Dec

(
kTMFE.KeyGen(MSK,M), kTMFE.Enc(MSK,x1, 1),

. . . , kTMFE.Enc(MSK,xk , k)
)
6= M(x1‖ . . . ‖xk)

]
= negl(λ)

where MSK ← kTMFE.Setup(1λ, 1k) and the probability is taken over the coins of

kTMFE.Setup, kTMFE.KeyGen, and kTMFE.Enc.

Efficiency is as defined in Section 2.6.3, with runtimes to polynomially depend on k.

Distributional Indistinguishability for kTMFE. In this section we define the notion

of distributional indistinguishability based security for multi-input functional encryption

for Turing machines. To begin, we define the notion of a valid k-input adversary

analogously to the case of circuits [Brakerski et al. (2016)].

30

Definition 2.6.11 (Valid k-Input Adversary). A PPT algorithm A is a valid k-input ad-

versary, if for a Turing machine spaceMwith alphabet Σ, for all private key k-input func-

tional encryption schemes kTMFE over message spaceX ∗1 × . . .×X ∗k such thatX ∗j ⊂ Σ∗

for all j ∈ [k], for any M ∈M queried by the adversary, and any k pairs of input distri-

bution ensembles (D01(λ), D11(λ)), (D02(λ), D12(λ)), . . . , (D0k(λ), D1k(λ))910 output

by the adversary such that Dbj is a distribution over X ∗j for b ∈ {0, 1}, j ∈ [k], it holds

that

M(x01‖ . . . ‖x0k)
c
≈M(x11‖ . . . ‖x1k)

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [k].

We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for TMs Mi ∈ M. In
response, A is given the corresponding keys SKMi

for some random bit b chosen
by the challenger. This step may be repeated any polynomial number of times by
the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for k pairs of challenge
distribution ensembles (D01, D11), (D02, D12), . . . , (D0k, D1k) to the challenger.
The challenger samples xbj ← Dbj for j ∈ [k] and returns kTMFE.Enc(MSK,xbj, j)
for all j ∈ [k]. This step may be repeated any polynomial number of times by the
attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any

order. The advantage of A is the absolute value of the difference between its success

probability and 1/2. In the selective game, the adversary is required to declare the

challenge ciphertext distributions in the very first step, without seeing the public key.

Definition 2.6.12. A multi input functional encryption scheme kTMFE for a TM family

M is secure in the distributional indistinguishability game, if for all valid PPT adver-

saries A, the advantage of A in the above game is negligible in the security parameter

λ.

We note that the standard indistinguishability game is the special case where the

adversary submits challenge messages rather than distributions and all queried machines

must output exactly the same rather than indistinguishable values.

9We omit the argument λ where it is implicit for notational brevity.
10Describing these distributions by efficiently computable circuits is enough for our purposes.

31

Indistinguishability Obfuscation for Turing Machines

All relevant and prior work [Bitansky et al. (2015a); Canetti et al. (2014); Koppula et al.

(2015); Ananth et al. (2017)] constructs iO for Turing machines (TMs) in the setting

where the input length is fixed a-priori. Essentially, the size of the obfuscated TM grows

with input bound for these constructions. Further, [Lin et al. (2016)] showed that iO for

TMs with unbounded inputs can be built starting from the notion of output-compressing

randomized encodings in the plain model for TMs and that it is impossible to construct

such randomized encodings, in general. However, this still does not rule out the existence

of iO for unbounded-input TMs though. We construct iO for TMs but our techniques

limit the construction also to work for bounded inputs only, as obtained in all prior work.

A uniform PPT machine iO is an indistinguishability obfuscator for a class of Turing

machines {Mλ}λ∈N with input length L, if the following conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any M ∈ Mλ and every
input x ∈ {0, 1}≤L, we have that:

Pr
[
M ′ ← iO(1λ,M,L) : M ′(x) = M(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.

2. Indistinguishability of Equivalent TMs. For every ensemble of pairs of Turing
machines {M0,λ,M1,λ}λ∈N, such that M0,λ(x) = M1,λ(x) for every x ∈ {0, 1}≤L
and runtime(M0,λ,x) = runtime(M1,λ,x), we have that the following ensembles
of pairs of distributions are indistinguishable to any PPT adversary A:{

M0,λ,M1,λ, iO(1λ,M0,λ)
}

c
≈
{
M0,λ,M1,λ, iO(1λ,M1,λ)

}
3. Succinctness. For all security parameters λ ∈ N, for any M ∈ Mλ , we

have that the running time of iO(1λ,M,L) is poly(λ, |M |, L) and the evalua-
tion time of iO(M) on input x where x ∈ {0, 1}≤L, is poly(|M |, L, t) where
t = runtime(M,x).

2.6.4 Constrained Pseudorandom Functions

Constrained pseudorandom functions (introduced concurrently by [Boneh and Waters

(2013); Kiayias et al. (2013); Boyle et al. (2014)]), are pseudorandom functions (PRFs)

that allow the owner of the secret key K to compute a constrained key Kf , such that

anyone who possesses Kf can compute the output of the PRF on any input x such that

f(x) = 1 for some predicate f . The security requirement of constrained PRFs states

32

that the PRF output must still look indistinguishable from random for any x such that

f(x) = 0. We will also require the property of delegatability, formalized below.

Definition 2.6.13. [Boneh and Waters (2013)] Let F : {0, 1}seed(λ) × {0, 1}in(λ) →

{0, 1}out(λ) be an efficient function, where seed, in and out are all polynomials in

the security parameter λ. We say that F is a delegatable constrained pseudoran-

dom function with respect to a set system S ⊆ 2{0,1}
in(λ) if there exist algorithms

(Setup,Constrain,Eval,KeyDel) that satisfy the following:

• Setup(1λ, 1in(λ)) outputs a pair of keys mpk, sk.

• Constrain(sk, S) outputs a constrained keyKS which enables evaluation of F (sk,x)
on all x ∈ S and no other x.

• KeyDel(KS, S
′) outputs a constrained key KS∩S′ which enables the evaluation of

F (sk,x) for all x ∈ S ∩ S ′ and no other x. We note that in systems where KeyDel
is supported, the Constrain algorithm above can be expressed as a special case of
KeyDel by letting sk correspond to the set of all inputs, i.e. sk = K{0,1}in(λ) .

• Eval(KS,x) outputs F (sk,x) if x ∈ S, ⊥ otherwise.

Note that a set system is equivalent to a function family by defining set S as the set

of inputs where the function evaluates to 1. For our purposes, it will be more convenient

to represent sets as functions.

Security. Constrained security is defined using the following two experiments

denoted EXP(0) and EXP(1) with an adversary A. For b ∈ {0, 1} experiment EXP(b)

proceeds as follows:

First, a random key k ∈ {0, 1}seed(λ) is selected and two helper sets C, V ⊆ {0, 1}in

are initialized to ∅. The set V will keep track of all the points at which the adversary

can evaluate. The set C will keep track of the points where the adversary has been

challenged. The sets C and V will ensure that the adversary cannot trivially decide

whether challenge values are random or pseudorandom. In particular, the experiments

maintain the invariant that C ∩ V = ∅.

The adversary A is presented with three oracles as follows:

1. F.Eval: Given x ∈ {0, 1}in, if x /∈ C, the oracle returns F (sk,x), else it returns
⊥. The point x is added to set V .

2. F.Constrain: Given a set S ∈ S from A, if S ∩ C = ∅ the oracle returns
F.Constrain(sk, S), otherwise returns ⊥. The set V is updated to contain S.

33

3. Challenge: Given x from A, where x /∈ V , if b = 0, the adversary is given
F (sk,x), else a random (consistent) element y. The set C is updated to contain x.

When the adversary is done interrogating the oracles, it outputs a bit b′. LetWb be the

event that b′ = 1 in EXP(b). The adversary’s advantage is defined as |Pr[W0]−Pr[W1]|.

We say that the PRF F is a secure constrained PRF with respect to a set system S if all

PPT adversaries A have negligible advantage in the above game.

2.7 Construction: Single-Input FE for Turing Machines

In this section, we construct a single input functional encryption scheme for Turing

machines, denoted by TMFE from the following ingredients:

1. Two compact functional encryption schemes for circuits, 1FE1 and 1FE2. We will
assume that the scheme 1FE2 is decomposable as per Definition 2.6.2.

2. A symmetric encryption scheme SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which
supports T delegations for the function family ft : {0, 1}2·λ → {0, 1} defined as
follows. Let x, t denote integers whose binary representations are x, t of λ bits.
Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

Intuitively, the function is parametrized by a value t and evaluates to 1 if the first half

of its input satisfies x ≥ t. We will denote the constrained PRF key Kft corresponding

to function ft by Kt for ease of notation. By the delegation property of constrained PRFs

(Section 2.6.4), we have that if t′ ≥ t then Kt′ can be derived from Kt. In our construction

the parameter t will represent the time step in the computation, which means that a PRF

key of the current time step can be used to derive PRF keys for future time steps. We will

denote a PRF for this functionality by F. The security proof makes use of a punctured

version of the above cPRF, please see Sections 2.7.3 and A.3 for details.

2.7.1 Construction of Single-Input TMFE

Below we provide our construction for single input FE for Turing machines.

Notation. Note that since 1FE2 is decomposable, there exists an encoding function

E which encodes each bit of the input and since it is compact, the output length of E

34

is independent of the circuit class supported by 1FE2. Thus, by choosing the encoding

function first, the CktFE scheme may support a circuit class that outputs its own cipher-

text components. We denote by Ē the encoding function E applied bitwise to a vector,

i.e. Ē(w) = E(w1) . . . E(wn).

TMFE.Setup(1λ): Upon input the security parameter 1λ, do the following:

1. Let (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ), where 1FE2 is a decompos-
able functional encryption scheme for the circuit family

Next :
((
{SYM} × {0, 1}4λ × Σ× Trap

)
×
(
{ST} × Q

))
→(

C1FE2
)2 ∪ {ACC,REJ,⊥}

Here, Σ and Q are the alphabet and state space respectively of the Turing
machine family. The tokens SYM and ST are flags denoting a symbol and
a state respectively. The set {0, 1}4λ encodes in order, a random value
key-id associated with a TM M , a cPRF key, the current time step in the
computation and the length of the input string, each of λ bits. Here, Trap is
a data structure of fixed polynomial length which will be used in the proof.
Since we do not need it in the construction, we do not discuss it here, please
see Figure 2.6 for its definition. C1FE2 denotes the ciphertext space of 1FE2,
and ACC and REJ are bits indicating accepting and a rejecting states of a TM
respectively.

2. Let (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), where 1FE1 is a compact,
public-key CktFE scheme for the circuit family

ReRand :
(
{0, 1}3λ × Σ× Trap

)
→ C1FE2 ×

(
C1FE2 ∪ {⊥}

)
Again, {0, 1}3λ encodes in order, a root cPRF key, a time step and the length
of the input string respectively, while Σ, Trap and C1FE2 are as described
above.

3. Output PK = 1FE1.PK and MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).

TMFE.Enc(PK,w): Upon input the public key PK, and message w of arbitrary length

` = |w|, do the following:

1. Sample the root key K0 for function ft where t = 0 for the cPRF F described
above.

2. For i ∈ [`], let CTi = 1FE1.Enc(PK, (K0, i, `, wi,Trap)), where Trap is a
data structure which is only relevant in the proof. Here, all fields of Trap are
set to ⊥ except a flag Trap.mode-real = 1 which indicates that we are in the
real world. Please see Figure 2.6 for the definition of Trap.

3. Output CTw = {CTi}i∈[`].

35

TMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the description

of a Turing machine M , do the following. We will assume, w.l.o.g. that the TM is

oblivious (see Appendix 2.6.1 for a justification) and qst ∈ Q is the start state of

M .

1. Sample a random value salt← {0, 1}λ.

2. Interpret MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).

3. Let SKReRand = 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥) where
Figure 2.2 defines the circuit ReRand1FE2.PK,salt,qst,⊥,⊥.

Function ReRand1FE2.PK,salt,qst,C1,C2
(
(K0, i, `, wi,Trap)

)
(a) Initialization and Choosing Real or Trapdoor mode.

Initialize an input vector inp = (wi, qst). If Trap.mode-real = 1, set out =
(c1, c2), where c1 = c2 = ⊥. If i 6= 1, set inp = (wi,⊥). Else invoke
Trap-ModeReRand

(
Trap, inp, salt, `, C1, C2, i

)
as described in Figure 2.3 to obtain

(
inp=

(u1, u2), out=(c1, c2)
)
.

(b) Computing Encrypted Symbols using randomness derived from cPRF. If out.c1 =
⊥, do the following.

i. Noting that i > 0, derive delegated cPRF key Ki from K0 as Ki = F.KeyDel(K0, fi).
Compute randomness for encryption as ri = F.Eval(Ki, (i‖salt)).

ii. Derive delegated cPRF key Ki+1 = F.KeyDel(Ki, fi+1). Set key-id = salt.

iii. Compute the 1FE2 ciphertext component encoding wi = inp.u1 for time step i as

CTsym,i = Ē
(
1FE2.PK1, (SYM, key-id,Ki+1, i, `, wi,Trap); ri

)
iv. Set out.c1 = CTsym,i.

(c) Computing Encrypted State for First Time Step. If
(
(out.c2 = ⊥) ∧ (i = 1)

)
, do the

following.
i. Compute 1FE2 ciphertext component to encode the starting state qst = inp.u2 as

CTst,1 = Ē
(
1FE2.PK2, (ST, qst); r1

)
ii. Set out.c2 = CTst,1.

(d) Output : If i = 1, output out = (c1, c2), else output out = (c1,⊥).

Figure 2.2: This circuit re-randomizes the ciphertexts provided during encryption to use
randomness derived from a cPRF. The seed for the cPRF is specified in
the ciphertext and the input is specified by the key. This ensures that each
ciphertext, key pair form a unique “thread” of execution.

4. Let SKNext = 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,⊥,⊥) where Figure
2.4 defines the circuit Next1FE2.PK,salt,M ,⊥,⊥.

5. Output SKM = (SKReRand, SKNext).

36

Subroutine Trap-ModeReRand
(
Trap, inp, salt, `, C1, C2, i

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = salt, do the following.
(a) If Trap.mode-trap3 = 1, do the following:

i. If
(
(Trap.Sym TS = i) ∧ (i ≤ `)

)
, compute the 1FE2 ciphertext CTsym,i =

SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,i.

ii. If
(
(Trap.ST TS = i) ∧ (i = 1)

)
, compute the 1FE2 ciphertext CTst,i =

SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,1.

(b) If Trap.mode-trap1 = 1, do the following:
i. If

(
(Trap.Sym TS1 = i) ∧ (i ≤ `)

)
, set inp.u1 = Trap.Sym val1 with the symbol

to be encrypted and output at time step i.

ii. If
(
(Trap.ST TS1 = i) ∧ (i = 1)

)
, set inp.u2 = Trap.ST val1 with the start state

to be encrypted and output at time step 1.

(c) If Trap.mode-trap2 = 1, do the following:
i. If

(
(Trap.Sym TS2 = i) ∧ (i ≤ `)

)
, set inp.u1 = Trap.Sym val2 with the symbol

to be encrypted and output at time step i.

ii. If
(
(Trap.ST TS2 = i) ∧ (i = 1)

)
, set inp.u2 = Trap.ST val2 with the start state

to be encrypted and output at time step 1.

If Trap.key-id 6= salt, do the following.
(a) If salt > Trap.key-id set b = 0; else set b = 1a.

(b) If i 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).

aWe assume a lexicographic ordering on the salt values and a generalized comparison operator.

Figure 2.3: Subroutine handling the trapdoor modes in ReRand. This is “active" only in
the proof.

TMFE.Dec(SKM ,CTw): Upon input secret key SKM and ciphertext CTw, do the

following:

1. Interpret SKM = (SKReRand, SKNext) and CTw =
(
CT1, . . . ,CT|w|

)
.

2. For i ∈ [|w|], do the following:

(a) If i = 1, invoke 1FE1.Dec(SKReRand,CT1) to obtain (CTsym,1,CTst,1).
(b) Else, invoke 1FE1.Dec(SKReRand,CTi) to obtain (CTsym,i,⊥).

3. Denote
(
(CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,|w|

)
as the new sequence of

ciphertexts obtained under the Next scheme.

4. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE2.Dec
(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively,
and exit the loop.

37

Function Next1FE2.PK,salt,M ,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, `, s,Trap), z2 = (type, s). If ((z1.type 6=
SYM) ∨ (z2.type 6= ST) ∨ (z1.key-id 6= salt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step
t = z1.t, input Kt+1 = z1.Kt+1 as the constrained PRF key for future time steps.
Denote key-id = z1.key-id, ` = z1.` and Trap = z1.Trap. Using the transition table
of the machine M , look up the next state qt+1 as well as the symbol σt′ to be written
on the work-tape, where t′ is the time step the current work tape cell will next be
read by M . If qt+1 is an accept or reject state, then output ACC or REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an output vector
out = (c1, c2), where c1 = c2 = ⊥. Else invoke Trap-ModeNext

(
Trap, inp, salt, `, C1, C2,

t, t′
)

as described in Figure 2.5 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.
i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key

Kt+1 as rt′ = F.Eval(Kt+1, (t
′‖salt)). Compute the delegated PRF key Kt′+1 =

F.KeyDel(Kt+1, ft′+1).

ii. Compute the 1FE2 ciphertext component encoding the symbol σt′ = inp.u1 for time
step t′ as

CTsym,t′ = Ē
(
1FE2.PK1, (SYM, key-id,Kt′+1, t

′, `, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.
i. Derive the randomness at time step t+ 1 as rt+1 = F.Eval(Kt+1, (t+ 1‖salt)) and

compute the 1FE2 ciphertext component encoding the state qt+1 = inp.u2 for time
step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out = (c1, c2).

Figure 2.4: Function to mimic TM computation. It reads the current symbol, state pair
and outputs an encryption of the new state and symbol to be written under
the appropriate randomness generated using a cPRF.

•
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at time
step t will be accessed again.

(b) Let t = t+ 1 and go to start of loop.

38

Subroutine Trap-ModeNext
(
Trap, inp, salt, `, C1, C2, t, t

′)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out =

(c2, c2), where c1 = c2 = ⊥.
(a) If

(
(Trap.key-id = salt) ∧ (Trap.mode-trap3 = 1)

)
, do the following.

i. If
(
(Trap.Sym TS = t)∧(Trap.Target TS = t′)∧(t > `)

)
, compute the 1FE2 sym-

bol ciphertext CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

ii. If
(
(Trap.ST TS = t) ∧ (Trap.Target TS = t+ 1) ∧ (t > 1)

)
, compute the 1FE2

state ciphertext CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

(b) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > `)

)
, set inp.u1 =

Trap.Sym val1 with the symbol σt′ = Trap.Sym val1 to be encrypted and given as
output for time step t′.

ii. If
(
(Trap.ST TS1 = t) ∧ (Trap.Target TS1 = t + 1) ∧ (t > 1)

)
, set inp.u2 =

Trap.ST val1 with the state qt+1 = Trap.ST val1 to be encrypted and given as
output for time step t+ 1.

(c) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > `)

)
, set inp.u1 =

Trap.Sym val2 with the symbol σt′ = Trap.Sym val2 to be encrypted and given as
output for time step t′.

ii. If
(
(Trap.ST TS2 = t) ∧ (Trap.Target TS2 = t + 1) ∧ (t > 1)

)
, set inp.u2 =

Trap.ST val2 with the state qt+1 = Trap.ST val2 to be encrypted and given as
output for time step t+ 1.

(d) Exit the subroutine returning (inp, out).

Figure 2.5: Subroutine handling the trapdoor modes in Next. This is “active" only in the
proof.

2.7.2 Correctness and Efficiency of Single-Input TMFE

We now argue that the above scheme is correct. The TMFE.Dec algorithm takes as

input a secret key SKM = (SKReRand, SKNext) and a ciphertext CTw =
(
CT1, . . . ,CT|w|

)
under the 1FE1 scheme supporting the functionality ReRand := ReRand1FE2.PK,salt,qst,C2,C2 .

Firstly, note that given a secret key SKReRand along with a ciphertext CTw, we have as

follows.

1. Since CT1 encodes Trap with Trap.mode-real = 1, hence by the correctness of
the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CT1) = (CTsym,1,CTst,1) as output.

2. For i ∈ [2, |w|], since CTi encodes Trap with Trap.mode-real = 1, hence by the
correctness of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CTi) = (CTsym,i ,⊥)
as the correct output.

39

The new sequence of 1FE2 ciphertexts output by ReRand are now sequenced as(
(CTsym,1,CTst,1), CTsym,2, . . . ,CTsym,|w|

)
. The 1FE2 scheme supports the functionality

Next := Next1FE2.PK,salt,M ,C1,C2 . Throughout the 1FE2 decryption, we maintain the invari-

ant that at any time step t, apart from a secret key SKNext, the input to the 1FE2.Dec

algorithm is an entire 1FE2 ciphertext decomposed into two components corresponding

to a symbol and a state ciphertext both of which are computed with the same randomness,

which is computed as F.Eval(K0, (t‖salt))11.

We show that given a secret key SKNext and the sequence of ciphertexts
(
(CTsym,1,CTst,1),

CTsym,2, . . . ,CTsym,|w|
)

generated from the outputs of the 1FE1.Dec algorithm, 1FE2.Dec

correctly computes the decomposed ciphertext components of a symbol and a state that

occur along the computation path and finally outputs the value of machine M on the

sequenced input. Define τ = runtime(M,w). Formally, by the correctness of 1FE2

scheme, at any time step t ∈ [τ − 2], 1FE2.Dec(SKNext, (CTsym,t ,CTst,t)) correctly out-

puts either (CTsym,t′ ,CTst,t+1) with t < t′ ≤ τ −1. Further, for any time step t ∈ [τ −2],

we have:

1. Let t ∈ [τ − 2] \ [`]. If the current work tape cell was accessed12, at some time step
t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, `, σt,Trap) was constructed at
time step t̃. Note that σt may be the blank symbol β. When t ∈ [`], CTsym,t is
constructed at time step t via the ReRand circuit.

2. The ciphertext component CTst,t encoding (ST, qt) at time step t was constructed
at time step t− 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖salt)) = F.Eval(Kt, (t‖salt)) binds the
components CTsym,t and CTst,t .

Thus, at any given time step t ∈ [τ−2], we have a complete ciphertext of 1FE2 which

may be fed again with SKNext to 1FE2.Dec in order to proceed with the computation.

Thus, the execution of 1FE2.Dec at the (τ − 2)th time step provides the complete pair

(CTsym,τ−1,CTst,τ−1). By the correctness of 1FE2 scheme again, at time step t = τ − 1,

invoking 1FE2.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either “Accept" or “Reject"

by simulating the execution of M for the final time step τ inside the function Next, thus

correctly outputting M(w).

11We do not explicitly construct ciphertext components corresponding to blank tape cells in the Next
functionality for ease of exposition; we assume w.l.o.g that any non-input cell that is accessed by the
OTM has been written to by the Next functionality in a previous step, thus generating the requisite symbol
ciphertext.

12We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no
change is made.

40

Efficiency. The TMFE construction described above inherits its efficiency from the

underlying CktFE constructions. Note that the ciphertext is compact and is of size

poly(λ, |w|). Also, the running time of the decryption procedure is input specific since it

mimics the computation ofM on w using secret key encodingM and ciphertext encoding

all the intermediate states of the computation. Additionally, the public parameters are

short poly(λ), since these are just the public parameters of a compact CktFE scheme.

The function keys are also short, since they are CktFE function keys for circuits ReRand

and Next which are of size poly(λ) and poly(|M |, λ) respectively.

2.7.3 Proof of Security for Single-Input TMFE

Next, we prove that the above TMFE scheme satisfies distributional indistinguishability

(DI) for single (or constant) length outputs, as long as the underlying CktFE scheme

satisfies distributional indistinguishability for any output length. In Appendix A.4, we

provide an instantiation of a CktFE scheme satisfying distributional indistinguishability.

Theorem 2.7.1. Assume that the functional encryption schemes for circuits 1FE1 and

1FE2 are DI secure (according to definition 2.6.4) and that F is a secure cPRF for the

function family defined above (according to definition 2.6.13). Then, the construction

of functional encryption for Turing machines TMFE is selective DI secure for single bit

outputs (according to definition 2.6.9).

Since the intuition was discussed in Section 2.4, we proceed to the formal proof.

The Trapdoor Data Structure. To implement the approach discussed in Section 2.4,

we will make use of a data-structure Trap that lets us store all the requisite trapdoor

information needed for the security proof within the ciphertext. In our construction, de-

cryption of a particular input by a particular function key results in a chain of ciphertexts,

each of which contain the trapdoor data structure. In the real world, this information is

not used but as we progress through the proof, different fields become relevant. The data

structure is outlined in Figure 2.6.

Row 1. Above, key-id refers to the particular function key being considered and we

switch the execution chain from b = 0 to b = 1 key by key. All the ciphertexts in

41

mode-real key-id val0 val1 SKE.K ⊥
mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1
mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2
mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure 2.6: Data Structure Trap used for Proof

a given execution chain share the key-id value. We assume a lexicographic order

on the key-id fields, this can be easily ensured by having a counter as part of the

key-id field. We do not make this explicit below for notational brevity. If key-id∗

is the key identity programmed in a particular execution chain, then all keys with

values smaller than key-id∗ will decrypt the chain using the input bit b = 1, and all

keys with values larger than key-id∗ will use b = 0. Hence, the 1FE1 ciphertexts

provided by the encryptor must encode messages corresponding to both values of b,

the fields val0 and val1 are designed for this purpose13. Note that 1FE2 ciphertexts

computed by decryption need not track messages corresponding to both values

of b, since the “chain is extended” via decryption corresponding to exactly one

of b = 0 or b = 1 depending on the relation between the key identities in the

ciphertext and the function key. The field SKE.K refers to the key of a symmetric

key encryption scheme, which is used to decrypt some encrypted value embedded

in the function key. This is a standard trick when the key must hide something in

the public key setting. The flag mode-real means the scheme operates in the real

world mode and the trapdoor information is not used.

Rows 2 and 3. The fields Target TS1 and Target TS2 refer to the time steps corre-

sponding to the “broken link” in the decryption chain, namely the two time steps

for which the ciphertext and function key are being programmed so as to switch

from b = 0 to b = 1. The fields Sym TS1 and ST TS1 are the time steps when the

symbol and state ciphertexts for time step Target TS1 are generated; for instance

ST TS1 = Target TS1−1 since the state ciphertext for a given time step is always

generated in the previous time step, while the symbol ciphertext for a given time

step may be generated much earlier. Sym TS2 and ST TS2 are defined analogously.

The fields Sym val1 and ST val1 contain the symbol and state values which will be

encrypted in the hybrid at the time steps Sym TS1 and ST TS1 when mode-trap1

is set; Sym val2 and ST val2 are defined analogously.

13For the knowledgeable reader, this is similar to what was done by Ananth and Jain (2015).

42

Row 4. When mode-trap3 is set, the symbol and state values are set to ⊥, and the

values hard coded in the function key are used for the target time step. In more

detail, the function key contains SKE encryptions of symbol and state ciphertexts

corresponding to time step Target TS hard-coded within itself. If key-id∗ = key-id,

where key-id∗ is the key identity programmed in a particular execution chain and

key-id is the key identity of the function key in question, and mode-trap3 = 1,

then at time steps SYM TS and ST TS the SKE secret key in row 1 of the Trap

data structure is used to decrypt the SKE encryptions and output the encrypted

values.

The Hybrids. We now proceed to describe our hybrids. For simplicity we first describe

the hybrids for a single function request, for some Turing machine M . We denote by

T the time taken by M to run on the challenge messages. Since the proof is very

involved, we describe it first for the weak selective game, where the adversary specifies

the challenge vectors and machine at the same time. We discuss how to remove this

restriction to obtain selective security at the end of the detailed proof in Appendix A.1.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 =

mode-trap3 = ⊥.

H(1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function

keys) have mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥.

We program the last link in the decryption chain for switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and

state ciphertext pieces are generated for time step T − 1, and the fields Sym val1

and ST val1 contain the symbol and state values which must be encrypted by the

function key in the above time steps when mode-trap1 is set. Note that these fields

exactly mimic the behaviour in the real world, namely the time steps and values

are set to be exactly what the real world decryption would output. The fields

corresponding to TS2 are defined analogously.

Indistinguishability follows from security of 1FE1, since the decryption values in

both hybrids are exactly the same.

43

H(1, 2): Hardwire the key with an SKE encryption of symbol and state ciphertexts

output at step T − 1 for b = 0. Use the same ciphertexts as would be generated in

the previous hybrid.

Indistinguishability follows from security of SKE, since the only difference is the

value of the message encrypted using SKE which is embedded in the key.

H(1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS =

T − 1. In this hybrid the hardwired value in the key is used to be output as step

T − 1 ciphertext.

Indistinguishability follows from security of 1FE1, since the decryption values in

both hybrids are exactly the same.

H(1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all

delegated keys at point (T − 1‖key-id).

Indistinguishability follows from security of 1FE1. Note that we evaluate the cPRF

at point (T − 1‖key-id) only to construct the 1FE2 ciphertext output at time step

T − 1 identified with key-id. This ciphertext is currently hardwired in the function

key, and is computed exactly the same way in both hybrids. Thus, the cPRF key

is only required to compute randomness of points 6= (T − 1‖key-id), for which

the punctured key suffices, and which moreover evaluates to the same value as the

normal key on all such points. Hence, we have that the decryption values in both

hybrids are exactly the same. Note that the punctured key is not used to evaluate

on the punctured points.

H(1, 5): Switch the randomness in the 1FE2 ciphertexts for time step T − 1 which are

hardwired in the key to true randomness.

Indistinguishability follows from security of punctured cPRF for the aforemen-

tioned function family, since the remainder of the distribution only uses the

punctured key.

H(1, 6): Switch the value encoded in the 1FE2 ciphertexts for time step T − 1 which

are hardwired in the key to correspond to b = 1.

Indistinguishability follows from security of 1FE2. Formally, we do a reduction

which plays the security game against the 1FE2 challenger and simulates the TMFE

adversary. The reduction simulates 1FE1 itself and receives the 1FE2 public and

44

function keys from the challenger. The only difference between the two hybrids is

the 1FE2 ciphertext for time step T − 1 which is embedded in the function key as

received from the 1FE2 challenger.

H(1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in

key, using the punctured key for all but the hardwired ciphertext.

Indistinguishability follows from security of cPRF as discussed above.

H(1, 8): Switch the punctured root key to the normal root key.

Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains

b = 0. Set mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of 1FE1, since the decryption values in

both hybrids are exactly the same.

H(2, 2): Hardwire key with SKE encryption of 1FE2 ciphertext for time step T − 2 and

bit b = 0 (same as hybrid (1, 2) but for T − 2).

Indistinguishability follows from security of SKE as above.

H(2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 = 1

with target T − 2.

Indistinguishability follows from security of 1FE1, since the decryption values in

both hybrids are exactly the same.

H(2, 4): Switch normal root key to punctured key at point (T − 2‖key-id).

Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 5): Switch randomness to true in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(2, 6): Switch hardwired 1FE2 ciphertext for step T − 2 to correspond to bit b = 1.

Indistinguishability follows from security of 1FE2.

H(2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

45

H(2, 8): Switch punctured root key to normal root key.

Indistinguishability follows from security of 1FE1 as discussed above.

H(3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-

steps to T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds

to b = 1 and slot 2 for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and

mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of 1FE1, since the decryption values in

both hybrids are exactly the same. Note that now slot T − 1 is redundant, since

T − 2 ciphertext is already switched to b = 1.

HybridH(3, i) will be analogous toH(2, i) for i ∈ [8].

As we proceed left in the execution chain one step at a time, we reach step ` where

` = |w|, i.e. time steps for which 1FE1 ciphertexts are provided by the encryptor.

At this point we will hardwire the ReRand key with symbol ciphertexts for ` time

steps, one at a time, and the Next key for the state ciphertexts14. Moreover, we

must now add an additional hybrid in which the challenge 1FE1 ciphertext at

position ` contains the message bit corresponding to b = 1; intuitively, we must

switch the bit before we slide the trapdoor since the ciphertext for this position is

not generated by decrypting the previous ciphertext. In more detail, inH(T −`, 8),

analogously to hybrid (1, 8), the T − (T − `) = `th bit hard-wired in the trapdoor

is changed to 1. We now add one more hybrid, namely:

H(T − `, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position `

as follows: the encoded message is changed corresponding to b = 1 and flag

mode-real = 1. The other flags mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

Note that all ciphertexts previous to time step ` remain unchanged, and output their

corresponding symbol ciphertexts correctly. The Next circuit outputs the state

ciphertext for time step ` corresponding to bit b = 1. The only difference between

this hybrid and the previous one is that here we use the real mode to output the

symbol ciphertext for b = 1 whereas previously we used the trapdoor mode to

output the same symbol ciphertext. Hence, decryption values in both hybrids are

exactly the same, and indistinguishability follows from security of 1FE1.

14There is an exception at time step 1 when both the symbol ciphertext and the start state ciphertexts
are hardwired in the ReRand key

46

Finally inH(T − 1, 9), the entire chain has been replaced to use b = 1 and all the

challenge 1FE1 ciphertexts have encoded messages corresponding to b = 1 with

mode-real = 1.

H(T): In this hybrid, all the other fields in the trapdoor data structure, excepting

mode-real are disabled and set to ⊥. This is the real world with b = 1.

Since all the encoded messages use b = 1, decryption values are all exactly the

same as inH(T − 1, 9), hence indistinguishability follows from security of 1FE1.

The formal reductions are provided in Appendix A.1.

Multiple Keys. We handle multiple keys by repeating the above set of hybrids key

by key. Each key carries within it an identifier key-id, and if this is less than the key

identifier encoded in the ciphertext, the bit b = 1 is used, if it is greater then the bit b = 0

is used and if it is equal, then the above sequence of hybrids is performed to switch

from b = 0 to b = 1. To support this, the 1FE1 ciphertexts provided by the encryptor

must encode messages corresponding to both values of b, the fields val0 and val1 in the

trapdoor data structure of Figure 2.6 are provided for this purpose. Security follows by a

standard hybrid argument as in [Ananth and Jain (2015)].

2.7.4 Constructing the cPRF.

In Appendix A.3, we provide a construction for a cPRF F which supports puncturing and

delegation as required; the T cPRFs Fi for i ∈ [T] may each be constructed similarly. To

begin, note that we require the root key of F to be punctured at a point i∗ (say). The cPRF

construction for punctured PRF [Boneh and Waters (2013); Kiayias et al. (2013); Boyle

et al. (2014)] (which is in turn inherited from the standard PRG based GGM [Goldreich

et al. (1986)]) immediately satisfies this constraint, so we are left with the question of

delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime

of the Turing machine on the encrypted input (please see Section 2.7), and the jth

delegated key must support evaluation of points {(k‖z) : z ∈ {0, 1}λ} for k ≥ j,

except when (k‖z) = i∗. This may be viewed as the jth key being punctured on points

47

[1, j − 1] ∪ i∗. We show that the GGM based construction for puncturing a single point

can be extended to puncturing an interval (plus an extra point). Intuitively, puncturing an

interval corresponds to puncturing at most λ internal nodes in the GGM tree. In more

detail, we show that regardless of the value of j, it suffices to puncture at most λ points in

the GGM tree to achieve puncturing of the entire interval [1, j − 1]. Please see Appendix

A.3 for details.

2.8 Construction: Multi-Input FE for Turing Machines

In this section we construct a multi-input functional encryption scheme for Turing

machines. Our construction supports a fixed number of encryptors (say k), who may

each encrypt a string wi of unbounded length. Function keys may be provided for Turing

machines, so that given k ciphertexts for wi and a function key for TM M , decryption

reveals M(w1‖ . . . ‖wk) and nothing else. We use the following ingredients for our

construction:

1. A compact, k-input functional encryption scheme for circuits, kFE and a compact,
public-key functional encryption scheme 1FE. As before, we will assume that the
scheme 1FE is decomposable as defined in Section 2.6.

2. A symmetric encryption scheme SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which
supports T delegations for the function family ft : {0, 1}(k+2)·λ → {0, 1} defined
as follows. Let x, t denote integers whose binary representations are x, t of λ bits.
Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

The functionalities supported by kFE and 1FE are called Agg and Next respectively,

described next. Agg aggregates the inputs w1, . . . ,wk of all k parties into one long

“global” string (w1‖ . . . ‖wk), encrypted under the scheme 1FE. Since the length of this

aggregate string is unbounded, a single invocation of Agg produces an encryption of a

single symbol in the string, and the function is invoked repeatedly to produce ciphertexts

for the entire string. Each ciphertext output by the Agg scheme contains a symbol wi

as well as the position of the symbol within the global string. The encryption of the

symbols (and the initial state) also contains a global salt which Agg computes from

the random salts provided in the ciphertexts under the kFE scheme by the individual

48

encryptors. The global salt identifies the particular input combination that is aggregated,

and serves as input to the PRF in the Next functionality.

Our k-input CktFE scheme may be either private or public key, and will result in

the corresponding notion for k-input TMFE. Since the multi input setting for FE is

considered more interesting in the symmetric key setting (see [Brakerski et al. (2016)]

for a discussion), we present our construction in the symmetric key setting – the public

key adaptation is straightforward.

We note that ciphertexts output by Agg, which are encryptions of the symbols in the

aggregate string under the 1FE scheme, are exactly the same as the output of the ReRand

function in the single input scheme of Section 2.7. Therefore, as before, we may have the

functionality Next of the 1FE scheme mimic the computation of the Turing machine on

the global string (w1‖ . . . ‖wk). As in the previous construction, 1FE.Dec accepts as its

inputs a ciphertext decomposed into two components encoding the current symbol on the

worktape and the current state in the computation, both of which have been encrypted

using the same randomness, and outputs a ciphertext component corresponding to the

symbol written on the tape, as well as the next state. The global salt in the ciphertext,

along with a random nonce chosen by KeyGen are used as input to a cPRF as before, to

compute the randomness used to generate ciphertexts. This ensures that the execution

of a given machine on a given input combination is maintained separate from any other

execution, and thwarts “mix and match” attacks, where, for instance, an attacker may

try to combine a state generated at some time step t in one execution with a symbol

generated at time step t from a different execution.

If we instantiate the underlying multi-input CktFE by the construction of [Komar-

godski and Segev (2017)], we may let the arity k be poly-logarithmic in the security

parameter. If we instantiate multi-input CktFE by the construction of [Goldwasser et al.

(2014)], we may support fixed polynomial arity at the cost of worsening the assump-

tion. Note that [Goldwasser et al. (2014)] rely on iO while [Komargodski and Segev

(2017)] rely on compact FE. Note that [Badrinarayanan et al. (2015)] support unbounded

polynomial arity, but from public coin DiO as discussed in Section 2.1.

49

2.8.1 Construction of Multi-Input TMFE

In the following, we denote a k-input, private-key CktFE scheme by k-CktFE and a

decomposable, public key CktFE scheme by 1FE. Since our scheme supports an a-priori

fixed number of parties, say k, we assume that every user is pre-assigned an index

ind ∈ [k].

kTMFE.Setup(1λ, 1k): Upon input the security parameter 1λ and the bound 1k, do the

following:

1. Choosing the functionality for 1FE. Let 1FE be a decomposable, public-
key CktFE for the following circuit family.

Next :
((
{SYM}×{0, 1}(k+4)λ×Σ×Trap

)
×
(
{ST}×Q×{0, 1}k·λ

))
→
(
C1FE

)2 ∪ {ACC,REJ,⊥}

The tokens SYM and ST are flags denoting a symbol and a state respectively
of a Turing machine M which has Σ and Q as the alphabet and state space
respectively. The set {0, 1}(k+4)λ encodes in order, a random value key-id
associated with a TM M , a constrained PRF key, the current time step in
the computation, the length of the input string, each of λ bits and a string of
length k ·λ bits encoding a random value gsalt. Here, Trap is a data structure
of fixed polynomial length which will be used in the proof. Since we do
not need it in the construction, we do not discuss it here, please see Figure
A.7 for its definition. The set {0, 1}k·λ encodes again a random value gsalt
associated with the message component for state. C1FE is the ciphertext space
of 1FE. ACC and REJ denote tokens when M reaches an accepting state and
a rejecting state respectively.

2. Choosing the functionality for kFE. Let kFE be a k-CktFE for the follow-
ing circuit family.

Agg : ({SYM, SP} × {0, 1}4λ × [k]× Σ× Trap)k → C1FE ×
(
C1FE ∪ {⊥}

)
The special token SP denotes an encryption of the length of an input string
corresponding to any user. The set {0, 1}4λ encodes in order, a constrained
PRF key, the time step of the current symbol, the input length and a random
salt each of λ bits. Σ,Trap and C1FE are as described above.

3. Choosing keys for kFE and 1FE.

Let kFE.MSK←kFE.Setup(1λ, 1k), (1FE.PK, 1FE.MSK)←1FE.Setup(1λ, 1k)

4. Output MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

50

kTMFE.Enc(MSK,wind, ind): Upon input the master key MSK, and message wind of

arbitrary length `ind and an index ind ∈ [k], do the following:

1. Interpret the input MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

2. Let wind = w1w2 . . . w`ind . Sample saltind ← {0, 1}λ.

3. Construct the data structure Trap and set all its fields to ⊥ except a flag
Trap.mode-real = 1 which indicates that we are in the real world. The data
structure Trap is only relevant in the proof. Please see Figure 2.6 for the
definition of Trap.

• Encoding Input String and Its Length
4. If ind = 1, do the following:

(a) Sample a root key for the constrained PRF F as K0 ← F.Setup(1λ).
(b) Construct the input message len1 = (SP,K0,⊥, `1, salt1, 1,⊥,Trap).
(c) Encrypt `1 as a special ciphertext CT1,SP = kFE.Enc(kFE.MSK, len).
(d) For i ∈ [`1] do the following:

i. Construct the input message y1,i = (SYM,K0, i, `1, salt1, 1, wi,Trap).
ii. Compute the ciphertext CT1,SYM,i = kFE.Enc(kFE.MSK,yi).

5. If ind ∈ [2, k], do the following:

(a) Construct the input message lenind = (SP,⊥,⊥, `ind, saltind, ind,⊥,Trap).
(b) Encrypt `ind as a special ciphertext CTind,SP = kFE.Enc(kFE.MSK, len).
(c) For i ∈ [`ind] do the following:

i. Construct the input message yind,i = (SYM,⊥, i, `ind, saltind, ind, wi,Trap).
ii. Compute the ciphertext CTind,SYM,i = kFE.Enc(kFE.MSK,yi).

6. Output CTwind
=
(
CTind,SP, {CTind,SYM,i}i∈[`ind]

)
.

kTMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the description

of a Turing machine M , do the following. We will assume, w.l.o.g. that the TM is

oblivious (see Appendix 2.6.1 for a justification) and qst ∈ Q is the start state of

M .

1. Sample a random value rand← {0, 1}λ.

2. Interpret MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

3. Let SKAgg = kFE.KeyGen(kFE.MSK,Agg1FE.PK,rand,qst,⊥,⊥), where Figure
2.7 defines the circuit Agg1FE.PK,rand,qst,⊥,⊥.

4. Let SKNext = 1FE.KeyGen(1FE.MSK,Next1FE.PK,rand,M ,⊥,⊥), where Figure
2.9 defines the circuit Next1FE.PK,rand,M ,⊥,⊥.

5. Output the secret key as SKM = (SKAgg, SKNext).

kTMFE.Dec(SKM , {CTwi}i∈[k]): Upon input secret key SKM and k ciphertexts CTw1 , . . . ,CTwk ,

do the following:

51

Function Agg1FE.PK,rand,qst,C1,C2

(
x1,x2, . . . ,xk

)
(a) Interpret xi = (type,K, t, `, salt, ind, s,Trap), for i ∈ [k] and set a flag proceed1 =

proceed2 = 0.

(b) For all i, j ∈ [k], if xi.ind 6= xj .ind for i 6= j, set proceed = 1. If there exists exactly one
i ∈ [k] for which xi.type = SYM and xj .type = SP,∀j ∈ [k] \ {i} and proceed1 = 1,
set proceed2 = 1. If proceed2 = 0, output ⊥ and abort.

(c) Initialization and Choosing Real or Trapdoor mode.

Let i ∈ [k] be such that xi.type = SYM. Initialize an input vector inp = (σ, qst), where
σ = xi.s. Let gsalt = (x1.salt‖x2.salt‖ . . . ‖xk.salt) and ` =

∑k
i=1 xi.` denote the

global salt and the aggregate input length respectively. Denote pos = xi.t and do the
following:

i. Computing Global Symbol Position : If 1 < xi.ind ≤ k, compute the new
position of the symbol as pos = pos+

∑
r∈S xr.`, where the set S = {r | xr.ind <

xi.ind} ⊂ [k].

ii. If Trap.mode-real = 1, set out = (c1, c2), where c1 = c2 = ⊥. If pos 6= 1, set
inp = (σ,⊥).

iii. Else obtain
(
inp = (u1, u2), out = (c1, c2)

)
= Trap-ModeAgg

(
Trap, inp, rand,

gsalt, `, C1, C2, pos
)

as described in Figure 2.8.

(d) If ((out.c1 = ⊥) ∨ (out.c2 = ⊥)), do the following.
i. Let p ∈ [k] be such that xp.ind = 1 and denote K0 = xp.K as the root key for cPRF.

ii. Derive the randomness for encryption at time step pos as rpos =
F.Eval(K0, (pos‖rand‖gsalt)).

iii. Computing Encrypted Symbols using randomness derived from cPRF. If
out.c1 = ⊥, do the following.

• Compute the delegated PRF key Kpos+1 = F.KeyDel(K0, fpos+1). Set
key-id = rand.

• Compute the 1FE symbol ciphertext encoding σ = inp.u1 as
CTsym,pos = Ē (1FE.PK1,y1; rpos), where y1 = (SYM, key-id,Kpos+1, pos,
`, gsalt, σ,Trap). Set out.c1 = CTsym,pos.

iv. Computing Encrypted State for First Time Step. If ((out.c2 = ⊥) ∧ (pos = 1)),
do the following.

• Compute the 1FE state ciphertext encoding qst = inp.u2 as CTst,1 =
Ē(1FE.PK2,y2; r1), where y2 = (ST, qst, gsalt). Set out.c2 = CTst,1.

(e) If pos = 1, output out = (c1, c2). Otherwise, output out = (c1,⊥).

Figure 2.7: This circuit aggregates and re-randomizes the ciphertexts provided during
encryption to use randomness derived from a cPRF. The seed for the cPRF
is specified in the ciphertext for first party and the input is specified by the
key. This ensures that each ciphertext, key pair form a unique “thread” of
execution.

52

Subroutine Trap-ModeAgg
(
Trap, inp, rand, gsalt, `, C1, C2, pos

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = rand, do the following.
(a) If

(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS = pos) ∧ (pos ≤ `)

)
, compute CTsym,pos =

SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,pos.

ii. If
(
(Trap.ST TS = pos) ∧ (pos = 1)

)
, compute CTst,pos =

SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,1.

(b) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = pos) ∧ (pos ≤ `)

)
, set inp.u1 = Trap.Sym val1 with the

symbol to be encrypted and output at time step pos.

ii. If
(
(Trap.ST TS1 = pos) ∧ (pos = 1)

)
, set inp.u2 = Trap.ST val1 with the start

state to be encrypted and output at time step 1.

(c) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = pos) ∧ (pos ≤ `)

)
, set inp.u1 = Trap.Sym val2 with the

symbol to be encrypted and output at time step pos.

ii. If
(
(Trap.ST TS2 = pos) ∧ (pos = 1)

)
, set inp.u2 = Trap.ST val2 with the start

state to be encrypted and output at time step 1.

(d) If Trap.global-salt < gsalt, set b = 0, if Trap.global-salt > gsalt, set b = 1.
i. If pos 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

If Trap.key-id > rand, set b = 1, if Trap.key-id < rand set b = 0.
(a) If pos 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).

Figure 2.8: Subroutine handling the trapdoor modes in Agg. This is “active" only in the
proof.

1. Interpret the secret key as SKM = (SKAgg, SKNext).

2. Parse CTwind
= (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,`ind)) for all ind ∈ [k].

• Aggregate the ciphertexts of all users.

3. For i = 1 to k, do the following:

(a) For j = 1 to `i, do the following:
i. If ((i = 1)∧(j = 1)), invoke kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,1,CTst,1).

ii. If ((i = 1)∧(j > 1)), invoke kFE.Dec
(
SKAgg,

(
CT1,SYM,j, {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,j ,⊥).

iii. Else, invoke kFE.Dec
(
SKAgg,

(
CTi,SYM,j, {CTn,SP}n∈[k]\{i}

))
to ob-

tain (CTsym,L̃i+j
,⊥), where L̃i =

∑i−1
m=1 `m.

53

Function Next1FE.PK,rand,M,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, `, gsalt, s,Trap), z2 = (type, s, gsalt). If
((z1.type 6= SYM) ∨ (z2.type 6= ST) ∨ (z1.key-id 6= rand) ∨ ∧(z1.gsalt 6=
z2.gsalt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step
z1.t = t, input z1.Kt+1 = Kt+1 as the constrained PRF key for future time steps.
Denote key-id = z1.key-id, ` = z1.`, gsalt = z1.gsalt and Trap = z1.Trap. Using
the transition table of the machine M , look up the next state qt+1 as well as the
symbol σt′ to be written on the work-tape, where t′ is the time step the current work
tape cell will next be read by M . If qt+1 is an accept or reject state, then output
ACC or REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an out-
put vector out = (c1, c2), where c1 = c2 = ⊥. Else invoke
Trap-ModeNext

(
Trap, inp, rand, gsalt, `, C1, C2, t, t

′) as described in Figure 2.10 to ob-
tain

(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.
i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key

Kt+1 as rt′ = F.Eval(Kt+1, (t
′‖rand‖gsalt)). Compute the delegated PRF key

Kt′+1 = F.KeyDel(Kt+1, ft′+1).

ii. Compute the 1FE ciphertext component encoding the symbol σt′ = inp.u1 for time
step t′ as

CTsym,t′ = Ē
(
1FE.PK1, (SYM, key-id,Kt′+1, t

′, `, gsalt, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.
i. Derive the randomness at time step t+ 1 as rt+1 = F.Eval(Kt+1, (t+ 1‖rand‖salt))

and compute the 1FE2 ciphertext component encoding the state qt+1 = inp.u2 for
time step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1, gsalt); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out =
(
c1, c2

)
Figure 2.9: Function to mimic TM computation. It reads the current symbol, state pair

and outputs an encryption of the new state and symbol to be written under
the appropriate randomness generated using a cPRF.

• Execute the TM on aggregated input.

4. The aggregated sequence of ciphertexts under the Next scheme, of length
Lk =

∑k
j=1 `j computed above is expressed as:

((CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,`1 ,CTsym,`1+1, . . . ,CTsym,Lk).

5. Let t = 1. While the Turing machine does not halt, do:

54

Subroutine Trap-ModeNext
(
Trap, inp, rand, gsalt, `, C1, C2, t, t

′)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out =

(c2, c2), where c1 = c2 = ⊥.
1. If

(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the

following.
(a) If

(
(Trap.Sym TS = t)∧(Trap.Target TS = t′)∧(t > `)

)
, compute the 1FE2 sym-

bol ciphertext CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

(b) If
(
(Trap.ST TS = t) ∧ (Trap.Target TS = t+ 1) ∧ (t > 1)

)
, compute the 1FE2

state ciphertext CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

2. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the

following:
(a) If

(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > `)

)
, set inp.u1 =

Trap.Sym val1 with the symbol σt′ = Trap.Sym val1 to be encrypted and given as
output for time step t′.

(b) If
(
(Trap.ST TS1 = t) ∧ (Trap.Target TS1 = t + 1) ∧ (t > 1)

)
, set inp.u2 =

Trap.ST val1 with the state qt+1 = Trap.ST val1 to be encrypted and given as
output for time step t+ 1.

3. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the

following:
(a) If

(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > `)

)
, set inp.u1 =

Trap.Sym val2 with the symbol σt′ = Trap.Sym val2 to be encrypted and given as
output for time step t′.

(b) If
(
(Trap.ST TS2 = t) ∧ (Trap.Target TS2 = t + 1) ∧ (t > 1)

)
, set inp.u2 =

Trap.ST val2 with the state qt+1 = Trap.ST val2 to be encrypted and given as
output for time step t+ 1.

4. Exit the subroutine returning (inp, out).

Figure 2.10: Subroutine handling the trapdoor modes in Next. This is “active" only in
the proof.

(a) Invoke 1FE.Dec
(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively,
and exit the loop.

• (CTsym,t′ ,CTst,t+1).

Note that t′ is the next time step that the work tape cell accessed at time
step t will be accessed again.

(b) Let t = t+ 1 and go to start of loop.

55

2.8.2 Correctness and Efficiency of Multi-Input TMFE

The proof of correctness is split into two parts. In the first part we argue that, given as

input the secret key SKAgg along with k ciphertexts under the kFE scheme, exactly one

of which encodes a symbol and the other (k− 1) encode the individual input lengths, the

kFE.Dec algorithm computes a 1FE ciphertext component of the symbol with its updated

position in the global string. By repeating this process for all symbols encoded by all

users, we obtain a sequence of 1FE ciphertext components, each containing its updated

position in the aggregated string. Additionally, each of these ciphertext components

contains a global/aggregate salt that is generated from concatenating each individual

encryptor’s randomly generated salts. This global salt identifies the particular input

combination being aggregated.

Correctness of the second part corresponds to the correct execution of the Turing ma-

chine on the aggregate sequence of ciphertexts, and this is exactly the same as in Section

2.7. As before, we maintain the invariant that at any time step t, the input to the 1FE.Dec

algorithm is a complete 1FE ciphertext decomposed into two components corresponding

to symbol and state (along with additional auxiliary inputs), both computed with the

same randomness F.Eval(K0, (t‖rand‖gsalt)).

In more detail, we have the following. Correctness of Aggregation. Formally, let

there be k users so that k ciphertexts {CTwind
}ind∈[k] are given as input to kTMFE.Dec

algorithm. For all ind∈ [k], let `ind be the length of input string of user ind. Each ci-

phertext CTwind
is a sequence (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,`ind)) of ciphertexts,

where the first component CTind,SP encodes the input string length of user ind and the

second component {CTind,SYM,i}i∈[`ind] encodes in order the i-th symbol wi of the actual

input string wind = (w1, w2, . . . , w`ind) of the same user. These ciphertexts are generated

under the kFE scheme with the master secret key kFE.MSK which supports a k-input

functionality Agg := Agg1FE.PK,rand,qst,⊥,⊥. Therefore, given secret key SKAgg, we have:

1. Invoking kFE.Dec on the ciphertext CT1,SYM,1 encoding the first symbol of w1

along with the special ciphertexts CTind,SP encoding |wind| for ind 6= 1 gives
(CTsym,1,CTst,1). By correctness of kFE decryption, we have:

kFE.Dec
(
SKAgg,

(
CT1,SYM,1, {CTind,SP}ind∈[k]\{1}

))
= (CTsym,1,CTst,1) .

2. Invoking kFE.Dec on the ciphertext CT1,SYM,j encoding the jth symbol of w1

along with the special ciphertexts CTind,SP encoding |wind| for ind 6= 1 gives

56

(CTsym,j,⊥). By correctness of kFE decryption, we have:

kFE.Dec
(
SKAgg,

(
CT1,SYM,j, {CTind,SP}ind∈[k]\{1}

))
= (CTsym,j,⊥) .

3. Finally, ∀ ind ∈ [k]\{1}, invoking kFE.Dec on the ciphertext CTind,SYM,j encoding
the jth symbol of wind along with the special ciphertexts CTind′,SP encoding |wind′ |
for ind 6= ind′ computes the new global position of the symbol in the aggregated
string and outputs

(
CTsym,L̃i+j

,⊥
)
. By correctness of kFE decryption, we have:

kFE.Dec
(
SKAgg,

(
CTind,SYM,j, {CTind′,SP}ind′∈[k]\{ind}

))
=
(
CTsym,L̃i+j

,⊥
)
,

where L̃i =
∑ind−1

m=1 `m.

Note that F.Eval(K0, (pos‖rand‖gsalt)) is the randomness used to compute each of

these ciphertext components, where pos refers to the global position specific to a symbol

in the aggregate input string.

Correctness of TM Execution. The 1FE scheme supports the functionality Next :=

Next1FE.PK,rand,M ,⊥,⊥. Let the newly generated and organized sequence of ciphertexts

based on time steps be as follows:
(

(CTsym,1,CTst,1) , {CTsym,i}i∈[2,Lk]

)
with Lk =∑k

i=1 `i. Let w = (w1, w2, . . . , w`1 , w`1+1, w`1+2, . . . , w`1+`2 , . . . , wLk) be the aggre-

gated input string and define τ = runtime(M,w). For any time step t ∈ [τ − 2], we

have

1. Let t ∈ [τ − 2] \ [`]. If the current work tape cell was accessed15, at some time
step t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, `, gsalt, σt,Trap) was
constructed at time step t̃. Note that σt may be the blank symbol β. When t ∈ [`],
CTsym,t is constructed at time step t via the Agg circuit.

2. The ciphertext component CTst,t encoding (ST, qt, gsalt) at time step t was con-
structed at time step t− 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖rand‖gsalt)) = F.Eval(Kt, (t‖rand‖gsalt))
binds CTsym,t and CTst,t and both the encoded messages also share the same global
salt.

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE which

may be fed again with SKNext to 1FE.Dec in order to proceed with the computation.

Thus, the execution of 1FE.Dec at the (τ − 2)th time step provides the complete pair

(CTsym,τ−1,CTst,τ−1). By the correctness of 1FE scheme again, at time step t = τ − 1,

15We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no
change is made.

57

invoking 1FE.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either “Accept" or “Reject" by

simulating the execution of M for the final time step τ inside the function Next, thus

correctly outputting M(w).

Efficiency. The kTMFE construction described above inherits its efficiency from the

underlying kFE and 1FE. The ciphertext is compact and is of size poly(λ, k, |w|), where

w = (w1, . . . ,wk). The running time of the decryption procedure is input specific since

it mimics the computation of M on w using secret key encoding M and ciphertext

encoding all the intermediate states of the computation. Additionally, kFE and 1FE being

compact CktFE schemes, the parameters are short poly(k, λ) and poly(λ) respectively.

The function keys are also short, since they are CktFE function keys for circuits Agg and

Next which are of size poly(k, λ) and poly(|M |, λ) respectively.

2.8.3 Proof of Security for Multi-Input TMFE

Security of the above construction follows the same blueprint as the proof in Section

2.7 except that instead of single input functionality ReRand, we now use a k-input

functionality Agg to aggregate and rerandomize the inputs. We emphasize that the

outputs produced by the Agg functionality are exactly the same as the outputs produced

by ReRand functionality in Section 2.7: namely a sequence of 1FE ciphertexts encoding

the symbol and global position, computed using randomness derived from a cPRF. Hence,

the chief new ingredient in the security proof is the security of Agg functionality, which

is derived from the security of the kFE scheme.

Formally, we argue that:

Theorem 2.8.1. Assume that the k input FE for circuits kFE satisfies standard indis-

tinguishability (Definition 2.6.6), and the single input FE for circuits 1FE satisfies

distributional indistinguishability (Definition 2.6.4). Assume that the cPRF is secure

according to definition 2.6.13. Then, the above construction of k input kTMFE satisfies

standard indistinguishability (Definition 2.6.9).

The proof follows the outline of the single input case, except that now we must

additionally keep track of multiple execution threads corresponding to various combi-

nations of ciphertexts across multiple users, i.e. various “global salt” values. In more

58

detail, if each of k users makes Q ciphertext requests, then we have Qk total possible

combinations of ciphertexts, each yielding a different execution thread per key. Note that

each of the Qk combinations is identified with a unique “global salt”. We will assume

w.l.o.g that there is a lexicographic ordering on all the global salt values; this can be

easily ensured by associating a counter value with each random salt. We do not explicitly

include this for notational brevity.

In the single input case, we replaced the execution chain of a machine over an input

string from b = 0 to b = 1, step by step, and enumerated over all keys. Now, we again

replace an execution chain step by step as in the single input case, but additionally

enumerate over all Qk combinations for each key, as well as over all keys as before.

The number of hybrids grows multiplicatively by Qk. Since the proof structure follows

mostly the single input case, we provide only the conceptual description of the main

ideas and the hybrids’ sequence in the proof in Appendix A.2.

2.9 Indistinguishability Obfuscation for Turing Machines

In this section we construct indistinguishability obfuscation for Turing machines with

bounded length input, i.e. the input length n = n(λ) is any fixed polynomial in the

security parameter.

Our construction is a straightforward adaptation of the miFE to iO compiler for

circuits [Goldwasser et al. (2014)] to Turing machines. To support inputs of length n, we

need an (n+ 1)-ary miFE for Turing machines denoted as (n+1)-TMFE; we instantiate

this with our construction from Section 2.8.

In more detail, the obfuscation of M comprises the secret key SKU for the Universal

Turing machine and (2n+1) ciphertexts under the (n+1)-TMFE scheme, where the first

2n ciphertexts {CTb
i}i∈[n],b∈{0,1} encode bits 0 and 1 respectively for each of n positions

while the last ciphertext CTM encodes machine 〈M〉. To evaluate iO(M) on an input x =

(x1, . . . , xn) ∈ Σn
λ, the evaluator runs (n+1)-TMFE.Dec

(
SKU, ({CTxi

i }i∈[n],CTM)
)

to

get M(x). To argue security we only need the (n+1)-TMFE scheme to be selectively

secure against two ciphertext queries per slot and a single key query, as in the case of

circuits.

59

2.9.1 Construction

LetM = {Mλ}λ∈N denote an ensemble of Turing machines with alphabet Σλ = {0, 1}.

Let Encode = {Encodeλ : Mλ → Σ∗enc}λ∈N be an ensemble of encoding schemes for

M on alphabet Σenc such that for any M ∈ Mλ,Encodeλ (M) = 〈M〉. Further, let

U = {Uλ}λ∈N denote the set of Universal Turing machines parameterized by the security

parameter with alphabet ΣU = Σenc ∪ Σλ such that for all λ ∈ N, for any M ∈Mλ and

any x = (x1, . . . , xn) ∈ Σn
λ, Uλ(x, 〈M〉) takes x and an encoding 〈M〉 of M , simulates

M on x and outputs M(x).

Let (n+1)-TMFE denote the (n+ 1)-ary multi-input functional encryption scheme

for Turing machines with alphabet ΣU . We construct an ensemble of indistinguishability

obfuscators iO = {iOλ}λ∈N with iOλ = (iO.Obf, iO.Eval) forMλ with inputs x ∈ Σn
λ

as follows.

iO.Obf(1λ, 1n,M): On input the security parameter λ, a bound n ∈ N and a Turing

machine M ∈Mλ, do the following:

1. Compute the encoding of M as Encodeλ (M) = 〈M〉.

2. Compute a master secret key MSK← (n+1)-TMFE.Setup (1λ, 1n+1).

3. Compute the secret key for machine Uλ as SKU ← (n+1)-TMFE.KeyGen(MSK,Uλ).

4. For i ∈ [n], compute the encryptions CTb
i = (n+1)-TMFE.Enc(MSK, (b, i)), b ∈

Σλ.

5. Compute the encoding ofM as CTn+1 = (n+1)-TMFE.Enc(MSK, (〈M〉, n+
1)).

6. Output the obfuscated machine as M̃ =
(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ ,CTn+1

))
.

iO.Eval(M̃,x): On input the obfuscated machine M̃ and an input x ∈ Σn
λ, do the

following:

1. Parse M̃ =
(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ ,CTn+1

))
and x = (x1, . . . , xn).

2. Compute and output (n+1)-TMFE.Dec (SKU, (CTx1
1 , . . . ,CTxn

n ,CTn+1)).

Correctness and Efficiency. Correctness is directly followed by the correctness of

(n+1)-TMFE scheme. Since the (n+1)-TMFE we use is compact, the obfuscation size

obtained by the above scheme is poly(λ, |U|, |M |, n).

60

2.9.2 Proof of Security

We show that the construction is secure. Formally:

Theorem 2.9.1. Assume that (n+1)-TMFE is a 1-key, 2-ciphertext selectively secure

(n+ 1)-ary multi-input functional encryption scheme for Turing machines which satisfies

standard indistinguishability (Section 2.6.3). Then the construction in Section 2.9.1 is

a secure indistinguishability obfuscator for the Turing machines (Section 2.6.3) with

bounded input length n.

Proof. Consider two Turing machines M0,M1 ∈ Mλ such that ∀x ∈ Σn
λ,M0(x) =

M1(x). We now show that if there exists a PPT adversary A that distinguishes between

M̃0 = iO(M0) and M̃1 = iO(M1) with non-negligible advantage, then there exists an-

other PPT adversary B which breaks the (n+1)-TMFE scheme with the same advantage.

We construct B as follows.

B runs A to get two functionally equivalent machines M0,M1 ∈ Mλ. It does the

following:

1. B prepares a pair of sequences (x0,x1), each containing two challenge message
vectors for the (n+1)-TMFE challenger C such that for all b ∈ {0, 1},xb ={

(xb1,1, . . . , x
b
n+1,1), (xb1,2, . . . , x

b
n+1,2)

}
.

– For all i ∈ [n], B sets x0
i,1 = x1

i,1 = 0 and x0
i,2 = x1

i,2 = 1

– For i = n+ 1, B sets xbn+1,1 = xbn+1,2 = 〈Mb〉, where Encodeλ(Mb) = 〈Mb〉.

B sends the pair (x0,x1) to C and receives (CT1,j, . . . ,CTn+1,j)j∈[2].

2. B requests C for a secret key corresponding to machine Uλ and receives SKU.

3. B sends M̃ = (SKU, ({CT1,j, . . . ,CTn,j}j∈[2],CTn+1,1)) as the challenge obfusca-
tion to A and outputs a bit b′ returned by A.

This completes the description of the reduction B. We first observe that for any

x = (x1, . . . , xn) ∈ Σn
λ, since M0 and M1 are functionally equivalent Turing machines,

we have that:

Uλ(x, 〈M0〉) = M0 (x) = M1 (x) = Uλ(x, 〈M1〉)

Further,A being a valid iO adversary, we have runtime(M0,x) = runtime(M1,x). Thus

B is a valid (n+1)-TMFE adversary. Hence, if the (n+1)-TMFE challenger had chosen

61

challenge bit 0, then the obfuscation M̃ is of M0, else of M1. Thus the advantage of

A in distinguishing the two cases translates exactly to the advantage of B against the

(n+1)-TMFE scheme.

62

CHAPTER 3

Attribute Based Encryption and its Generalizations for

Nondeterministic Finite Automata from Lattices

3.1 Introduction

In this chapter we provide new constructions of attribute based encryption (ABE) and its

generalizations in the nondeterministic finite automata model of computation. Before

stating our results in detail, we first describe ABE informally and discuss below the state

of the art prior to our work.

Attribute based encryption (ABE) [Sahai and Waters (2005)] is an encryption

paradigm that enables fine grained access control on encrypted data. In attribute based

encryption, a ciphertext of a message m is labelled with a public attribute x and secret

keys are labelled with a Boolean function f . Decryption succeeds to yield the hidden

message m if and only if the attribute satisfies the function, namely f(x) = 1. Starting

with the seminal work of [Sahai and Waters (2005)], ABE schemes have received a lot

of attention in recent years [Goyal et al. (2006); Boneh and Waters (2007); Bethencourt

et al. (2007); Katz et al. (2008); Lewko et al. (2010); Agrawal et al. (2011); Waters

(2012); Gorbunov et al. (2013); Boneh et al. (2014); Gorbunov et al. (2015); Gorbunov

and Vinayagamurthy (2015); Brakerski and Vaikuntanathan (2016); Ananth et al. (2019)],

yielding constructions for various classes of functions under diverse assumptions.

ABE for uniform models of computation has also been studied, but so far, we

have very few constructions from standard assumptions. [Waters (2012)] provided a

construction of ABE for Deterministic Finite Automata (DFA) from parametrized or “q-

type” assumptions over bilinear maps. Generalizing this construction to Nondeterministic

Finite Automata (NFA) was left as an explicit open problem1 in [Waters (2012)], and
1Note that an NFA can be converted to an equivalent DFA but this transformation incurs exponential

blowup in machine size.

has remained open to date. Constructions from other assumptions such as more standard

pairing based assumptions, or lattice based assumptions has also proved elusive. [Boyen

and Li (2015)] provided a construction of ABE for DFA from the Learning With Errors

(LWE) assumption but this was restricted to DFAs with bounded length inputs, rendering

moot the primary advantage of a DFA over circuits. Agrawal and Singh [Agrawal and

Singh (2017)] constructed a primitive closely related to ABE for DFA, namely reusable

garbled DFA from LWE, but their construction is limited to a security game where the

adversary may only request a single function key.

From strong assumptions such as the existence of multilinear maps [Garg et al.

(2013a)], witness encryption [Goldwasser et al. (2013b)] or indistinguishability obfusca-

tion [Barak et al. (2001); Garg et al. (2013a)], attribute based encryption (indeed, even

its more powerful generalization – functional encryption) has been constructed even

for Turing machines [Ananth and Sahai (2017); Agrawal and Maitra (2018); Kitagawa

et al. (2019)], but these are not considered standard assumptions; indeed many candidate

constructions have been broken [Cheon et al. (2015); Coron et al. (2015); Hu and Jia,

(2015); Cheon et al. (2016b,a); Miles et al. (2016); Coron et al. (2017); Apon et al.

(2017)]. Very recently, [Ananth et al. (2019)] constructed ABE for RAM programs

from LWE achieving decryption complexity that is sublinear in the database length.

However, the key sizes in their construction are massive and grow with the size of the

entire database as well as with worst case running time of the program on any input.

In particular, restricting the construction to any model of computation that reads the

entire input string (e.g. DFA, TM) yields a bounded input solution, since the key size

depends on the input length. Similarly, [Brakerski and Vaikuntanathan (2016); Goyal

et al. (2016)] construct attribute based encryption for “bundling functionalities” where

the size of the public parameters does not depend on the size of the input chosen by

the encryptor, say `. However, the key generator must generate a key for a circuit with

a fixed input length, say `′, and decryption only succeeds if ` = `′. Thus, bundling

functionalities do not capture the essential challenge of supporting dynamic data sizes;

this was noted explicitly in [Goyal et al. (2016)].

64

3.2 Our Contributions

In this work, we construct the first symmetric key attribute based encryption scheme for

nondeterministic finite automata (NFA) from the learning with errors (LWE) assumption

in lattices. Our scheme supports unbounded length inputs as well as unbounded length

machines. In more detail, secret keys in our construction are associated with an NFA M

of unbounded length, ciphertexts are associated with a tuple (x,m) where x is a public

attribute of unbounded length and m is a secret message bit, and decryption recovers

m if and only if M(x) = 1. Moreover our construction achieves succinct parameters,

namely, the length of the function key and ciphertext grow only with the machine size

and input length respectively (and do not depend on the input length and machine size

respectively).

Further, we leverage our ABE to achieve (restricted notions of) attribute hiding

analogous to the circuit setting, obtaining the first predicate encryption and bounded

key functional encryption schemes for NFA. We achieve machine hiding in the single

key2 setting to obtain the first reusable garbled NFA from standard assumptions. This

improves upon the result of [Agrawal and Singh (2017)], which can only support a single

key request (as against bounded), and only DFAs (as against NFAs).

The above results raise the question of whether full fledged functional encryption

(please see Appendix B.1.3 for the formal definition), which achieves full attribute hiding

for NFAs is possible under standard assumptions. However, we show that secret key

functional encryption even for DFA with security against unbounded key requests implies

indistinguishability obfuscation (iO) for circuits. Since constructing iO for circuits from

standard assumptions is a central challenge in cryptography, this suggests that there is a

barrier in further generalizing our result to achieve full attribute hiding.

We summarize our results in Table 3.1.

3.3 Our Techniques

In this section, we provide an overview of our techniques. Before we proceed, we discuss

the technical barriers that arise in following the approaches taken by prior work. Since

the construction by [Waters (2012)] is the only one that supports unbounded attribute

2This may be generalized to bounded key, for any a-priori fixed (polynomial) bound.

65

Construction Model Input
Length

Number of
Keys

Attribute
and

Function
Hiding

Assumption

[Waters
(2012)]

DFA unbounded unbounded (no, no) q-type
assumption
on bilinear

maps
[Boyen and
Li (2015)]

DFA bounded unbounded (no, no) LWE

[Agrawal
and Singh
(2017)]

DFA unbounded single (yes, yes) LWE

[Ananth
et al.

(2019)]

RAM bounded unbounded (no, no) LWE

Section 3.7 NFA unbounded unbounded (no, no) LWE
Appendix

B.2
NFA unbounded unbounded (yes∗, no) LWE

Appendix
B.4

NFA unbounded bounded (yes, yes) LWE

Table 3.1: Prior work and our results. Above, we say that input length supported by
a construction is bounded if the parameters and key lengths depend on the
input size. For attribute hiding, yes∗ indicates hiding in the restricted security
games of predicate or bounded key functional encryption.

lengths and unbounded key requests by the adversary, 3 it is the most promising candidate

for generalization to NFA. However, the challenges in generalizing this construction to

support NFAs were explicitly discussed in the same work, and this has seen no progress

in the last seven years to the best of our knowledge, despite the significant research

attention ABE schemes have received. Moreover, even the solution for DFAs is not fully

satisfactory since it relies on a non-standard parametrized or “q-type” assumption.

Boyen and Li [Boyen and Li (2015)] attempt to construct ABE for DFAs from the

LWE assumption, but their construction crucially requires the key generator to know the

length of the attribute chosen by the encryptor, since it must provide a fresh “trapdoor”

for each row of the DFA transition table and each input position. Indeed, reusing the

same trapdoor for multiple positions in the input leads to trivial “mix and match” attacks

against their scheme. Thus, it is not even clear how to obtain ABE for DFA with support

for unbounded lengths by following this route. The work of Agrawal and Singh [Agrawal

3The construction is later extended to be adaptively secure rather than selectively secure (e.g., [Attra-
padung (2014)]), but the basic structure of the construction is unchanged.

66

and Singh (2017)] gives a construction of functional encryption for DFA from LWE that

does handle unbounded length inputs, but only in the limited single key setting. Their

construction crucially relies on reusable garbled circuits [Goldwasser et al. (2013a)]

which is a single key primitive, and natural attempts to generalize their construction to

support even two keys fails4. Similarly, the very recent construction of [Ananth et al.

(2019)] is also inherently bounded length, for reasons similar as those discussed above

for [Boyen and Li (2015)].

Thus, the handful of existing results in this domain all appear to pose fundamental

barriers to generalization. To overcome this hurdle, we design completely new techniques

to handle the challenge of unbounded length; these may be applicable elsewhere. We

focus on the symmetric key setting, and proceed in two steps: i) we provide a secret

key ABE scheme for NFA that supports unbounded length inputs but only supports

bounded size NFA machines, and ii) we “bootstrap” the construction of step (i) to handle

unbounded length machines. We additionally achieve various notions of attribute hiding

as discussed above, but will focus on the ABE construction for the remainder of this

overview. We proceed to describe each of these steps in detail.

Constructing NfaABE for Bounded Size NFA. Our first goal is to construct a secret

key ABE scheme for NFA that supports unbounded length inputs but only supports

bounded size NFA machines from the LWE assumption. Since ABE for circuits has

received much success from the LWE assumption [Gorbunov et al. (2013); Boneh et al.

(2014)], our first idea is to see if we can run many circuit ABE schemes “in parallel”,

one for each input length. We refer to our resulting ABE scheme for NFAs as NfaABE

and the ABE for circuits scheme simply as ABE, in order to differentiate them.

Naïve Approach: We start with the following naïve construction that uses a (public

key) ABE for circuits as an ingredient. The master secret key of the NfaABE scheme is

a PRF key K. This PRF key defines a set of key pairs {(ABE.mpkj,ABE.mskj)}j∈[2λ]

of the ABE scheme, where each (ABE.mpkj,ABE.mskj) is sampled using randomness

derived from the PRF key K and supports circuits with inputs of length j. When one

encrypts a message for a ciphertext attribute x, one chooses the master public key

ABE.mpk|x| and encrypts the message using the key, where |x| is the length of x. We can

4For the knowledgeable reader, bounded key variants of reusable garbled circuits exist, for instance by
applying the compiler of [Gorbunov et al. (2012)], but using this in the aforementioned construction does
not work due to the structure of their construction.

67

encrypt for x with length at most 2λ and therefore can deal with essentially unbounded

length strings as ciphertext attributes. In order to generate a secret key for a machine M ,

one has to convert it into a circuit since our underlying ingredient is an ABE for circuits.

The difference between an NFA machine M and a circuit is that while the former takes a

string with arbitrary length as an input, the input length for the latter is fixed. To fill the

gap, we prepare a circuit version of NFA M for all possible input lengths. Namely, we

convert the machine M into an equivalent circuit M̂j with input length j for all j ∈ [2λ].

Then, we generate ABE secret key associated with M̂j by running the key generation

algorithm of the ABE for all j to obtain the NfaABE secret key {ABE.skj}j∈[2λ]. When

decrypting a ciphertext associated with x, the decryptor chooses ABE.sk|x| and runs the

decryption algorithm of the underlying ABE to retrieve the message.

Reducing the Number of Keys: Obviously, there are multiple problems with this

approach. The first problem is that there are 2λ instances of ABE and thus the secret key

of NfaABE is exponentially large. To handle this, we thin out most of the instances and

change the secret key to be {ABE.sk2j}j∈[0,λ]. In order to make sure that the decryption

is still possible even with this change, we modify the encryption algorithm. To encrypt

a message for an attribute x, one chooses i ∈ [0, λ] such that 2i−1 < |x| ≤ 2i and uses

the i-th instance to encrypt the message, where if the length of x is not exactly 2i, it

is padded with blank symbols to adjust the length. This change reduces the number of

instances down to be polynomial.

Reducing the Size of Keys: However, a bigger problem is that even though we re-

duced the number of secret keys, we did not reduce their size, which is still not polyno-

mial. In particular, there is no guarantee on the size of ABE.sk2λ since the associated

circuit M̂2λ is of exponential size. Here, we leverage a crucial efficiency property that

is enjoyed by the ABE for circuits constructed by [Boneh et al. (2014)], namely, that

the secret keys in this scheme are very short. The size of secret keys in their scheme is

dependent only on the depth of the circuits being supported and independent of the input

length and size. Thus, if we can ensure that the depth of M̂2λ is polynomially bounded

(even though the input is exponentially long), we are back in business.

However, converting the NFA to a circuit requires care. We note that implementing

the trivial approach of converting an NFA to a circuit by keeping track of all possible

states while reading input symbols results in circuit whose depth is linear in input length,

68

which is exponential. To avoid this, we make use of a divide and conquer approach to

evaluate the NFA, which makes the circuit depth poly-logarithmic in the input length.

As a result, the size of the secret keys can be bounded by a polynomial as desired.

Efficiency of Key Generation: The final and the most difficult problem to be ad-

dressed is that even though we managed to make the size of {ABE.sk2j}j∈[0,λ] polyno-

mially bounded, computational time for generating it is still exponentially large, since

so is the size of the associated circuits {M̂2j}j∈[0,λ]. To resolve the problem, we note

that the only algorithm which has the “space” to handle the unbounded input length is

the encryption algorithm. Hence, we carefully divide the computation of generating

{ABE.sk2j}j∈[0,λ] into pieces so that the key generator only needs to do work propor-

tional to the size of the machine, the encryptor does work proportional to the size of the

input and the decryptor computes the requisite key on the fly.

To implement this idea, we use succinct single-key functional encryption (FE), which

can be realized from the LWE assumption [Goldwasser et al. (2013a); Agrawal (2017)].

To support unbounded input length, we generate λ + 1 instances of the FE scheme to

obtain {FE.mpkj,FE.mskj}j∈[0,λ]. The secret key of NfaABE is {FE.ctj}j∈[0,λ], where

FE.ctj = FE.Enc(FE.mpkj, (M,K)) is an encryption of a description of the associated

NFA M and the PRF key K under the j-th instance of the FE scheme. To provide the

matching secret key, the encryptor appends FE.ski = FE.KeyGen(FE.mski, Ci) to the

ciphertext. Here, x is the attribute vector of unbounded length, i is an integer such that

2i−1 < |x| ≤ 2i and Ci is a circuit that takes as inputs the machine M and PRF key K

and outputs an ABE secret key ABE.sk2i associated with M . While this step helps the

decryptor to compute the ABE secret key on the fly, it also limits the current construction

to the secret key setting crucially.

We are almost done – the decryptor chooses FE.cti with appropriate i from the

received set {FE.ctj}j∈[0,λ] and decrypts it using FE.ski that is appended to the ciphertext

to obtain an ABE secret key ABE.sk2i . Then, it decrypts the ABE ciphertext also

provided in the ciphertext to retrieve the message. Note that our construction is carefully

designed so that we only require a single key of the succinct FE scheme.

Arguing the efficiency of the scheme requires care. In order to make the key gener-

ation algorithm run in polynomial time, we rely on the succinctness of the underlying

FE. Recall that the succinctness property says that the running time of the encryption

69

algorithm is independent of the size of the circuits being supported and only dependent

on the depth and input and output length. In our construction, the computation of

{FE.ctj = FE.Enc(FE.mpkj, (M,K))}j∈[0,λ] can be performed in polynomial time, since

the input length |M |+ |K| is bounded by a fixed polynomial5 and so is the output length

|ABE.sk2j |. Note that we crucially use the succinctness of the FE here, since the size of

the circuit C2j , which is supported by the j-th instance of FE, is polynomial in 2j and

thus exponential for j = λ.

Security: Our construction of NfaABE satisfies standard (selective) indistinguishabil-

ity based security. The high level idea of the proof is outlined next. Intuitively, security

follows from the security of the single key FE scheme and the underlying circuit ABE

scheme. In the first step, we show that even though an adversary can obtain multiple FE

ciphertexts and secret keys, it cannot obtain anything beyond their decryption results

{FE.Dec(FE.ski,FE.cti) = ABE.ski} by the security of the FE. Then, we leverage the

security of the ABE to conclude that the message is indeed hidden. We note that in

order to invoke the FE security, we need to ensure that only one secret key is revealed to

the adversary for each instance of FE. This property is guaranteed, since the circuit for

which a secret key of the j-th instance of FE is generated is fixed (i.e., C2j). Please see

Section 3.6 for details.

Removing the Size Constraint on NFAs. So far, we have constructed NfaABE for

NFA that can deal with unbounded input length and bounded size NFAs. Let us call such

a scheme (u, b)-NfaABE, where “u" and “b" stand for “unbounded" and “bounded". We

define (b, u)-NfaABE and (u, u)-NfaABE analogously, where the first parameter refers

to input length and the second to machine size. Our goal is to obtain (u, u)-NfaABE. At

a high level, we compile (u, u)-NfaABE using two pieces, namely (u, b)-NfaABE which

we have already constructed, and (b, u)-NfaABE, which we will instantiate next.

To construct (b, u)-NfaABE, our basic idea is to simply convert an NFA into an

equivalent circuit and then use existing ABE for circuits schemes [Gorbunov et al.

(2013); Boneh et al. (2014)]. This approach almost works, but we need to exercise

care to ensure that the depth of these circuits can be bounded since we hope to support

NFAs of unbounded size. To fill this gap, we show that an NFA can be converted into

an equivalent circuit whose depth is poly-logarithmic in the size of the NFA by again

using the divide and conquer approach we discussed previously. This enables us to

5Recall that we are only dealing with bounded size NFAs.

70

bound the depth of the circuits by a fixed polynomial, even if the size of corresponding

NFA is unbounded and allows us to use existing ABE schemes for circuits to construct

(b, u)-NfaABE.

We are ready to construct (u, u)-NfaABE by combining (u, b)-NfaABE and (b, u)-NfaABE.

The master secret key of the (u, u)-NfaABE is a PRF key K. This PRF key defines

a set of keys {(u, b)-NfaABE.mskj}j∈[2λ] of the (u, b)-NfaABE scheme, where each

(u, b)-NfaABE.mskj supports NFAs with size j. Similarly, the PRF key also defines keys

{(b, u)-NfaABE.mskj}j∈[2λ] of the (b, u)-NfaABE scheme, where each (b, u)-NfaABE.mskj

supports input strings with length j. To encrypt a message with respect to a cipher-

text attribute x, it encrypts the message for x using (u, b)-NfaABE.mskj to obtain

(u, b)-NfaABE.ctj for all j ∈ [x]. Furthermore, it also encrypts the message for x using

(b, u)-NfaABE.msk|x| to obtain (b, u)-NfaABE.ct|x|. The final ciphertext is

(
{(u, b)-NfaABE.ctj}j∈[|x|], (b, u)-NfaABE.ct|x|

)
.

To generate a secret key for a machineM , we essentially swap the roles of (u, b)-NfaABE

and (b, u)-NfaABE. Namely, we generate a secret key (b, u)-NfaABE.skj for M using

(b, u)-NfaABE.mskj for all j ∈ [|M |], where |M | is the size of the machine M . We also

generate (u, b)-NfaABE.sk|M | for M using (u, b)-NfaABE.msk|M |. The final secret key

is (
(u, b)-NfaABE.sk|M |, {(b, u)-NfaABE.skj}j∈[|M |]

)
.

To decrypt a ciphertext for attribute x using a secret key for an NFA machine M ,

we first compare |x| and |M |. If |x| > |M |, it decrypts (u, b)-NfaABE.ct|M| using

(u, b)-NfaABE.sk|M |. Otherwise, it decrypts (b, u)-NfaABE.ct|x| using (u, b)-NfaABE.sk|x|.

It is not hard to see that the correctness of the resulting scheme follows from those of

the ingredients. Furthermore, the security of the scheme is easily reduced to those of

the ingredients, as the construction simply runs them in parallel with different param-

eters. The proof is by a hybrid argument, where we change the encrypted messages

in a instance-wise manner. In Sec. 3.7, we streamline the construction and directly

construct (u, u)-NfaABE from (u, b)-NfaABE and ABE for circuits instead of going

through (b, u)-NfaABE.

71

Generalizations and Lower Bounds. We further generalize our ABE construction

to obtain predicate encryption and bounded key functional encryption for NFAs along

with the first construction of reusable garbled NFA. These constructions are obtained by

carefully replacing the underlying ABE for circuits with predicate encryption, bounded

key functional encryption for circuits or reusable garbled circuits. This compiler requires

some care as we need to argue that the delicate balance of efficiency properties that enable

our NfaABE construction are not violated, as well as ensure that the constructions and

security proofs translate. In Appendix B.2 and Appendix B.4, we show that we can indeed

ensure this, sometimes (see for instance, the construction in Appendix B.4) by employing

additional tricks as required. In Section 3.8 we show that secret key functional encryption

(SKFE) for DFA with security against unbounded collusion implies indistinguishability

obfuscation for circuits. There, we essentially show that we can convert an SKFE

for DFA into an SKFE for NC1 circuit, which implies indistinguishability obfuscation

for circuits by previous results [Ananth et al. (2015a); Kitagawa et al. (2018a)]. The

conversion is by encoding and purely combinatorial – we first convert an NC1 circuit into

an equivalent branching program and then leverage the similarity between the branching

program and DFA to obtain the result.

3.4 Organization

We organize the rest of the chapter as follows. In Section 3.5, we provide the definitions

and preliminaries we require. In Section 3.6, we provide our ABE for NFA supporting

unbounded input but bounded machine length. In Section 3.7, we enhance the construc-

tion to support both unbounded input and unbounded machine length. In Appendix

B.2 we leverage our ABE to construct the first predicate and bounded key functional

encryption schemes for NFA. In Appendix B.4, we provide the first construction of

reusable garbled NFA. In Section 3.8 we show that secret key functional encryption for

DFA with security against unbounded collusion implies indistinguishability obfuscation

for circuits.

72

3.5 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. For a circuit C : {0, 1}`1+`2 → {0, 1} and a string x ∈ {0, 1}`1 , C[x] :

{0, 1}`2 → {0, 1} denotes a circuit that takes y and outputs C(x,y). We construct C[x]

in the following specified way. Namely, C[x] is the circuit that takes as input y and sets

zi =

y1 ∧ ¬y1 if xi = 0

y1 ∨ ¬y1 if xi = 1

and then computesC(z,y), where xi, yi, and zi are the i-th bit of x, y, and z, respectively.

In the above, it is clear that zi = xi and we have C(z,y) = C(x,y). Furthermore, it is

also easy to see that depth(C[x]) ≤ depth(C) +O(1) holds.

3.5.1 Definitions: Non Deterministic Finite Automata

A Non-Deterministic Finite Automaton (NFA)M is represented by the tuple (Q,Σ, T, qst, F)

whereQ is a finite set of states, Σ is a finite alphabet, T : Σ×Q→ P(Q) is the transition

function (stored as a table), qst is the start state, F ⊆ Q is the set of accepting states.

For states q, q′ ∈ Q and a string x = (x1, . . . , xk) ∈ Σk, we say that q′ is reachable

from q by reading x if there exists a sequence of states q1, . . . , qk+1 such that q1 = qst,

qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 = q′. We say M(x) = 1 iff there is a state in F that

is reachable from qst by reading x.

Remark 3.5.1. As it is known, we can transform an NFA with ε-transitions into a one

without them by a simple and efficient conversion. The conversion preserves the size of

the NFA. For simplicity and without loss of generality, we do not deal with an NFA with

ε-transitions in this chapter.

3.5.2 Definitions: Secret-key Attribute Based Encryption for NFA

A secret-key attribute-based encryption (SKABE) scheme NfaABE for a message space

M = {Mλ}λ∈N consists of four algorithms. In the following, we fix some alphabet

73

Σ = Σλ of size 2 ≤ |Σ| ≤ poly(λ).

• NfaABE.Setup(1λ) is a PPT algorithm takes as input the unary representation of
the security parameter and outputs the master secret key NfaABE.msk.

• NfaABE.Enc(NfaABE.msk,x,m) is a PPT algorithm that takes as input the master
secret key NfaABE.msk, a string x ∈ Σ∗ of arbitrary length and a messagem ∈M.
It outputs a ciphertext NfaABE.ct.

• NfaABE.KeyGen(NfaABE.msk,M) is a PPT algorithm that takes as input the
master secret key NfaABE.msk and a description of an NFA machine M . It
outputs a corresponding secret key NfaABE.skM .

• NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x) is a deterministic polynomial time
algorithm that takes as input the secret key NfaABE.skM , its associated NFA M , a
ciphertext NfaABE.ct, and its associated string x and outputs either a message m′

or ⊥.

Remark 3.5.2. In our construction in Sec. 3.6.2, we will pass an additional parameter

s = s(λ) to the NfaABE.Setup,NfaABE.Enc,NfaABE.KeyGen algorithms denoting the

description size of NFAs that the scheme can deal with. Later we give a construction in

Sec. 3.7 which can support NFAs with arbitrary size.

Definition 3.5.3 (Correctness). An SKABE scheme NfaABE is correct if for all NFAs

M , all x ∈ Σ∗ such that M(x) = 1 and for all messages m ∈M,

Pr


NfaABE.msk← NfaABE.Setup(1λ) ,

NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M) ,

NfaABE.ct← NfaABE.Enc(NfaABE.msk,x,m) :

NfaABE.Dec
(
NfaABE.skM ,M,NfaABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of NfaABE.Setup, NfaABE.KeyGen, and

NfaABE.Enc.

Definition 3.5.4 (Security for NfaABE). The SKABE scheme NfaABE for a message

spaceM is said to satisfy selective security if for any stateful PPT adversary A, there

exists a negligible function negl(·) such that

ANfaABE,A(1λ,Σ)→
∣∣∣Pr[Exp

(0)
NfaABE,A(1λ)→ 1]− Pr[Exp

(1)
NfaABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp
(b)
NfaABE,A, modeled as a game

between the adversary A and a challenger, is defined as follows:

74

1. Setup phase: At the beginning of the game, A takes as input 1λ and declares its
targetX ⊂ Σ∗, which is a finite set of strings of arbitrary size. Then the challenger
samples NfaABE.msk← NfaABE.Setup(1λ).

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.
(a) Encryption queries: A submits to the challenger an attribute x ∈ X and a

pair of messages (m(0),m(1)) ∈ (Mλ)
2. Then, the challenger replies with

NfaABE.ct← NfaABE.Enc(NfaABE.msk,x,m(b)) in order.

(b) Key queries: A submits to the challenger an NFAM such thatM(x) = 0 for
all x ∈ X . Then, the challenger replies with NfaABE.skM ← NfaABE.KeyGen
(NfaABE.msk,M) in order.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 3.5.5. As noted in Remark 3.5.2, our construction in Sec. 3.6.2 is indexed with

an additional parameter s that specifies the size of NFAs being dealt with. In that case,

the above security definitions are modified so that A chooses 1s in addition to X (or

X and M , in the case of very selective security) at the beginning of the game and key

generation queries are made only for machines with size s.

3.5.3 Definitions: Attribute Based Encryption and Functional En-

cryption for circuits

Attribute based Encryption for Circuits

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an a-priori bounded

depth d, and binary output and C = {Cinp(λ),d(λ)}λ∈N. An attribute-based encryption

(ABE) scheme ABE for C over a message space M = {Mλ}λ∈N consists of four

algorithms:

• ABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation
of the security parameter, the length inp = inp(λ) of the input and the depth
d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It outputs the master
public key and the master secret key (ABE.mpk,ABE.msk).

• ABE.Enc(ABE.mpk,x,m) is a PPT algorithm that takes as input the master public
key ABE.mpk, a string x ∈ {0, 1}inp and a message m ∈ M. It outputs a
ciphertext ABE.ct.

• ABE.KeyGen(ABE.mpk,ABE.msk, C) is a PPT algorithm that takes as input the
master secret key ABE.msk and a circuit C ∈ Cinp(λ),d(λ) and outputs a correspond-
ing secret key ABE.skC .

75

• ABE.Dec(ABE.mpk,ABE.skC , C,ABE.ct,x) is a deterministic algorithm that takes
as input the secret key ABE.skC , its associated circuit C, a ciphertext ABE.ct, and
its associated string x and outputs either a message m′ or ⊥.

Definition 3.5.6 (Correctness). An ABE scheme for circuits ABE is correct if for all

λ ∈ N, polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp

such that C(x) = 1 and for all messages m ∈M,

Pr


(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 1inp, 1d),

ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C),

ABE.ct← ABE.Enc(ABE.mpk,x,m) :

ABE.Dec
(

ABE.mpk,ABE.skC , C,ABE.ct,x
)
6= m

 = negl(λ)

where the probability is taken over the coins of ABE.Setup, ABE.KeyGen, and ABE.Enc.

Definition 3.5.7 (Selective Security for ABE). The ABE scheme ABE for a circuit family

C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to satisfy selective security

if for any stateful PPT adversary A, there exists a negligible function negl(·) such that

AABE,A(1λ) =
∣∣∣Pr[Exp

(0)
ABE,A(1λ) = 1]− Pr[Exp

(1)
ABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experiment

Exp
(b)
ABE,A, modeled as a game between adversary A and a challenger, is defined as follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂ {0, 1}inp,
which is a set of binary strings of length inp, to the challenger. The challenger
samples (ABE.mpk,ABE.msk) ← ABE.Setup(1λ, 1inp, 1d) and replies to A with
ABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.

(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for
all x ∈ X . For each such query, the challenger replies with ABE.skC ←
ABE.KeyGen(ABE.mpk,ABE.msk, C).

(b) Encryption Queries: A submits a string x ∈ X and a pair of equal length
messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies to A
with ABE.ct← ABE.Enc(ABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

76

Remark 3.5.8. The above definition allows an adversary to make encryption queries

multiple times. More standard notion of the security for an ABE restricts the adversary

to make only a single encryption query. It is well-known that they are actually equivalent,

which is shown by a simple hybrid argument. We adopt the above definition since it is

convenient for our purpose.

In our construction of SKABE for NFA in Sec. 3.6.2, we will use the ABE scheme

by Boneh et al. [Boneh et al. (2014)] as a building block. The following theorem

summarizes the efficiency properties of their construction.

Theorem 3.5.9 (Adapted from [Boneh et al. (2014)]). There exists a selectively secure

ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) with the following

properties under the LWE assumption.

1. The circuit ABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a randomness
r and outputs ABE.msk = ABE.Setup(1λ, 1inp, 1d; r), can be implemented with
depth poly(λ, d). In particular, the depth of the circuit is independent of inp and
the length of the randomness r.

2. We have |ABE.skC | ≤ poly(λ, d) for anyC ∈ Cinp,d, where (ABE.mpk,ABE.msk)←
ABE.Setup(1λ, 1inp, 1d) and ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C).
In particular, the length of the secret key is independent of the input length inp and
the size of the circuit C.

3. Let C : {0, 1}inp+` → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for
any v ∈ {0, 1}`. Then, the circuit ABE.KeyGen(·, ·, C[·]; ·), that takes as input
ABE.mpk, ABE.msk, v, and randomness R̂ and outputs ABE.KeyGen(ABE.mpk,ABE.msk,

C[v]; R̂), can be implemented with depth depth(C) · poly(λ, d).

Proof. We show that the construction proposed by Boneh et al. [Boneh et al. (2014)]

satisfies the properties. We only focus on the third item of the theorem, as the first one is

easy to observe and the second one is explicitly mentioned in the paper.

To give the proof, we briefly recall the setup and key generation algorithms of their

scheme. The setup algorithm prepares a set of matrices (A,A1, . . . ,Ainp) and a vector

u, whose sizes only depend on λ and d. To generate a secret key for a circuit C (without

a hardwired value), the key generation algorithm homomorphically evaluates the circuit

on matrices (A1, . . . ,Ainp) in a gate by gate manner. In more details, it assigns Ai to the

wire corresponding to the i-th bit of the input and computes a matrix for each internal

wire of the circuit. The size of the matrices will be the same for all wires. In more details,

let g be a gate with incoming wires w1 and w2 and output wire w3. Then, the matrix

77

corresponding to w3 is computed from the matrices corresponding to w1 and w2, where

the computation applied to the matrices depends on the type of the gate g. In the end,

it obtains the matrix AC corresponding to the output wire. Then, it generates a short

vector e such that [A‖AC]e = u using the trapdoor for A and outputs e as a secret key.

We first show that in the case of ` = 0, or equivalently in the case where a circuit

C : {0, 1}inp → {0, 1} is not hardwired any value, the statement holds. To see this,

we first observe that the last operation in which short vector e is sampled can be

implemented by a circuit with size poly(λ, d), since the sizes of A, AC , and u are

bounded by poly(λ, d). We then focus on the computational cost of homomorphic

operation on matrices. We can implement the circuit that performs this step with depth

depth(C) · poly(λ, d) by just replacing each gate of the circuit C with a circuit that

performs the homomorphic matrix operation corresponding to this gate.

We then consider the general case where ` 6= 0. In this case, we first construct a

circuit that performs homomorphic operations given matrices B1, . . . ,B`,A1, . . . ,Ainp

and C(·, ·), where B1, . . . ,B` will correspond to the hardwired value. By the above

discussion, such a circuit can be implemented with depth depth(C) · poly(λ, d). It

remains to show that it is possible to construct a circuit that takes as input A1, . . . ,Ainp

and the hardwired value v and outputs matrices B1, . . . ,B`. Such a circuit can be

implemented with depth poly(λ, d) by computing B(0) and B(1) that correspond to

0 = x1 ∧ (¬x1) and 1 = x1 ∨ (¬x1) from A1 and then outputting B(v1), · · · ,B(v`),

where vi is the i-th bit of v. This completes the proof of the theorem.

Remark 3.5.10. As we mentioned, we use ABE for circuits with the above efficiency

properties to construct ABE for NFA in Sec. 3.6.2. Since we only have selectively secure

ABE scheme satisfying the above properties, the resulting construction of ABE for NFA

will only have selective security. One could consider that by applying the standard

complexity leveraging argument to the selectively secure ABE scheme by Boneh et

al. [Boneh et al. (2014)] to obtain an adaptively secure scheme and then using the

resultant scheme in the construction in Sec. 3.6.2, we can obtain adaptively secure ABE

scheme for NFA. This is not true because the resulting ABE scheme obtained by the

complexity leveraging have secret keys whose size is polynomially dependent on the

input length inp(λ) of the circuits and does not satisfy the second efficiency property in

Theorem 3.5.9, which is crucial for the construction in Sec. 3.6.2 to work.

78

Functional Encryption for Circuits

For λ ∈ N, let Cinp,d,out denote a family of circuits with inp bit inputs, depth d, and

output length out and C = {Cinp(λ),d(λ),out(λ)}λ∈N. A functional encryption (FE) scheme

FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for C consists of four algorithms:

• FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary representa-
tion of the security parameter, the length inp = inp(λ) of the input, depth d = d(λ),
and the length of the output out = out(λ) of the circuit family Cinp(λ),d(λ),out(λ) to
be supported. It outputs the master public key FE.mpk and the master secret key
FE.msk.

• FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the master
public key FE.mpk, master secret key FE.msk, and a circuit C ∈ Cinp(λ),d(λ),out(λ)

and outputs a corresponding secret key FE.skC .

• FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public key
FE.mpk and an input message x ∈ {0, 1}inp(λ) and outputs a ciphertext FE.ct.

• FE.Dec(FE.mpk,FE.skC , C,FE.ct) is a deterministic algorithm that takes as input
the master public key FE.mpk, a secret key FE.skC , corresponding circuit C, and
a ciphertext FE.ct and outputs C(x).

Definition 3.5.11 (Correctness). A functional encryption scheme CktFE is correct if for

all C ∈ Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

[
(FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));

FE.Dec
(

FE.mpk,FE.KeyGen(FE.mpk,FE.msk, C), C,FE.Enc(FE.mpk,x)
)
6= C(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc and,

FE.Dec).

We then define full simulation based security for single key FE as in [(Goldwasser

et al., 2013a, Defn 2.13)].

Definition 3.5.12 (FULL-SIM Security). Let CktFE be a functional encryption scheme

for a circuits. For a stateful PPT adversary A and a stateless PPT simulator Sim, consider

the following two experiments:

79

Expreal
CktFE,A(1λ): Expideal

CktFE,Sim(1λ):

1: Let −→v := (1inp, 1d, 1out)← A(1λ)

2: (FE.mpk,FE.msk)← FE.Setup(1λ,−→v)

3: C ← A(FE.mpk)

4: FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: Let −→v := (1inp, 1d, 1out)← A(1λ)

2: (FE.mpk,FE.msk)← FE.Setup(1λ,−→v)

3: C ← A(FE.mpk)

4: FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AO(·)(FE.mpk,FE.skC)

Here, O(·) is an oracle that on input x from A, runs Sim with inputs (FE.mpk, skC , C, C(x), 1inp)

to obtain a ciphertext FE.ct and returns it to the adversary A.

The functional encryption scheme CktFE is then said to be single query FULL-SIM

secure if there exists a PPT simulator Sim such that for every PPT adversary A, the

following two distributions are computationally indistinguishable:

{
Expreal

CktFE,A(1λ)

}
λ∈N

c
≈
{

Expideal
CktFE,Sim(1λ)

}
λ∈N

Remark 3.5.13. The above definition allows an adversary to make encryption queries

multiple times. In the security notion defined in [Goldwasser et al. (2013a)], the

adversary is allowed to make only a single encryption query. Similarly to the case of

ABE, it is easy to see that these definitions are actually equivalent (See Remark 3.5.8).

We adopt the above definition since it is convenient for our purpose.

Remark 3.5.14 (Selective Simulation Security.). We can consider a weaker version of

the above security notion where A outputs a set X = {x1, . . . ,x|X|} ⊂ Σ∗ along with

(1inp, 1d, 1out) at the beginning of the game and A is only allowed to query x ∈ X to

FE.Enc(FE.mpk, ·) and O(·). We call this security notion selective simulation security.

In our construction of SKABE for NFA in Sec. 3.6.2, we will use the FE scheme by

[Goldwasser et al. (2013a)] as a building block. The following theorem summarizes the

efficiency properties of their construction.

Theorem 3.5.15 ([Goldwasser et al. (2013a)]). There exists an FE scheme FE =

(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE run
in polynomial time. Namely, the running time of FE.Setup and FE.Enc do not
depend on the size of circuit description to be supported by the scheme.

80

2. Assuming the subexponential hardness of the LWE problem, the scheme satisfies
full-simulation-based security.

We note that the first property above is called succinctness or semi-compactness

of FE. A stronger version of the efficiency property called compactness requires the

running time of the encryption algorithm to be dependent only on the length of input

message x. An FE with compactness is known to imply indistinguishability obfuscation

[Ananth and Jain (2015); Bitansky and Vaikuntanathan (2015)].

3.6 Attribute-based Encryption for NFA

3.6.1 NFA as NC circuit

Here, we introduce a theorem that provides an efficient algorithm that converts an NFA

into an equivalent circuit with shallow depth. The shallowness of the circuit will play a

crucial role in our construction of SKABE for NFA. In the following, for ease of notation,

we often input a string in Σ∗ to a circuit with the understanding that the input is actually

a binary string encoding a string in Σ∗. To do so, we set η := dlog(|Σ|+ 1)e and regard

a symbol in Σ as a binary string in {0, 1}η by a natural injection map from Σ to {0, 1}η.

Furthermore, we also introduce a special symbol ⊥ that is not in Σ and assign an unused

symbol in {0, 1}η to it. Intuitively, ⊥ represents a blank symbol that will be used to

adjust the length of a string. We will use alphabets {0, 1}η and Σ∪ {⊥} interchangeably.

Theorem 3.6.1. Let Σ be an alphabet for NFAs. Then we have the following:

1. There exists a family of circuits {To-Circuits,`}s,`∈N where the circuit To-Circuits,`
takes as input an NFA M with size s and outputs a circuit M̂` : (Σ ∪ {⊥})` →
{0, 1}. Furthermore, for all `, s ∈ N, all string x ∈ Σ≤`, and all NFA M with size
s, we have

M̂`(x̂) = M(x),

where M̂` = To-Circuits,`(M) and x̂ = x‖⊥`−|x|.

2. The depths of the circuits To-Circuits,` and M̂` = To-Circuits,`(M) for an NFA M
of size s are bounded by poly(log s, log `). Furthermore, the sizes of these circuits
are bounded by poly(s, `).

Proof. We define the circuit To-Circuits,` as in Figure 3.1. There, we introduce a circuit

M2j that takes as input x ∈ (Σ ∪ {⊥})2j and outputs {bq,q′,x}(q,q′)∈Q×Q, where the

81

boolean value bq,q′,x ∈ {0, 1} is set to 1 if the state q′ is reachable from q by reading

x and 0 otherwise. Here, we augment the transition function T so that it works on the

extended alphabet Σ ∪ {⊥}, where we define T (⊥, q) = {q} for all q ∈ Q. It is easily

seen that the padding with ⊥ and the augmentation of the transition function T we

introduce here do not change the value of M(x). We refer to Figure 3.2 for the concrete

way of constructing M2j . It is not hard to see that To-Circuits,` defined as in Figure 3.1

satisfies Item 1 of the theorem.

Circuit To-Circuits,`(M)

1. Compute bq,q′,x for all (q, q′, x) ∈ Q×Q× (Σ ∪ {⊥}) in parallel from M .

2. Then, construct the circuit M1 from {bq,q′,x}(q,q′,x)∈Q×Q×(Σ∪{⊥}), which takes
y ∈ (Σ ∪ {⊥}) as input, checks whether y=x for all x ∈ (Σ ∪ {⊥}) in parallel,
and outputs {bq,q′,x}(q,q′)∈Q×Q such that x = y.

3. Compute M2j for j ∈ [i] in the ascending order, where M2j is constructed from
M2j−1 as in Figure 3.2 and i = dlog `e.

4. Compute M̂` defined as in Figure 3.3 from M2i and output M̂`.

Figure 3.1: The Circuit To-Circuit.

Circuit M2j(x)

1. Parse the input x = x0‖x1, where x0,x1 ∈ (Σ ∪ {⊥})2j−1 .

2. Compute M2j−1(x0) = {bq,q′,x0}(q,q′)∈Q×Q and M2j−1(x1) = {bq,q′,x1}(q,q′)∈Q×Q
in parallel.

3. Compute bq,q′,x for all (q, q′) ∈ Q×Q in parallel by executing the following:
(a) Compute (bq,q′′,x0 ∧ bq′′,q′,x1) for all q′′ ∈ Q in parallel.

(b) Compute bq,q′,x := ∨q′′∈Q(bq,q′′,x0 ∧ bq′′,q′,x1).

4. Output {bq,q′,x}(q,q′)∈Q×Q.

Figure 3.2: The Circuit M2j(x).

To finish the proof, we have to show Item 2 of the theorem. We first bound the size

of M̂`. To do this, we first observe that size(M1) ≤ poly(|Σ|, |Q|) holds. Furthermore,

we have

size(M2j) ≤ 2 · size(M2j−1) + poly(|Σ|, |Q|) and depth(M̂`) ≤ depth(M2i) + poly(|Σ|, |Q|).

82

Circuit M̂`(x̂)

1. Pad the input x̂ ∈ (Σ ∪ {⊥})` to obtain x̃ := x̂‖⊥2i−` ∈ (Σ ∪ {⊥})2i .

2. Compute M2i(x̃) = {bq,q′,x̃}(q,q′)∈Q×Q.

3. Compute b = ∨q∈F bqst,q,x̃ and output b.

Figure 3.3: The Circuit M̂`(x̂).

From the above, we have

size(M̂`) ≤ 2i poly(|Σ|, |Q|) ≤ poly(s, `) (3.1)

as desired. We then bound the depth of M̂`. We first observe depth(M1) = poly(log |Σ|, log |Q|).

Furthermore, we have

depth(M2j) ≤ depth(M2j−1) + poly(log |Σ|, log |Q|)

and

depth(M̂`) ≤ depth(M2i) + poly(log |Σ|, log |Q|).

From the above, we have

depth(M̂`) ≤ i · poly(log |Σ|, log |Q|) ≤ poly(log s, log `)

as desired.

We next bound the size of the circuit To-Circuits,`(·). It is easy to see that Step

1 and 2 of To-Circuits,`(·) can be implemented by circuits of size poly(|Σ|, |Q|). We

also observe that j-th repetition in Step 3 can be implemented by a circuit of size

poly(size(M2j−1), |Σ|, |Q|) ≤ poly(size(M̂`), |Σ|, |Q|). We can also see that Step 4 can

be implemented by a circuit of size poly(size(M̂`), |Σ|, |Q|). Therefore, we have

size(To-Circuits,`) ≤ i · poly(size(M̂`), |Σ|, |Q|) ≤ poly(s, `)

as desired, where the second inequality follows from Eq. (3.1).

We finally bound the depth of the circuit To-Circuits,`(·). It is easy to see that Step 1,

83

2, and 4 of To-Circuits,`(·) can be implemented by circuits of depth poly(log |Σ|, log |Q|).

We also observe that each repetition in Step 3 can be implemented with depth poly(log |Σ|,

log |Q|), since it just copies M2j−1 and adds a fixed circuit to it that performs Item 3 and

4 of M2j . Therefore, Step 3 of To-Circuits,`(·) can be implemented by a circuit of depth

i · poly(log |Σ|, log |Q|). To sum up, we have

depth(To-Circuits,`) ≤ i · poly(log |Σ|, log |Q|) ≤ poly(log s, log `)

as desired. This completes the proof of the theorem.

3.6.2 Construction: SKABE for Bounded Size NFA

We construct an SKABE scheme for NFA denoted by NfaABE = (NfaABE.Setup,

NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) from the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We
denote the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 3.5.15. We
can instantiate FE with the scheme proposed by [Goldwasser et al. (2013a)].

3. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme that
satisfies the efficiency properties described in Theorem 3.5.9. We can instantiate
ABE with the scheme proposed by [Boneh et al. (2014)].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size and
an input x to the circuit and outputs C(x). We often denote by U [C](·) = U(C, ·)
a universal circuit U with the first input C being hardwired. We need to have
depth(U) ≤ O(depth(C)). For construction of such a universal circuit, we refer
to [Cook and Hoover, (1985)].

Below we provide our construction for SKABE for NFA. In the description below,

we abuse notation and denote as if the randomness used in a PPT algorithm was a key K

of the pseudorandom function PRF. Namely, for a PPT algorithm (or circuit) A that takes

as input x and a randomness r ∈ {0, 1}` and outputs y, A(x; K) denotes an algorithm

that computes r := PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, `) and runs A(x; r). Note that

if A is a circuit, this transformation makes the size of the circuit polynomially larger

and adds a fixed polynomial overhead to its depth. In particular, even if we add this

84

change to ABE.Setup and ABE.KeyGen, the efficiency properties of ABE described in

Theorem 3.5.9 are preserved.

NfaABE.Setup(1λ, 1s): On input the security parameter 1λ and a description size s of

an NFA, do the following:

1. For all j ∈ [0, λ], sample PRF keys K̂j,Rj ← PRF.Setup(1λ).

2. For all j ∈ [0, λ], sample (FE.mpkj,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)).

Here, we generate λ + 1 instances of FE. Note that all instances support a
circuit class with input length inp(λ) = s + 2|K|, output length out(λ), and
depth d(λ), where out(λ) and d(λ) are polynomials in the security parameter
that will be specified later.

3. Output NfaABE.msk = ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

NfaABE.Enc(NfaABE.msk,x, m, 1s): On input the master secret key NfaABE.msk, an

attribute x ∈ Σ∗ of length at most 2λ, a message m and the description size s of

NFA, do the following:

1. Parse the master secret key as NfaABE.msk→ ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.

3. Compute an ABE key pair (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12iη, 1d̂; K̂i)

with K̂i as the randomness.

Here, we generate an instance of ABE that supports a circuit class with input
domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2i and depth d̂.

4. Compute ABE.ct ← ABE.Enc(ABE.mpki, x̂,m) as an ABE ciphertext for
the message m under attribute x̂.

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ; Ri), where Cs,2i is a
circuit described in Figure 3.4.

6. Output NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct).

NfaABE.KeyGen(NfaABE.msk,M , 1s): On input the master secret key NfaABE.msk,

the description of an NFA M and a size s of the NFA, if |M | 6= s, output ⊥ and

abort. Else, proceed as follows.
1. Parse the master secret key as NfaABE.msk→ ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute FE.ctj = FE.Enc(FE.mpkj, (M, K̂j, R̂j)) for all j ∈ [0, λ].

4. Output NfaABE.skM = {FE.ctj}j∈[0,λ].

85

Function Cs,2i

1. Parse the input w = (M, K̂, R̂), where M is an NFA and K̂ and R̂ are PRF keys.

2. Compute (ABE.mpk,ABE.msk) = ABE.Setup(1λ, 12iη, 1d̂; K̂).

3. Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.6.1 for the definition of To-Circuit.)

4. Compute and output ABE.sk
U [M̂2i]

= ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i]; R̂).

Figure 3.4: Circuit Cs,2i , supported by the FE scheme. Cs,2i takes NFA M as input and
outputs a secret key for the universal circuit U [M̂2i] (hardwired with M̂2i)
under the ABE scheme.

NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x): On input a secret key for NFA M and

a ciphertext encoded under attribute x, proceed as follows:

1. Parse the secret key as NfaABE.skM → {FE.ctj}j∈[0,λ] and the ciphertext as
NfaABE.ct→ (FE.ski,ABE.mpki,ABE.ct).

2. Set ` = |x| and choose FE.cti from NfaABE.skM = {FE.ctj}j∈[0,λ] such that
i = dlog `e < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski, Cs,2i ,FE.cti).

4. Compute and output z = ABE.Dec(ABE.mpki, y, U [M̂2i],ABE.cti, x̂), where
we interpret y as an ABE secret key and x̂ = x‖⊥2i−`.

3.6.3 Correctness of NfaABE

The following theorem asserts that our scheme is efficient.

Theorem 3.6.2. Let |Σ|, d(λ), d̂(λ), and out(λ), be polynomials in λ. Then, NfaABE =

(NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) defined above runs in poly-

nomial time.

Proof. It is easy to see that the NfaABE.Setup and NfaABE.KeyGen run in polynomial

time.

We then show that NfaABE.Enc runs in polynomial time. By the efficiency of ABE,

it suffices to show that Cs,2i can be computed in polynomial time. To see this, we bound

the time for constructing each step of the circuit. Trivially, Step 1 can be implemented

with no cost. We first observe that Step 2 of the circuit can be implemented by a circuit

with size poly(λ, 2iη, d̂) = poly(λ, |x|) by the efficiency of ABE.KeyGen. We then

86

observe that Step 3 of the circuit can be implemented with size poly(s, 2i) ≤ poly(s, |x|)

by Item 2 of Theorem 3.6.1. Finally, Step 4 of the circuit can be implemented with size

poly(λ, 2iη, d̂, s) ≤ poly(λ, s, |x|) by the efficiency of the universal circuit and ABE and

Item 2 of Theorem 3.6.1.

We finally bound the running time of NfaABE.Dec. Trivially, Step 1 and 2 of

NfaABE.Dec can be implemented with no cost. By the efficiency of FE, the running

time of Step 3 is also bounded by poly(λ, s, |x|). Finally, to bound the running time of

Step 4, it suffices to bound the time for constructing U [M̂s,2i] by the efficiency of ABE.

Since M̂s,2i can be constructed in time poly(s, 2i) ≤ poly(s, |x|) by Item 2 of Theorem

3.6.1, so is U [M̂s,2i]. This completes the proof of the theorem.

The following theorem addresses the correctness of the scheme.

Theorem 3.6.3. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme NfaABE

is correct for any polynomially bounded s(λ).

Proof. We have to show that if we set d̂(λ), out(λ), and d(λ) appropriately, we have

z = m when M(x) = 1, where z is the value retrieved in Step 4 of the decryption

algorithm. To show this, let us set d̂(λ) = Ω(λ) and assume that

y = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) (3.2)

holds for the moment, where y is the value retrieved in Step 3 of the decryption algorithm.

Then, we have z = m by the correctness of ABE if U [M̂2i] is supported by the scheme,

since we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x) = 1

by Item 1 of Theorem 3.6.1. We claim that the depth of U [M̂2i] is at most d̂ and therefore

U [M̂2i] is indeed supported by the scheme. To see this, we observe that

depth(U [M̂2i]) ≤ depth(U(·, ·)) +O(1)

≤ O(1) · depth(M̂2i) +O(1)

≤ poly(log s, log 2i)

≤ poly(log λ)

≤ d̂ (3.3)

87

holds, where the second inequality follows from the property of the depth preserving

universal circuit U and the third from Item 2 of Theorem 3.6.1.

It remains to prove that Eq. (3.2) holds if we set d(λ) and out(λ) appropriately. To

do so, we show that the depth and the output length of Cs,2i are bounded by some fixed

polynomials. By taking d(λ) and out(λ) larger than these polynomials, we can ensure

that the circuit Cs,2i is supported by the FE scheme and thus Eq. (3.2) follows from the

correctness of the FE, since we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12iη, 1d̂; K̂i) by the definition of Cs,2i .

We first bound the depth of Cs,2i . To do so, we first observe that Step 2 of Cs,2i

can be implemented by a circuit of depth poly(λ, d̂) = poly(λ) by Item 1 of Theo-

rem 3.5.9. We then observe that Step 3 of Cs,2i can be implemented by a circuit of depth

poly(log s, log 2i) = poly(log λ) by Item 2 of Theorem 3.6.1. We then bound the depth

of the circuit that implements Step 4 of Cs,2i . This step is implemented by the circuit

ABE.KeyGen(·, ·, U [·]; ·) that takes as input ABE.mpki, ABE.mski, U [M̂2i] constructed

in the previous step, and R̂ and returns ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂).

We have

depth(ABE.KeyGen(·, ·, U [·]; ·)) ≤ poly(λ, d̂) · depth(U(·, ·))

≤ poly(λ, d̂) · d̂

≤ poly(λ),

where the first inequality follows from Item 3 of Theorem 3.5.9 and the second from

Eq. (3.3). To sum up, we have that the depth of the circuit Cs,2i is bounded by some

fixed polynomial.

We next bound the output length ofCs,2i . Since the output of the circuit is ABE.skU [M̂2i]
=

ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂), we bound the length of the ABE secret

key. We have

|ABE.skU [M̂2i]
| ≤ poly(λ, d̂) ≤ poly(λ, poly(λ)) ≤ poly(λ)

88

as desired, where the first inequality follows from the Item 2 of Theorem 3.5.9. This

completes the proof of the theorem.

3.6.4 Proof of Security for NfaABE

Here, we prove that NfaABE defined above is secure, if so are FE and ABE. Formally,

we have the following theorem.

Theorem 3.6.4. Assume that FE satisfies full simulation based security, ABE is selec-

tively secure, and that PRF is a secure pseudorandom function. Then, NfaABE satisfies

selective security.

Proof. To prove the theorem, let us fix a PPT adversary A and introduce the following

game Gamei between the challenger and A for i ∈ [0, λ].

Gamei: The game proceeds as follows.

Setup phase. At the beginning of the game, A takes 1λ as input and submits 1s

and its target set X ⊂ Σ∗ to the challenger. Then, the challenger chooses

NfaABE.msk← NfaABE.Setup(1λ, 1s).

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the

challenger sets ` := |x| and computes

NfaABE.ct =

NfaABE.Enc(NfaABE.msk, x̂,m(0)) If dlog `e ≥ i

NfaABE.Enc(NfaABE.msk, x̂,m(1)) If dlog `e ≤ i− 1.

Then, it returns NfaABE.ct to A.

Key queries. Given an NFA M from A, the challenger runs NfaABE.skM ←

NfaABE.KeyGen(NfaABE.msk,M) and returns NfaABE.skM to A.

Finally, A outputs its guess b′.

In the following, let Exxx denote the probability that A outputs 1 in Gamexxx. It suffices

to prove |Pr[E0]− Pr[Eλ+1]| = negl(λ), since Game0 (resp., Gameλ+1) corresponds

89

to the selective security game with b = 0 (resp., b = 1). Since we have

|Pr[E0]− Pr[Eλ+1]| ≤
∑
i∈[0,λ]

|Pr[Ei]− Pr[Ei+1]|

by the triangle inequality, it suffices to show |Pr[Ei]−Pr[Ei+1]| = negl(λ) for i ∈ [0, λ].

Let us define `max and imax as

`max := max{|x| : x ∈ X} and imax := dlog `maxe.

Note that `max is bounded by the running time of A and thus is polynomial in λ. We then

observe that for i > imax, we have Gamei = Gameλ+1 and thus Pr[Ei]−Pr[Ei+1] = 0.

Therefore, in the following, we will show that |Pr[Ei] − Pr[Ei+1]| = negl(λ) holds

for i ≤ imax. To do so, we further introduce the following sequence of games for

i ∈ [0, imax]:

Gamei,0: The game is the same as Gamei.

Gamei,1: In this game, we change the setup phase and the way encryption queries are

answered as follows.

Setup phase. Given X ⊂ Σ∗ from A, the challenger chooses NfaABE.msk ←

NfaABE.Setup(1λ, 1s) as in the previous game. In addition, it computes

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12iη, 1d̂; K̂i)

and

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i ; Ri).

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the

challenger sets ` := |x| and computes NfaABE.ct as in the previous game if

dlog `e 6= i. Otherwise, it computes

ABE.ct← ABE.Enc(ABE.mpki, x̂,m
(0))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski

and ABE.mpki are the values that are computed in the setup phase.

90

Gamei,2: In this game, the challenger samples FE.ski as

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i)

in the setup phase. Namely, it is sampled using true randomness instead of the

pseudorandom bits derived from the PRF key Ri.

Gamei,3: We change the way key queries are answered as follows:

Key queries. Given an NFA M of size s from A, the challenger answers the query

as follows. It first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ] and computes

ABE.skU [M̂2i]
= ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where ABE.mpki and ABE.mski are the values that are computed in the setup

phase. It then computes

FE.ctj ←

FE.Enc(FE.mpkj, (M, K̂j, R̂j)) If j ∈ [0, λ]\{i}

Sim(FE.mpki,FE.ski, Cs,2i ,ABE.skU [M̂2i]
, 1inp(λ)) If j = i.

(3.4)

Then, it returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Gamei,4: In this game, the challenger samples (ABE.mpki,ABE.mski) in the setup

phase as

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12iη, 1d̂).

It also generates ABE.skU [M̂2i]
as

ABE.skU [M̂2i]
← ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]).

when answering a key query. Namely, they are sampled using true randomness

instead of the pseudorandom bits derived from the PRF keys K̂i and R̂i.

Gamei,5: In this game, we change the way the encryption queries are answered as

follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the

challenger sets ` := |x| and computes NfaABE.ct as in the previous game if

91

dlog `e 6= i. Otherwise, it computes

ABE.ct = ABE.Enc(ABE.mpki, x̂,m
(1))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski

and ABE.mpki are the values that are computed in the setup phase.

Gamei,6: The game is the same as Gamei+1.

Since we have

|Pr[Ei]− Pr[Ei+1]| ≤
∑
j∈[6]

|Pr[Ei,j−1]− Pr[Ei,j]|

by the triangle inequality, it suffices to show |Pr[Ei,j−1]−Pr[Ei,j]| = negl(λ) for j ∈ [6].

To complete the proof of the theorem, it remains to prove the following lemmas.

Lemma 3.6.5. We have Pr[Ei,0] = Pr[Ei,1].

Proof. The change introduced here is only conceptual, where ABE.mpki and FE.ski are

computed beforehand. The lemma trivially follows.

Lemma 3.6.6. We have |Pr[Ei,1]− Pr[Ei,2]| = negl(λ).

Proof. We observe that Ri is used only when generating FE.ski in Gamei,1. Therefore,

the lemma follows by a straightforward reduction to the security of PRF.

Lemma 3.6.7. We have |Pr[Ei,2]− Pr[Ei,3]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,2] − Pr[Ei,3]| is non-negligible

and construct an adversary B that breaks the full simulation security of FE using A. B

proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s andX ⊂ Σ∗

from A. Then B submits its target (1λ, 1inp(λ), 1out(λ)). Then, the experiment

samples

(FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1out(λ))

92

and returns FE.mpk to B. B then sets FE.mpki := FE.mpk. In the rest of the

simulation, it implicitly sets FE.mski := FE.msk without knowing the value.

B then chooses (FE.mpkj,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for

j ∈ [0, λ]\{i}. It also chooses K̂j,Rj ← PRF.Setup(1λ) for j ∈ [0, λ] and

(ABE.mpki, ABE.mski) ← ABE.Setup(1λ, 12iη, 1d̂; K̂i). Finally, it declares Cs,2i

as a circuit for which it request a secret key. Then, the experiment runs

FE.sk← FE.KeyGen(FE.mpk,FE.msk, Cs,2i)

and returns FE.sk to B. B sets FE.ski := FE.sk.

B then handles the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B sets ` :=

|x| and i′ = dlog `e. If i′ 6= i, B answers the query using (K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′).

Otherwise, it computes ABE.ct← ABE.Enc(ABE.mpki, x̂,m
(0)) and returns NfaABE.ct =

(FE.ski,ABE.mpki,ABE.ct) to A, where ABE.mpki (resp., FE.ski) is the value

sampled by itself (resp., by the experiment) in the setup phase.

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ)

for j ∈ [0, λ] and computes FE.ctj = FE.Enc(FE.mpkj, (M, K̂j, R̂j)) for j ∈

[0, λ]\{i}. B then submits (M, K̂i, R̂i) to its encryption oracle. Then, the ex-

periment computes

FE.ct←

FE.Enc(FE.mpk, (M, K̂i, R̂i)) If B is in Expreal
CktFE,B(1λ)

Sim(FE.mpk,FE.sk, Cs,2i , Cs,2i(M, K̂i, R̂i), 1
inp(λ)) If B is in Expideal

CktFE,Sim(1λ)

(3.5)

and returns FE.ct to B. B then sets FE.cti := FE.ct and returns NfaABE.skM :=

{FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,2 if B is in the real game. We then claim that

B simulates Gamei,3 if B is in the simulated game. The only difference between these

games is the way FE.cti is computed. In Gamei,3, it is generated as Eq. (3.4) while in

the simulation above, it is generated as Eq. (3.5) (with B being in Expideal
CktFE,Sim). However,

93

they are equivalent because B has set (FE.mpki,FE.mski) := (FE.mpk,FE.msk) and

FE.ski := FE.sk and we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) = ABE.skU [M̂2i]
.

From the above observation, we can see that B breaks the security of FE if A distinguishes

the two games. This completes the proof of the lemma.

Lemma 3.6.8. We have |Pr[Ei,3]− Pr[Ei,4]| = negl(λ).

Proof. Due to the change we introduced, K̂i is not used to answer the encryption queries

any more and used only when generating (ABE.mpki,ABE.mski) in Gamei,3. We

also observe that R̂i is used only when generating ABE.skU [M̂2i]
. Therefore, the lemma

follows by straightforward reductions to the security of PRF.

Lemma 3.6.9. We have |Pr[Ei,4]− Pr[Ei,5]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,4]−Pr[Ei,5]| is non-negligible and

construct an adversary B that breaks the selective security of ABE using A. B proceeds

as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s andX ⊂ Σ∗

from A. Then, B sets Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 < |x| ≤ 2i} and

submits its target Xi and (1λ, 12iη, 1d̂) to its challenger. Then, the challenger

samples

(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 12iη, 1d̂)

and returns ABE.mpk to B. B then sets ABE.mpki := ABE.mpk. In the rest

of the simulation, it implicitly sets ABE.mski := ABE.msk without knowing

the value. It then chooses K̂j,Rj ← PRF.Setup(1λ) for j ∈ [0, λ]\{i} and

(FE.mpkj,FE.mskj)← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for j ∈ [0, λ]. It also com-

putes FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i).

B then handles the the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B sets

` := |x| and i′ = dlog `e. If i′ 6= i, B answers the encryption query using

94

(K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′). Otherwise, B makes an encryption query for the

attribute x̂ = x‖⊥2i−` and messages (m(0),m(1)) to its challenger. Then, the

challenger runs

ABE.ct← ABE.Enc(ABE.mpk, x̂,m(b))

and returns a ciphertext ABE.ct to B. Then, it returns NfaABE.ct = (FE.ski,ABE.mpki,

ABE.ct) to A. Here, B uses FE.ski that is sampled in the setup phase.

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ)

for j ∈ [0, λ]\{i}. It then queries a secret key for U [M̂2i] to its challenger. Then,

the challenger runs

ABE.skU [M̂2i]
← ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i])

and returns ABE.skU [M̂2i]
to B. It then computes FE.ctj for j ∈ [0, λ] as Eq. (3.4)

and returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,4 if b = 0 and Gamei,5 if b = 1. Therefore, B

breaks the security of ABE if A distinguishes the two games. It remains to prove that

B is a legitimate adversary (i.e., it does not make any prohibited key queries). For any

attribute x̂ for which B makes an encryption query and for any circuit U [M̂2i] for which

B makes a key query, we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x),

where the second equality above follows from Item 1 of Theorem 3.6.1. Therefore, B is

a legitimate adversary as long as so is A. This completes the proof of the lemma.

Lemma 3.6.10. We have |Pr[Ei,5]− Pr[Ei,6]| = negl(λ).

Proof. This follows as in the indistinguishability of Gamei,0 and Gamei,4, but in

the reverse order. That is, we first change the random bits used in ABE.KeyGen to a

pseudorandom one by invoking the security of PRF. We then generate FE.cti by using

FE.Enc instead of Sim by invoking the full-simulation security of FE. Finally, we change

95

the random bits used in ABE.KeyGen to a pseudorandom one by invoking the security of

PRF again.

This concludes the proof of Theorem 3.6.4.

3.6.5 Extensions

In Appendix B.2, we adapt our ABE construction to achieve (restricted versions of)

attribute privacy. In more detail, we construct secret key predicate encryption and

bounded key functional encryption for nondeterministic finite automata. In Appendix

B.4, we additionally achieve machine privacy, improving the result of [Agrawal and

Singh (2017)]. Intuitively, these results proceed by replacing the “inner” circuit ABE

scheme in our compiler by predicate encryption or bounded key functional encryption

scheme and arguing that the requisite efficiency requirements (Theorem 3.5.9) are not

violated. Please see appendices B.2,B.4 for details.

3.7 Attribute based Encryption for NFA with Unbounded

Size Machines and Inputs

In this section we construct a secret-key attribute-based encryption scheme (SKABE)

for nondeterministic finite automata of arbitrary sizes supporting inputs of arbitrary

length. We denote our scheme by uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen,

uNfaABE.Enc, uNfaABE.Dec) and its construction uses the following two ingredients.

1. NfaABE = (NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec): An
SKABE for NFA supporting inputs of unbounded length but for bounded size
machines. We instantiate NfaABE from our construction in Section 3.6.2.

2. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme for
circuits that satisfies the efficiency properties described in Theorem 3.5.9. We can
instantiate ABE with the scheme proposed by [Boneh et al. (2014)].

3. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → R, where
we assumeR to be the randomness space of both NfaABE.Setup and ABE.Setup
algorithms. Note that without loss of generality, we may assumeR = {0, 1}p(λ)

for some sufficiently large polynomial p(λ).

96

Below we provide our construction for SKABE for NFA.

3.7.1 Construction of uNfaABE

uNfaABE.Setup(1λ): On input the security parameter 1λ, do the following:

1. Sample two PRF keys KNfaABE ← PRF.Setup(1λ),KABE ← PRF.Setup(1λ).

2. Output uNfaABE.msk = (KNfaABE,KABE).

uNfaABE.Enc(uNfaABE.msk,x, m): On input the master secret key uNfaABE.msk, an

attribute as x ∈ Σ∗ of length at most 2λ and a message m ∈M, do the following:

1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote
` = |x|.

2. For all i ∈ [`], do the following:

(a) Sample NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri) as an NfaABE mas-
ter secret key, where ri = PRF.Eval(KNfaABE, i).

Note that i denotes the size of the NFAs that are supported by NfaABE.mski.

(b) Compute NfaABE.cti = NfaABE.Enc(NfaABE.mski,x,m, 1
i).

3. Sample (ABE.mpk`,ABE.msk`)← ABE.Setup(1λ, 1`, 1d̂; r`) as an ABE key
pair, where r` = PRF.Eval(KABE, `).

Note that ` and d̂ denote the input length and the depth of the circuit respec-
tively that (ABE.mpk`,ABE.msk`) supports.

4. Compute ABE.ct` = ABE.Enc(ABE.mpk`,x,m).

5. Output uNfaABE.ct = ({NfaABE.cti}i∈[`],ABE.mpk`,ABE.ct`).

uNfaABE.KeyGen(uNfaABE.msk,M): On input the master secret key uNfaABE.msk

and the description of a NFA M = (Q,Σ, T, qst, F), proceed as follows.

1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote
s= |M |.

2. For all i ∈ [s], do the following:

(a) Let M̂i = To-Circuits,i(M). (See Theorem 3.6.1 for the definition of
To-Circuit.)

(b) Sample (ABE.mpki,ABE.mski)← ABE.Setup(1λ, 1i, 1d̂; ri) as an ABE
key pair, where ri = PRF.Eval(KABE, i).

(c) Compute ABE.ski = ABE.KeyGen(ABE.mpki,ABE.mski, M̂i).

97

Note that ∀i ∈ [s], i and d̂ denotes the input length and the depth of the
circuit respectively that (ABE.mpki,ABE.mski) supports.

3. Sample NfaABE.msks←NfaABE.Setup(1λ, 1s; rs) as an NfaABE master se-
cret key, where rs = PRF.Eval(KNfaABE, s).

4. Compute NfaABE.sks = NfaABE.KeyGen(NfaABE.msks,M).

5. Output uNfaABE.skM = (NfaABE.sks, {ABE.mpki,ABE.ski}i∈[s]).

uNfaABE.Dec(uNfaABE.skM ,M, uNfaABE.ct,x): On input a secret key for NFA M

and a ciphertext encoded under some attribute x, proceed as follows:

1. Parse the secret key as uNfaABE.skM = (NfaABE.sk|M |, {ABE.mpki,ABE.ski}i∈[|M |])
and the ciphertext as uNfaABE.ct = ({NfaABE.cti}i∈[|x|],ABE.mpk|x|,ABE.ct|x|).

2. If |x| ≥ |M |, compute and output NfaABE.Dec(NfaABE.sk|M |,M,NfaABE.ct|M|,x).

3. Otherwise, compute and output ABE.Dec(ABE.mpk|x|,ABE.sk|x|, M̂|x|,ABE.ct|x|,x),
where M̂|x| = To-Circuit|M |,|x|(M).

3.7.2 Correctness of uNfaABE

The following theorem asserts that our scheme is efficient.

Theorem 3.7.1. The scheme uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen, uNfaABE.Enc,

uNfaABE.Dec) defined above runs in polynomial time, as long as d̂ and |Σ| are polyno-

mials in λ. .

Proof. It is easy to see that the uNfaABE.Setup runs in polynomial time.

We start with showing that uNfaABE.KeyGen runs in polynomial time. Note that

for any NFA M with size s = |M | and any input length i < [s], Item 2 of Theorem

3.6.1 asserts that the sizes and depths of To-Circuits,i and M̂i = To-Circuits,i(M) are

both bounded by poly(s, i) and poly(log s, log i) respectively. Hence, the efficiency

requirements met by [Boneh et al. (2014)] discussed in Theorem 3.5.9 which is used to

instantiate ABE implies that ABE.Setup and ABE.KeyGen always runs in time polyno-

mial in λ, s and d̂. Further, the efficiency of NfaABE discussed in Theorem 3.6.2 which

is used to instantiate NfaABE implies that NfaABE.Setup and NfaABE.KeyGen runs in

polynomial time.

98

Next, we show that uNfaABE.Enc runs in polynomial time. We have a similar

reasoning as above to argue the following: for any input x with length ` = |x| and any

NFA size i ∈ [`], the efficiency of NfaABE discussed in Theorem 3.6.2 implies that

NfaABE.Setup and NfaABE.Enc run in polynomial time.

We finally bound the running time of uNfaABE.Dec. It is easy to see that the

efficiency guarantees given by the underlying schemes NfaABE and ABE along with

Theorem 3.6.1 implies that uNfaABE.Dec runs in polynomial time.

The following theorem addresses the correctness of the scheme.

Theorem 3.7.2. For appropriately chosen d̂ = d̂(λ), our scheme uNfaABE is correct

for any NFA.

Proof. As long as d̂ is chosen appropriately, we can argue the correctness of uNfaABE

as follows. The uNfaABE.Dec algorithm takes as input

uNfaABE.skM =
(
NfaABE.sk|M |, {ABE.mpki,ABE.ski}i∈[|M |]

)
and

uNfaABE.ct = ({NfaABE.cti}i∈[|x|],ABE.mpk|x|,ABE.ct|x|)

as a secret key for an NFA M and a ciphertext under an attribute x respectively.

By our definition, for any i ∈ N,NfaABE.mski supports NFA machines of size

bounded above by i with unbounded input length. Thus, in the case when |x| ≥ |M |,

the correctness of NfaABE scheme implies the correctness of the uNfaABE scheme.

Alternatively, we have by Theorem 3.5.9 that for any i ∈ N, (ABE.mpki,ABE.mski)

supports a circuit class of input length i and depth d̂ = d̂(λ) while Theorem 3.6.1 implies

that depth(M̂i) is always bounded above by poly(log i, log s) = poly(log λ) < λ. In

particular, we have that depth(M̂i) < d̂, where we set d̂ = λ and thus the circuit M̂i is

supported by the ABE scheme. Therefore, in the case when |x| < |M |, the correctness

of ABE scheme implies the correctness of the uNfaABE scheme.

3.7.3 Proof of Security for uNfaABE

Next, we prove that the above uNfaABE scheme is secure, as long as the underlying

NfaABE and ABE schemes are secure.

99

Theorem 3.7.3. Assume that NfaABE and ABE both satisfy selective indistinguishability

based security and PRF is a secure pseudorandom function. Then, uNfaABE satisfies

selective security.

Proof. To show that any PPT adversary A succeeds with only negligible probability in

the selective security game of uNfaABE as stated in Definition 3.5.4, let us introduce the

following sequence of games {Gamek}k∈[0,6] between the uNfaABE challenger and A.

Game0: For any challenge message query (m(0),m(1)) with respect to any attribute

x, this game corresponds to the real experiment where the uNfaABE challenger

encrypts messages corresponding to challenge bit b = 0.

Game1: In this game, we change the setup phase as follows.

Setup phase. Given X ⊂ Σ∗ from A, the challenger chooses uNfaABE.msk ←

NfaABE.Setup(1λ) as in the previous game. In addition, it precomputes all

relevant master keys as follows which are later used to answer encryption as

well as key queries.

NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri), where ri = PRF.Eval(KNfaABE, i)

(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂; r′i), where r′i = PRF.Eval(KABE, i)

for all i ∈ [T], T = max(`max, smax), where we define `max := max{|x| :

x ∈ X} as per Definition 3.5.4 and smax as the maximum size of any NFA

queried by A. Note that both `max and smax and hence T are bounded by the

running time of A and thus are polynomial in λ.

Game2: This game is exactly the same as Game1 except that now the challenger

samples the master keys in setup phase for both the underlying schemes NfaABE

and ABE using true randomness instead of using PRF randomness as

{NfaABE.mski ← NfaABE.Setup(1λ, 1i)}i∈[T],

{(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂)}i∈[T]

Game3: In this game, for any challenge message query (m(0),m(1)) with respect to

any attribute x, the challenger generates NfaABE ciphertexts corresponding to

100

challenge bit b = 1 while the ABE ciphertexts are generated corresponding to

challenge bit b = 0.

Game4: In this game, for any challenge message query (m(0),m(1)) with respect

to any attribute x, the challenger generates both NfaABE and ABE ciphertexts

corresponding to challenge bit b = 1.

Game5: This game is exactly the same as Game4 except that now the challenger

samples the master keys in the setup phase for both the underlying schemes

NfaABE and ABE using PRF randomness again instead of using true randomness.

Game6: For any challenge message query (m(0),m(1)) with respect to any attribute

x, this game corresponds to the real experiment where the uNfaABE challenger

encrypts messages corresponding to challenge bit b = 1.

In the following, let Ek denote the event that A outputs 1 in Gamek. To prove the

theorem, we will show that |Pr[E0]−Pr[E6]| = negl(λ), since Game0 (resp., Game6)

corresponds to the selective security game with b = 0 (resp., b = 1). Since we have

|Pr[E0]− Pr[E6]| ≤
∑
k∈[0,5]

|Pr[Ek]− Pr[Ek+1]|

by the triangle inequality, it suffices to show |Pr[Ek] − Pr[Ek+1]| = negl(λ) for

all k ∈ [0, 5]. In order to prove indistinguishability between Game2 and Game3

(resp., Game3 and Game4), we further introduce a sequence of games {Game2,i}i∈[0,`max]

(resp., {Game3,i}i∈[0,`max]), where `max was defined in Game1. We then describe the

two games Game2,i and Game3,i for any i ∈ [0, `max] as follows.

Game2,i: The game proceeds as follows.

Setup phase. At the beginning of the game, A takes 1λ as input and submits the

set of its target X ⊂ Σ∗ to the uNfaABE challenger. The challenger then

generates the master keys as before.

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. For any message pair (m(0),m(1)) and x ∈ X from A, the

challenger sets ` = |x|, chooses the appropriate NfaABE and ABE keys from

101

the set of precomputed keys and computes

NfaABE.ctj ←

NfaABE.Enc(NfaABE.mskj,x,m
(0), 1j) If j > i

NfaABE.Enc(NfaABE.mskj,x,m
(1), 1j) If j ≤ i

for j ∈ [`]. It also computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)) and

returns uNfaABE.ct← ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFA M from A, the challenger sets s = |M | and then

uses the precomputed master keys to compute and returns uNfaABE.skM =

(NfaABE.sks, {ABE.mpkj,ABE.skj}j∈[s]) to A.

Finally, A outputs its guess b′.

Game3,i: The game proceeds as follows.

Setup phase. At the beginning of the game, A takes 1λ as input and submits the

set of its target X ⊂ Σ∗ to the uNfaABE challenger. The challenger then

generates the master keys as before.

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. For any message pair (m(0),m(1)) and x ∈ X from A, the

challenger sets ` = |x|, chooses the appropriate NfaABE and ABE from the

set of precomputed keys and computes

ABE.ct` ←

ABE.Enc(ABE.mpk`,x,m
(0)) If ` > i

ABE.Enc(ABE.mpk`,x,m
(1)) If ` ≤ i.

It also computes {NfaABE.ctj←NfaABE.Enc(NfaABE.mskj,x,m
(1), 1j)}j∈[`]

and returns uNfaABE.ct = ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFA M from A, the challenger sets s = |M | and then

uses the precomputed master keys to compute and returns uNfaABE.skM =

(NfaABE.sks, {ABE.mpkj,ABE.skj}j∈[s]) to A.

Finally, A outputs its guess b′.

102

We first note that ∀k ∈ [2, 3],Gamek = Gamek,0 and Gamek,`max = Gamek+1.

Since we have

|Pr[Ek]− Pr[Ek+1]| = |Pr[Ek,0]− Pr[Ek,`max]| ≤
(`max−1)∑
i=0

|Pr[Ek,i]− Pr[Ek,i+1]|

by the triangle inequality, it suffices to show |Pr[Ek,i]− Pr[Ek,i+1]| = negl(λ), for all

k ∈ [2, 3] and for all i ∈ [0, `max − 1]. To complete the proof of the theorem, it remains

to prove the following lemmas.

Lemma 3.7.4. We have Pr[E0] = Pr[E1].

Proof. The change introduced here is only conceptual, where all the master keys

{NfaABE.mski}i∈[T] and {(ABE.mpki,ABE.mski)}i∈[T] are computed a-priori. The

lemma trivially follows.

Lemma 3.7.5. We have |Pr[E1]− Pr[E2]| = negl(λ).

Proof. Note that the PRF keys KNfaABE and KABE are only used for generating ran-

domness in order to precompute the NfaABE and ABE master keys and are not used

anywhere else in Game1. Further, note that since the two PRF keys KNfaABE and KABE

are independent of each other we can replace them at once with true randomness in

Game2. Therefore, the lemma follows by a straightforward reduction to the security of

PRF with respect to the two independently drawn keys KNfaABE and KABE.

Lemma 3.7.6. We have |Pr[E2,i]− Pr[E2,i+1]| = negl(λ),∀i ∈ [0, `max − 1].

Proof. To prove the lemma, let us assume that |Pr[E2,i]− Pr[E2,i+1]| is non-negligible

and construct an adversary B that breaks the selective security of NfaABE using A. B

proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains X ⊂ Σ∗

from A. Then, B submits (1λ, 1i) and Xi to the NfaABE challenger where

Xi := {x | x ∈ X and |x| = i} and precomputes {(ABE.mpkj,ABE.mskj)}j∈[T]

and {NfaABE.mskj}j∈[T]\{i}. It then implicitly sets NfaABE.mski := NfaABE.msk

without knowing its value, where NfaABE.msk is chosen by the NfaABE chal-

lenger and further handles the encryption and key queries as follows.

103

Encryption queries. Given a message pair (m(0),m(1)) and x ∈ X from A, B sets

` = |x|, chooses (ABE.mpk`,ABE.msk`) and {NfaABE.mskj}j∈[`]\{i} from the

set of precomputed ABE and NfaABE keys to answer any encryption query as

follows.

1. B computes {NfaABE.ctj ← NfaABE.Enc(NfaABE.mskj,x,m
(0), 1j)}j∈[i+1,`].

2. B makes an encryption query
(
(m(0),m(1)),x

)
to the NfaABE challenger.

The challenger computes

NfaABE.ct←

{
NfaABE.Enc(NfaABE.msk,x,m(0), 1i) If b = 0

NfaABE.Enc(NfaABE.msk,x,m(1), 1i) If b = 1

and returns NfaABE.ct to B. B then sets NfaABE.cti := NfaABE.ct.

3. B computes {NfaABE.ctj ← NfaABE.Enc(NfaABE.mskj,x,m
(1), 1j)}j∈[1,i−1].

B also computes by itself ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)) and returns

uNfaABE.ct = ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFA M from A, B first sets s = |M |, computes {M̂j =

To-Circuits,j(M)}j∈[s] and then chooses {(ABE.mpkj,ABE.mskj)}j∈[s] from the

set of precomputed ABE keys. It then proceeds as follows.

1. If s 6= i, B chooses NfaABE.msks from the set of precomputed NfaABE keys
to compute NfaABE.sks ← NfaABE.KeyGen(NfaABE.msks,M).

2. If s = i, B submits M to the NfaABE challenger upon which the challenger
computes and returns NfaABE.sk← NfaABE.KeyGen(NfaABE.msk,M). B
then sets NfaABE.sks := NfaABE.sk.

B also computes by itself {ABE.skj ← ABE.KeyGen(ABE.mpkj,ABE.mskj, M̂j)}j∈[s]

and returns uNfaABE.skM =
(
NfaABE.sks, {ABE.mpkj,ABE.skj}j∈[s]

)
to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Game2,i if b = 0 and Game2,i+1 if b = 1. Therefore,

B breaks the security of NfaABE if A distinguishes the two games. It remains to prove

that B is a legitimate adversary (i.e., it does not make any prohibited key queries). For

any attribute x for which B makes an encryption query and for any key query for an NFA

M , we have that M(x) = 0, by the legitimacy of adversary A.

From the above observation, we can see that B breaks the security of NfaABE if A

distinguishes the two games. This completes the proof of the lemma.

104

Lemma 3.7.7. We have |Pr[E3,i]− Pr[E3,i+1]| = negl(λ),∀i ∈ [0, `max − 1].

Proof. To prove the lemma, let us assume that |Pr[E3,i]− Pr[E3,i+1]| is non-negligible

and construct an adversary B that breaks the selective security of ABE using A. B

proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains X ⊂ Σ∗.

Then, B submits (1λ, 1i, 1d̂) and Xi to the ABE challenger, where Xi := {x | x ∈

X and |x| = i}. The ABE challenger chooses (ABE.mpk,ABE.msk) and replies

to B with ABE.mpk upon which B precomputes {(ABE.mpkj,ABE.mskj)}j∈[T]\{i}

and {NfaABE.mskj}j∈[T] and then implicitly sets (ABE.mpki,ABE.mski) := (ABE.mpk,

ABE.msk) without knowing the value of ABE.msk. It then handles the encryption

and key queries as follows.

Encryption queries. Given a message pair (m(0),m(1)) and x ∈ X from A, B sets

` = |x|, chooses {NfaABE.mskj}j∈[`] and ABE.mpk` from the set of precomputed

NfaABE and ABE keys to answer any encryption query as follows.

1. If ` > i, B computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)).

2. If ` = i, B makes a challenge ciphertext query
(
(m(0),m(1)),x

)
to the ABE

challenger. The challenger computes

ABE.ct←

{
ABE.Enc(ABE.mpk`,x,m

(0)) If b = 0

ABE.Enc(ABE.mpk`,x,m
(1)) If b = 1

and returns ABE.ct to B. B then sets ABE.ct` := ABE.ct.

3. If ` < i, B computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(1)).

B also computes {NfaABE.ctj←NfaABE.Enc(NfaABE.mskj,x,m
(1), 1j)}j∈[`] and

returns to A uNfaABE.ct = ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`).

Key queries. Given an NFA M from A, B first sets s = |M |, computes {M̂j =

To-Circuits,j(M)}j∈[s] and then chooses NfaABE.msks from the set of precom-

puted NfaABE keys. It then proceeds as follows.

1. B chooses {(ABE.mpkj,ABE.mskj)}j∈[s]\{i} from the set of precomputed
ABE keys to compute {ABE.skj ← ABE.KeyGen(ABE.mpkj,ABE.mskj, M̂j)}j∈[s]\{i}.

2. B submits M̂i to the ABE challenger upon which the challenger computes
and returns ABE.sk← ABE.KeyGen(ABE.mpk,ABE.msk, M̂i). B then sets
ABE.ski := ABE.sk.

105

B also computes by itself NfaABE.sks ← NfaABE.KeyGen(NfaABE.msks,M)

and returns to A uNfaABE.skM =
(
NfaABE.sks, {ABE.mpkj,ABE.skj}j∈[s]

)
.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Game3,i if b = 0 and Game3,i+1 if b = 1. Therefore,

B breaks the security of ABE if A distinguishes the two games. It remains to prove that

B is a legitimate adversary (i.e., it does not make any prohibited key queries). Note that

any key query issued by B is a circuit M̂i against a key query for an NFA M issued by A.

Further, Theorem 3.6.1 implies that for any NFA M,M(x) = M̂i(x), ∀x ∈ Σ≤i. Thus,

for any attribute x of length i for which B makes an encryption query and for any NFA

key query M issued by A, we have M̂i(x) = M(x) = 0, by the legitimacy of A.

From the above observation, we can see that B breaks the security of ABE if A

distinguishes the two games. This completes the proof of the lemma.

Lemma 3.7.8. We have |Pr[E4]− Pr[E5]| = negl(λ).

Proof. The proof follows similarly to Lemma 3.7.5.

Lemma 3.7.9. We have Pr[E5] = Pr[E6].

Proof. The proof follows similarly to Lemma 3.7.4.

This concludes the proof of Theorem 3.7.3.

3.8 FE for DFA implies iO

Here, we show that secret key functional encryption (SKFE) for DFA with security

against unbounded collusion implies indistinguishability obfuscation (iO). This result

illuminates the difficulty of constructing such SKFE from a standard assumption, since

no construction of iO from standard assumption is known despite the significant research

effort in recent years [Gorbunov et al. (2013); Garg et al. (2013b,a); Gorbunov et al.

(2015, 2012); Agrawal and Rosen (2017); Goldwasser et al. (2013a); Gorbunov et al.

(2015); Agrawal (2017); Abdalla et al. (2015); Agrawal et al. (2016); Lin (2017); Baltico

et al. (2017); Ananth and Jain (2015); Bitansky and Vaikuntanathan (2015); Ananth et al.

106

(2015b); Lin (2016); Lin and Vaikuntanathan (2016); Lin (2017); Agrawal and Singh

(2017); Lin and Tessaro (2017); Ananth et al. (2018); Lin and Matt, (2018); Agrawal

(2019)].

3.8.1 Preliminaries on DFA and Branching Programs

Here, we first recall that a deterministic finite automaton (DFA) is a special case of

NFA where for the transition function T , T (σ, q) consists of a single element in Q for

any σ ∈ Σ and q ∈ Q. We then define branching program similarly to [Brakerski and

Vaikuntanathan (2014)].

Definition 3.8.1 (Branching Programs). A width-5 permutation branching program BP

of lengthLwith input space {0, 1}` is a sequence ofL tuples of the form (var(t), σt,0, σt,1)

where

• var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t).

• σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1 as
bijective functions from the set {1, 2, 3, 4, 5} to itself.

The computation of the program BP on input x = (x1, . . . , x`) proceeds as follows.

The state of the computation at any point in time t is a number ζt ∈ {1, 2, 3, 4, 5}.

Computation starts with the initial state ζ0 = 1. The state ζt is computed recursively as

ζt = σt,xvar(t) (ζt−1) . (3.6)

Finally, after L steps, our state is ζL. The output of the computation BP(x) is 1 if ζL = 1

and 0 otherwise.

We will use the following theorem, which essentially says that an NC1 circuit can be

converted into an equivalent branching program.

Theorem 3.8.2 (Barrington’s Theorem [Barrington (1989)]). Every Boolean NAND

circuit C that acts on ` inputs and has depth d can be computed by a width-5 permutation

branching program BP of length 4d. Given the description of the circuit BP, the

description of the branching program BP can be computed in poly(`, 4d) time. In

particular, if C is a polynomial-sized circuit with logarithmic depth (i.e., if the circuit is

in NC1), BP can be computed in polynomial time.

107

3.8.2 SKFE for DFA implies iO

We first state and prove the following theorem.

Theorem 3.8.3. Let d = d(λ) and ` = `(λ) be integers. There exist deterministic

algorithms Encode and ToDFA with the following properties.

- Encode(x) → y ∈ {0, 1}n, where x ∈ {0, 1}` and n is a parameter determined
by d and `.

- ToDFA(C)→M , where C : {0, 1}` → {0, 1} is a circuit with depth bounded by
d and M is a DFA over alphabet Σ = {0, 1}.

We have that M(y) = 1 if and only if C(x) = 1. We also have that the running time

of Encode and ToDFA is poly(`, 2d). In particular, if C is a polynomial-sized circuit

with logarithmic depth (i.e., if the circuit is in NC1), Encode and ToDFA(C) run in

polynomial time.

Proof. We define Encode and ToDFA as follows:

• Encode(x) outputs y := (x‖0)L, where (x‖0)L denotes the L-times repetition of
the same string x‖0 and L = 4d.

• ToDFA(C) first convertsC into a branching program BP = {(var(t), σt,0, σt,1)}t∈[L]

of length L = 4d by using the algorithm in Theorem 3.8.2. It then outputs DFA
M = (Q,Σ, T, qst, F), where

Q = {q(k)
i,j }i∈[L],j∈[0,`],k∈[5]∪{q(k)

ed }k∈[5], Σ = {0, 1}, qst = q
(1)
1,0, F = {q(1)

ed },

and

T (b, q
(k)
i,j) =


q
σi,b(k)

i,var(i) if j = var(i)− 1

q
(k)
i+1,0 if j = ` ∧ i 6= L

q
(k)
ed if j = ` ∧ i = L

q
(k)
i,j+1 if j 6= var(i)− 1, j 6= `,

T (b, q
(k)
ed) = q

(k)
ed .

In the following, we often denote q(k)
L+1,0 := q

(k)
ed for notational convenience.

It is easy to see that the running time of the algorithms is bounded by poly(`, 2d). We

then prove M(y) = C(x). Since we have C(x) = BP(x) by Theorem 3.8.2, it suffices

to show BP(x) = M(y). To show this, we prove the following claim.

Claim 3.8.4. Let t be an integer t ∈ [0, L]. Then, state qst goes to state qζtt+1,0 on input

(x‖0)t, where ζt is defined as Eq. (3.6).

108

Proof. The proof is by induction on t. For the base case of t = 0, the statement holds

because qst = q
(1)
1,0 and ζ0 = 1. Next, we prove the statement for t = t∗ assuming

that the statement for t = t∗ − 1. By the assumption, state qst goes to state qζt∗−1

t∗,0

on input (x‖0)t
∗−1. It suffices to prove that state qζt∗−1

t∗,0 goes to state qζt∗t∗+1,0 on input

x‖0. By inspection, it can be seen that state qζt∗−1

t∗,0 goes to state qζt∗−1

t∗,var(t∗)−1 on input

x1, . . . , xvar(t∗)−1. We also observe that state qζt∗−1

t∗,var(t∗)−1 goes to state

q
σt∗,var(t∗)(ζt∗−1)

t∗,var(t∗) = qζt∗t∗,var(t∗)

on xvar(t∗), where the above equality follows from the definition of ζt∗ . Again by

inspection, it can be seen that state qζt∗t∗,var(t∗) goes to state qζt∗t∗,` on xvar(t∗)+1, . . . , x` and

qζt∗t∗,` goes state qζt∗t∗+1,0 on input 0. This completes the proof of the claim.

By setting t = L, the claim implies that state qst goes to state qζLed on input y. Thus,

we have M(y) = 1 iff ζ1 = 1, which implies M(y) = 1 iff BP(x) = 1. This completes

the proof of the theorem.

We then discuss that if there exists subexponentially secure SKFE (please see Ap-

pendix B.1.3 for a formal definition) for DFA that is very selectively secure against

unbounded collusion, it can be converted into a secure indistinguishability obfuscation.

To do so, we first convert an SKFE for DFA into an SKFE for NC1 circuits. The latter

SKFE has the same setup algorithm as the former, but when generating a secret key for a

circuit C, it first converts C into a DFA M using the algorithm in Theorem 3.8.3 and

then invokes the key generation algorithm of the SKFE for DFA on input M . Similarly,

when encrypting a message x, it computes y as in Theorem 3.8.3 and then invokes the

encryption algorithm of the SKFE for DFA on input y. The decryption algorithm is

defined naturally. It is easy to see that this conversion preserves the correctness and the

security since we have M(y) = C(x) by Theorem 3.8.3.

Then, we apply the conversion given by [Ananth and Jain (2015); Bitansky and

Vaikuntanathan (2015)] to the SKFE for NC1 to obtain SKFE for all circuits. We then

further apply the conversion by Kitagawa et al. [Kitagawa et al. (2017, 2018a)] to the

SKFE for all circuits to obtain iO. Note that while the former conversion incurs only

polynomial loss, the latter conversion incurs sub-exponential security loss.

In summary, we obtain the following theorem.

Theorem 3.8.5. If there exists a subexponentially secure SKFE scheme for DFA that is

109

very selectively secure against unbounded collusion, then there exists an indistinguisha-

bility obfuscation.

110

CHAPTER 4

Attribute based Encryption for Deterministic Finite

Automata from Standard Static Assumptions

4.1 Introduction

In this chapter we continue our study of attribute based encryption (ABE) but shift the

attention towards supporting deterministic finite automata (DFA) from static assumptions

over bilinear maps.

As mentioned in Chapter 3, [Waters (2012)] provided the first construction of ABE

for regular languages. Here, the secret key is associated with a DFA and ciphertext is

associated with attribute x of arbitrary length. The same secret key can directly decrypt

ciphertexts that encode inputs of varying lengths, yielding the first ABE that supports

a uniform model of computation. While the construction in [Waters (2012)] relied on

hardness assumptions over bilinear maps, which are well understood, the assumption

is parametrized (also known as “q-type”), which means that the size of the assumption

depends on the queries made by the adversary. Achieving a construction of ABE for

DFA from standard static assumptions over bilinear maps had remained elusive since

then. Although our results in Chapter 3 provides a secret key ABE for nondeterministic

finite automata, our construction makes use of highly lattice specific machinery (such as

reusable garbled circuits [Goldwasser et al. (2013a)]) relying on the learning with errors

assumption. Therefore, it is unclear how to use these ideas to improve the state of affairs

in the world of pairings.

4.2 Our Contributions

In this work, we construct the first public key ABE scheme for DFA from static as-

sumptions on pairings, namely, the DLIN assumption. Our scheme supports unbounded

length inputs as well as unbounded length machines. In more detail, secret keys in

our construction are associated with a DFA M of unbounded length, ciphertexts are

associated with a tuple (x,m) where x is a public attribute of unbounded length and

m is a secret message bit, and decryption recovers m if and only if M(x) = 1. Our

construction also supports unbounded key requests by the adversary. Additionally, via

a simple tweak to our construction, we also obtain the first ciphertext-policy ABE for

DFA from the DLIN assumption.

We contrast our results with prior work in Table 4.1. For brevity, we only compare

with constructions of ABE that support uniform models of computation (in particular,

handle unbounded input lengths) and rely on standard assumptions. Other relevant and

concurrent work is discussed in Sections 4.4 and 4.5.

Construction Model KP or CP Number of
Keys

Assumption Security

[Waters
(2012)]

DFA KP unbounded q-type
assumption
on bilinear

maps

Selective

[Attrapadung
(2014)]

DFA KP & CP unbounded q-type
assumption
on bilinear

maps

Adaptive

[Agrawal
and Singh
(2017)]

DFA KP single LWE Selective

[Agrawal
et al.

(2019a)]

NFA KP unbounded LWE Selective

[Gong et al.
(2019)]

DFA KP unbounded kLIN Selective

This DFA KP & CP unbounded DLIN Selective*

Table 4.1: Comparison with prior work supporting unbounded input length. KP and CP
indicate key-policy and ciphertext-policy respectively.

4.3 Our Techniques.

A natural starting point for constructing (key policy) ABE for DFA is (key policy) ABE

for monotone span programs (MSP), which has been studied extensively in the literature.

Recall that an MSP is specified by a pair (L, ρ) of a matrix and a labelling function

112

where L ∈ Z`×mp , ρ : [`]→ {0, 1}∗ for some integer `,m. Intuitively, the map ρ labels

row i with attribute ρ(i). Given a set of attributes I as input, the MSP accepts the input

iff the sub-matrix of L restricted to attributes selected by I contains a special target

vector in its row span (please see Section 4.7.1 for the precise definition).

Step 1: Leveraging ABE for MSP. Our first observation is that DFA computation is

simple enough to be encoded into an MSP. In more detail, given a DFA machine M

and an input string x, it is possible to map the DFA M into an MSP (LM , ρM) and the

input x into a set of attributes Sx such that the MSP (LM , ρM) accepts attributes Sx iff

M(x) = 1. We exhibit such a map in Section 4.9.1 and prove the following theorem:

Theorem 4.3.1. (Informal) Let (LM , ρM) be the MSP and Sx be the set of attributes

obtained by applying the map specified in Section 4.9.1 to M and x respectively. Then,

the MSP (LM , ρM) accepts attributes Sx iff M(x) = 1.

This provides a starting point for using ABE for MSP, which can be constructed from

static assumptions, as a building block towards constructing ABE for DFA.

Step 2: Handling Unbounded Length. While this seems promising as a first step,

the careful reader may have noticed that the above idea fails to address the primary

challenge of supporting DFA, namely, that of handling inputs of unbounded length. DFA

is a uniform model of computation, which means that the same machine must process

inputs of arbitrary length. On the other hand, an MSP can only process inputs of bounded

length – in particular, the length of inputs that an MSP can read is clearly bounded above

by the number of rows in L.

This appears to make ABE for MSP almost useless for our purposes, since there is

no way to guarantee that |x| is less than the number of rows in L (denoted by |x| ≤ |M |

in the sequel1). However, notice that since both the inputs and the machines have

unbounded length, it still holds in some cases that |x| ≤ |M |, and if we can handle this,

it still constitutes progress. More hurdles present themselves – for instance, the syntax

of ABE for DFA does not allow the setup algorithm to know the lengths |x|, |M |, the

key generation algorithm cannot know |x| and the encrypt algorithm cannot know |M |.
1While imprecise, we use this notation here for intuition. Formally, it will turn out to be sufficient to

compare |x| with |Q|, where |Q| is the number of states in M .

113

But this challenge can be overcome by making use of the so called unbounded ABE

schemes, as described next.

Unbounded ABE schemes (for MSP) [Okamoto and Takashima (2012); Chen et al.

(2018)] are those in which the setup algorithm places no restriction on the length of

the attributes or the size of the policies that are embedded in the ciphertexts and keys.

Moreover, the key generation and encrypt algorithms do not require knowledge of input

length or policy size respectively. While significantly more challenging to build than

their bounded counterparts, a small number of existing constructions [Okamoto and

Takashima (2012); Chen et al. (2018)] achieve this property while relying on standard

assumptions.

We show in Section 4.8.2 that unbounded key policy ABE schemes for MSP can

indeed be used to construct ABE for DFA so long as |x| ≤ |M |. More formally, we

define relation RKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the attribute set S

and RDFA≤(x,M) = M(x) ∧
(
|x|

?

≤ |M |
)
. Then, we have that:

Theorem 4.3.2. (Informal) Let kpABE be a secure unbounded ABE for the relation

RKP. Then, the construction DfaABE≤ provided in Section 4.8.2 is a secure ABE for the

relation RDFA≤.

Step 3: The trick in Chapter 3. To construct a full fledged ABE for DFA, our

next tool is a technique used in Chapter 3. We showed how to construct an ABE for

nondeterministic finite automata (NFA) that supports unbounded inputs and unbounded

machines, by running in parallel two restricted ABE for NFA schemes: one that supports

unbounded inputs but bounded machines and one that supports bounded inputs but

unbounded machines.

Our goal is to construct an ABE scheme DfaABE for the relation RDFA(x,M) =

M(x). By using a similar technique, we can construct our DfaABE from two special

ABE schemes as follows:

1. An ABE DfaABE≤ for the relation RDFA≤(x,M) = M(x) ∧
(
|x|

?

≤ |M |
)
.

2. An ABE DfaABE> for the relation RDFA>(x,M) = M(x) ∧
(
|x|

?
> |M |

)
.

It is easy to see that given constructions for the special ABE schemes DfaABE≤ and

DfaABE>, we may construct DfaABE simply by running them in parallel. In more detail,

114

the setup algorithm of DfaABE simply runs the setup algorithms of the underlying special

ABEs and outputs the public and master secret keys by combining their outputs, the

encrypt algorithm encrypts its input (x, µ) under both special ABEs, the key generation

algorithm produces a key under both special ABEs and the decryption algorithm invokes

the decryption of one or the other depending on whether |x|
?

≤ |M |. This intuition is

formalized in Section 4.8.1, where we prove the following theorem:

Theorem 4.3.3. (Informal) Assume that DfaABE≤ and DfaABE> are secure ABE

schemes for relations RDFA≤ and RDFA> respectively. Then, the scheme DfaABE con-

structed in Section 4.8.1 is a secure ABE for relation RDFA.

Step 4: Plugging the gap with ciphertext policy ABE. We already constructed an

ABE for the case of |x| ≤ |M |. The case of |x| > |M | is more challenging, since to

use ABE for MSP, it is necessary that the MSP be large enough to read the input as we

have discussed above. To handle this, we simply switch the role of key generator and

encryptor! In more detail, if the encryptor could instead embed x into an MSP and the

key generator could embed M into a set of attributes, then the dilemma of compatible

sizes could be resolved and we would be back in business. We show that this can be

done; we provide a map in Section 4.9.2 that achieves this embedding. More formally,

we prove that:

Theorem 4.3.4. Let (Lx, ρx) be the MSP and SM be the set of attributes obtained by

applying the map specified in Section 4.9.2 to x and M respectively. Then, the MSP

(Lx, ρx) accepts attributes SM iff M(x) = 1.

In order to support encryption of an MSP (Lx, ρx), we now need an unbounded

ciphertext policy ABE for MSP. In more detail, we defineRCP((L, ρ), S) = 1 iff the span

program (L, ρ) accepts the attribute set S. Recall that RDFA>(x,M) = M(x) ∧
(
|x|

?
>

|M |
)
. Then, we show in Section 4.8.3 that:

Theorem 4.3.5. (Informal.) Let cpABE be a secure unbounded ABE scheme for the

relation RCP. Then the construction DfaABE> provided in Section 4.8.3 is a secure ABE

for the relation RDFA>.

To summarize, our approach is based on the observation that we must only construct

an MSP of length max(|x|, |M |), where |x| is known to the encryptor and |M | is known

115

to the key generator (and neither know the other). When the input vector has size

|x| ≤ |M |, we embed the DFA into a monotone span program which has number

of rows proportional to |M |, and the input into a set of attributes – this ensures that

the MSP is large enough to support an input of length |x|. We may then leverage an

unbounded kpABE scheme to handle this case. On the other hand, when |x| > |M |, we

instead embed the input vector into a monotone span program which has number of

rows proportional to |x|, and the machine into a set of attributes – this again ensures

that the MSP is large enough to support an input of size |M |. We may then leverage an

unbounded cpABE scheme to handle this case. Of course, neither party knows which

case it must support, so it simply provides information for both and leaves it to the

decryptor to make the choice!

Step 5: Instantiating the kpABE and cpABE. Finally, we must ensure that we can

instantiate unbounded ABE schemes kpABE and cpABE for the relations RKP and RCP

that we require. While prior work provides constructions of unbounded key policy

and ciphertext policy ABE schemes for MSP, these unfortunately cannot be plugged

into our compiler out of the box. This is because our construction requires the ABE

schemes to support “multi-use” of attributes, i.e. when the map ρ in the MSP is not

restricted to be injective. Moreover, the ABE schemes are required to be unbounded, as

already discussed above. Finally, we want the schemes to be proven secure from static

assumptions such as DLIN, not from q-type assumptions. Schemes achieving all these

properties do not exist in the literature to the best of our knowledge.2 Hence, we must

refashion existing schemes to satisfy this. In Section C.1, we provide constructions for

multi-use unbounded key policy and ciphertext policy ABE schemes by modifying the

constructions in [Chen et al. (2018)]. Let RMUKP and RMUCP be the same relations as

RKP and RCP defined above, but with the requirement that the underlying MSPs in both

relations support multi-use of attributes. Then, we obtain the following theorem:

Theorem 4.3.6. (Informal.) The constructions kpABE provided in Appendix C.1.2 and

cpABE provided in Appendix C.1.4 are unbounded ABE schemes for the relationsRMUKP

andRMUCP respectively. Security of kpABE relies on the MDDH assumption and security

of cpABE relies on the DLIN assumption.

2Only exception is the very recent construction by Kowalczyk and Wee [Kowalczyk and Wee, (2019)].
However, their scheme can only deal with NC1 circuit instead of general MSP and thus our embedding of
DFA into MSP cannot be used.

116

For both KP and CP-ABE schemes, we simply modify the schemes in [Chen et al.

(2018)] so that we allow multi-use of the same attribute in an MSP. However, this simple

modification ruins the original security proof given by [Chen et al. (2018)] in both cases.

The reason is that the core statistical argument in the security proof does not work any

more in the multi-use setting. Intuitively, the problem is that the terms used as “one-time

pads" in the single-use setting are used multiple times in the multi-use setting. In both

KP and CP cases, we switch to weaker security notions than adaptive security and give

security proofs by taking advantage of weaker setting.

For KP-ABE scheme, we prove semi-adaptive security. To prove the security, we

first use the handy bilinear entropy expansion lemma [Chen et al. (2018)] to create an

instance of a multi-use variant of the KP-ABE scheme by [Lewko et al. (2010)] (hereafter

denoted by LOSTW) in the semi-functional space. To give a proof, we decompose the

LOSTW secret key into smaller pieces and gradually add semi-functional randomness to

them through a hybrid argument in a way that their distribution depends on the challenge

attribute, in a similar manner to [Agrawal and Chase (2016)]. Since this step requires

the knowledge of the challenge attribute, we can only prove semi-adaptive security of

the scheme. Intuitively, because of this decomposition, we use the “one-time pad" only

single time in one hybrid game and can avoid getting into the aforementioned problem of

using one-time pads multiple times. Finally, we can use the core statistical step similarly

to the case of single-use setting.

For CP-ABE scheme, we prove the security notion that we call selective* security,

where the adversary is forced to choose its key queries and the challenge attribute after

seeing the master public key. The first step of the proof is similar to the KP-ABE

case. Namely, we first use the bilinear entropy expansion lemma [Chen et al. (2018)]

to create an instance of the LOSTW CP-ABE scheme in the semi-functional space.

However, in the next step, we cannot use the above decomposition idea due to technical

reasons, which in turn prohibits us from using the statistical argument in the core step.

We overcome this by using computational argument instead, which uses the DLIN

assumption instead. The idea of using computational argument here was taken from

some of prior works [Lewko and Waters (2012); Attrapadung (2014, 2016)].

Putting together these pieces yields our final result – a key-policy ABE for DFA that

supports unbounded inputs, unbounded machines and unbounded key requests.

117

Ciphertext Policy ABE for DFA. In the above description, note that our construction

DfaABE uses the underlying kpABE and cpABE in a symmetric way. Thus, by swap-

ping the use of kpABE and cpABE in our construction, we can equivalently construct

ciphertext policy ABE for DFA.

In more detail, we exchange the maps used by KeyGen and Enc in the constructions

of DfaABE≤ and DfaABE> in Sections 4.8.2 and 4.8.3. Please see Section 4.10 for more

details. Thus, we obtain

Theorem 4.3.7. There exists a secure key-policy and ciphertext-policy ABE for RDFA

from the DLIN assumption.

Efficiency. Our ABE schemes inherit their efficiency from the underlying building

blocks of embedding DFA computations into MSPs. In particular, the ciphertexts

and secret keys in our KP-ABE for DFA scale as O(|x|3) and O(|Q|2) respectively.

Accordingly, the CP-ABE for DFA being obtained in a symmetric way, its ciphertexts

scale as O(|Q|2) and O(|x|3).

4.4 Related Work.

In this section, we discuss the related work in the area, categorized by hardness assump-

tions. We begin with constructions based on bilinear maps. The first construction of

ABE for DFA was given by [Waters (2012)] as discussed above. This scheme achieved

selective security, which was improved to adaptive by Attrapadung (2014). For span

programs, there have been many constructions [Lewko and Waters (2010); Okamoto

and Takashima (2010); Lewko et al. (2010); Lewko and Waters (2011); Lewko (2012);

Okamoto and Takashima (2012); Rouselakis and Waters (2013); Chen and Wee (2013,

2014); Wee (2015); Attrapadung (2014); Chen et al. (2015a); Attrapadung et al. (2015);

Kowalczyk and Lewko (2015); Attrapadung (2016); Agrawal and Chase (2017); Chen

et al. (2018)] that achieve various tradeoffs between security (selective versus adaptive),

assumptions (static versus parametrized), underlying mathematical structure (prime

versus composite order groups), policy embedding (key versus ciphertext policy) and

efficiency. In this work, we are particularly concerned with unbounded ABE schemes, in

particular those by [Okamoto and Takashima (2012); Chen et al. (2018)].

From the Learning With Errors assumption (LWE), [Boyen and Li (2015)] provided a

construction of ABE for DFA, but this was restricted to DFAs with bounded length inputs,

118

rendering moot the primary advantage of a DFA over circuits. Recently, [Ananth et al.

(2019)] provided an ABE for random access machines from LWE, but this construction

is also restricted to inputs of bounded length. [Agrawal and Singh (2017)] constructed a

primitive closely related to ABE for DFA, namely reusable garbled DFA from LWE, but

their construction is only secure in the single key setting, namely, where the adversary

is limited to requesting a single function key. In contrast, we support unbounded key

requests in this work.

From strong assumptions such as the the existence of multilinear maps [Garg et al.

(2013a)], witness encryption [Goldwasser et al. (2013a)] or indistinguishability obfusca-

tion [Barak et al. (2001); Garg et al. (2013a)], attribute based encryption (or its more

powerful generalization – functional encryption) has been constructed even for Turing

machines [Ananth and Sahai (2017); Agrawal and Maitra (2018); Kitagawa et al. (2019)],

but these are not considered standard assumptions; indeed many candidate constructions

have been broken [Cheon et al. (2015); Coron et al. (2015); Hu and Jia, (2015); Cheon

et al. (2016a,b); Miles et al. (2016); Coron et al. (2017); Apon et al. (2017)].

Also relevant to our work are the constructions of [Brakerski and Vaikuntanathan

(2016); Goyal et al. (2016)], which provide attribute based encryption for the so called

“bundling functionalities”. Here, the size of the public parameters does not depend on

the length of the input (say `) chosen by the encryptor. However, the key generator

must generate a key for a circuit with a fixed input length (say `′), and decryption only

succeeds if ` = `′. Thus, bundling functionalities do not capture the essential challenge

of supporting dynamic data sizes as discussed in [Goyal et al. (2016)].

4.5 Concurrent Work.

We note that a concurrent work by [Gong et al. (2019)] constructs KP-ABE scheme

for DFA relying on the k-LIN assumption. Although there is a qualitative overlap in

our final results as shown in Table 4.1, the approaches and techniques in their work are

quite different from ours. They construct KP-ABE from scratch imitating the transition

function of a DFA using bilinear maps directly. This, in turn, yields a scheme with better

concrete efficiency and security than ours. In particular, in the KP-ABE setting, our

ciphertexts and keys scale as O(|x|3) and O(|Q|2) respectively while the ciphertexts and

keys in Gong et al. (2019) scale linearly as O(|x|) and O(|Q|) respectively. Also, our

119

construction achieves selective* security based on DLIN assumption, while their con-

struction achieves selective security and relies on the slightly weaker k-LIN assumption.

On the other hand, our scheme is a generic compiler, and has conceptual advantages: our

construction is modular and simpler and yields CP-ABE essentially for free. Further,

it reduces the question of adaptive security for DFA for both KP-ABE and CP-ABE

to that of adaptive security for unbounded KP-ABE and CP-ABE for MSP from static

assumptions.

4.6 Organization

We organize the rest of the chapter as follows. In Section 4.7, we provide the definitions

and preliminaries we require. In Section 4.8, we provide our ABE for DFA supporting

unbounded input and unbounded machines from kpABE and cpABE for monotone span

programs. In Section 4.9, we describe how to encode DFA computation into a monotone

span program (MSP): Section 4.9.1 shows the encoding procedure for any DFA machine

to a MSP (and DFA input to attribute set) while Section 4.9.2 shows the encoding

procedure for any input string to a MSP (and DFA machine to attribute set). In Appendix

C, we instantiate our ingredient kpABE and cpABE using techniques from [Chen et al.

(2018)]. In Section 4.10 we put together all ingredients to instantiate our ABE for DFA.

4.7 Preliminaries

In this section, we define some notation and preliminaries that we require.

4.7.1 Definitions: Monotone Span Programs

A monotone span program (MSP) over Zp is specified by a pair (L, ρ) of a matrix and a

labelling function where

L ∈ Z`×mp ρ : [`]→ Z

for some integer `,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program takes as input a set of integers and accepts or rejects an input by

the following criterion. Let S = {u1, . . . , ut} ⊆ Z be a set of integers. Intuitively,

each ui represents some attribute. For the set S, we define another set I ⊆ [`] as

I = {i ∈ [`] : ρ(i) ∈ S} and LI as the submatrix of L restricted to set of rows I , i.e.

120

obtained by removing row j of L for any j 6∈ I . We say that

(L, ρ) accepts S iff (1, 0, . . . , 0) is in the row span of LI .

We can write this also as e1 ∈ span(L>I).

4.7.2 Definitions: Deterministic Finite Automata

A Deterministic Finite Automaton (DFA) M is represented by the tuple (Q,Σ, T, qst, F)

where Q is a finite set of states, Σ is a finite alphabet, T : Σ×Q→ Q is the transition

function (stored as a table), qst is the start state, F ⊆ Q is the set of accepting states.

We say that M accepts x = (x1, . . . , xk) ∈ Σk if there exists a sequence of states

q1, . . . , qk+1 such that q1 = qst, qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 ∈ F . We assume

w.l.o.g. that the states are numbered as 1 to |Q|, i.e., Q = {1, 2, . . . , |Q|} with qst = 1

along with Σ = {0, 1} and F = {|Q|}. Note that any DFA with many accepting states

can be converted to a DFA with a single accepting state 3, and states may be renumbered

so that the last state is the accepting one.

4.7.3 Definitions: Attribute-Based Encryption

Syntax. Let R : A × B → {0, 1} be a relation where A and B denote “ciphertext

attribute" and “key attribute” spaces. An attribute based encryption scheme for R is

defined by the following PPT algorithms:

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input the unary representation

of the security parameter λ and outputs a master public key mpk and a master

secret key msk.

Encrypt(mpk, µ,X)→ ct: The encryption algorithm takes as input a master public key

mpk, the message bit µ, and a ciphertext attribute X ∈ A. It outputs a ciphertext

ct.

KeyGen(msk,mpk, Y)→ skY : The key generation algorithm takes as input the master

3In more detail, we may map any input x ∈ {0, 1}∗ to x‖?, where ? is a special symbol, and modify
M so that we change the accepting state to be {|Q|+ 1} and add edges from the previous accepting state
to |Q|+ 1, where edges are labelled with ?.

121

secret key msk, the master public key mpk, and a key attribute Y ∈ B. It outputs

a private key skY .

Decrypt(mpk, ct,X, skY,Y)→ µ or ⊥: We assume that the decryption algorithm is

deterministic. The decryption algorithm takes as input the master public key mpk,

a ciphertext ct, ciphertext attribute X ∈ A, a private key skY , and private key

attribute Y . It outputs the message µ or ⊥ which represents that the ciphertext is

not in a valid form.

We require the standard correctness of decryption: for all λ, (mpk,msk)← Setup(1λ),

X ∈ A, Y ∈ B such that R(X, Y) = 1, and skY ← KeyGen(msk,mpk, Y), we have

Decrypt(mpk,Encrypt(mpk, µ,X), X, skY , Y) = µ.

Security. We now define the security for an ABE scheme Π by the following game

between a challenger and an attacker A.

• At first, the challenger runs the setup algorithm and gives mpk to A.

• Then A may adaptively make key-extraction queries. We denote this phase
PHASE1. In this phase, if A submits Y ∈ B to the challenger, the challenger
returns skY ← KeyGen(msk,mpk, Y).

• At some point, A outputs two equal length messages µ0 and µ1 and challenge
ciphertext attribute X? ∈ A. X? cannot satisfy R(X?, Y) = 1 for any attribute Y
such that A already queried private key for Y .

• Then the challenger flips a random coin β ∈ {0, 1}, runs Encrypt(mpk, µβ, X
?)→

ct? and gives challenge ciphertext ct? to A.

• In PHASE2, A may adaptively make queries as in PHASE1 with following added
restriction: A cannot make a key-extraction query for Y such that R(X?, Y) = 1.

• At last, A outputs a guess β′ for β.

We say that A succeeds if β′ = β and denote the probability of this event by PrABEA,Π .

The advantage of an attacker A is defined as AABE
A,Π = |PrABEA,Π −1

2
|. We say that Π

is adaptively secure if AABE
A,Π is negligible for all probabilistic polynomial time (PPT)

adversary A.

Weaker Security Notions. A weaker notion called selective security can be defined

as in the above game with the exception that the adversaryA has to choose the challenge

ciphertext attribute X? before the setup phase but private key queries Y1, . . . , Yk and

122

choice of (µ0, µ1) can still be adaptive. The stronger notion of semi-adaptive security

lets the adversary output the challenge ciphertext attribute X? after seeing the public key

but before making any key requests. The still weaker notion of very selective security

requires the adversary to output the challenge ciphertext attribute and private key queries

at the very start of the game. An intermediate notion to semi-adaptive and very selective,

which we term selective*, allows the adversary to receive the public parameters in the

first step, but it must specify the challenge ciphertext attribute and private key queries

after this step.

ABE for DFA. We then define ABE for DFA by specifying the relation. We define

ADFA = {0, 1}∗ and BDFA as the set of all DFA, also represented as strings over {0, 1}∗.

Furthermore, we define the relationRDFA = {ADFA×BDFA → {0, 1}} asRDFA(x,M) =

M(x).

An ABE scheme for the relation RDFA is said to be ABE for DFA. We further define

RDFA≤ = {ADFA ×BDFA → {0, 1}} as

RDFA≤(x,M) = M(x) ∧
(
|x|

?

≤ |Q|
)
,

where |Q| is the number of states in M . We also define RDFA> analogously.

Unbounded ABE for MSP. Here, we define unbounded ABE for MSP. There are

distinctions between “single-use" and “multi-use" as well as “key-policy" and “ciphertext-

policy". We first define multi-use key-policy unbounded ABE by specifying the relation

RMUKP. To do so, we set AMUKP := 2Z (i.e., the set of all subsets of Z) and BMUKP as

the set of monotone span programs on Zp for some prime p, and RMUKP(S, (L, ρ)) = 1

iff the span program (L, ρ) accepts the set S ∈ AMUKP. An ABE for RMUKP is said to be

“multi-use key-policy unbounded ABE".

We also define single-use key-policy unbounded ABE by specifying the relation

RSUKP. We set ASUKP := 2Z and BSUKP as the set of monotone span programs (L, ρ)

such that ρ is injective. We define RSUKP(S, (L, ρ)) = 1 iff the span program (L, ρ)

accepts the set S. Finally, we can define the ciphertext variant of the above ABE by

specifying RSUCP and RMUCP, where we set AxxCP = BxxKP and BxxCP = AxxKP for

xx ∈ {SU,MU} and define the relation analogously.

123

Unbounded ABE for MSP with polynomial-valued attributes. We can consider a

restricted variant of unbounded ABE for MSP where the value of attributes being used is

polynomially bounded. Here, we focus on the case of multi-use and key-policy. Other

cases will be defined similarly. We define AMUKP′ and BMUKP′ as

AMUKP′ =

{
(S, 1smax) : S ⊆ Z, smax = max

s∈S
|s|
}

and

BMUKP′ =

{
((L, ρ), 1ρmax) : (L, ρ) is a span program over Zp, ρmax = max

i∈[`]
|ρ(i)|

}

We define RMUKP′(S, (L, ρ)) := RMUKP(S, (L, ρ)). Here, the reason why we append

1smax to S is somewhat technical. This is to enforce the adversary in the security definition

who declares S ∈ AMUKP′ as its target to choose attributes with polynomially bounded

values. Because of the similar reason, we append 1ρmax to (L, ρ).

For ease of readability in the remainder of the paper, we will overload notation

and denote AMUKP′ and BMUKP′ as AMUKP and BMUKP respectively. However, all our

constructions will satisfy the constraint of attribute values being polynomially bounded.

4.7.4 Embedding Lemma for ABE

Here, we introduce a useful lemma that describes a sufficient criterion for implication

from an ABE for a given predicate to an ABE for another predicate. The lemma is

introduced in [Boneh and Hamburg (2008)] and later formally proven in [Attrapadung

et al. (2015)]. The presentation here follows that of [Attrapadung et al. (2015)] with

some simplifications. The lemma is applicable to any relation family. We consider two

relation families:

RF : A×B → {0, 1}, RF′ : A′ ×B′ → {0, 1}.

Suppose that there exist two efficient mappings fe : A′ → A and fk : B′ → B which

map parameters, ciphertext attributes, and key attributes, respectively, such that for all

X ′ ∈ A′, Y ′ ∈ B′,

RF′(X ′, Y ′) = 1⇔ RF(fe(X
′), fk(Y

′)) = 1. (4.1)

124

We can then construct an ABE scheme Π′ = {Setup′,Encrypt′,KeyGen′,Decrypt′}

for predicate RF′ from an ABE scheme Π = {Setup,Encrypt,KeyGen,Decrypt} for

predicate RF as follows. Let Setup′ = Setup and

Encrypt′(mpk, µ,X ′) = Encrypt(mpk, µ, fe(X
′)),

KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y
′)),

and Decrypt′(mpk, ct,X′, skY′ ,Y
′) = Decrypt(mpk, ct, fe(X′), skY′ , fk(Y′)).

Lemma 4.7.1 (Embedding lemma [Boneh and Hamburg (2008); Attrapadung et al.

(2015)]). If Π is correct and secure, then so is Π′. This holds for very selective, selective,

selective* and adaptive security.

Intuitively, the forward and backward directions of Relation (4.1) ensure that the

correctness and the security are preserving, respectively.

4.8 Attribute-based Encryption for DFA

We construct an ABE scheme for DFA denoted by DfaABE = (DfaABE.Setup,DfaABE.KeyGen,

DfaABE.Enc,DfaABE.Dec). Following the notation of Section 4.7, we achieve this by

constructing an ABE scheme for the relation RDFA = {ADFA ×BDFA → {0, 1}} which

is defined as RDFA(x,M) = M(x). Recall that ADFA is the set of all input strings and

BDFA is the set of all DFA. Let |Q| be the number of states in M . As described in Section

4.3, our construction relies on two special ABE for DFA as follows:

1. An ABE denoted by DfaABE≤ for the relationRDFA≤ = {ADFA×BDFA → {0, 1}}
defined as:

RDFA≤(x,M) = M(x) ∧
(
|x|

?

≤ |Q|
)

2. An ABE denoted by DfaABE> for the relationRDFA> = {ADFA×BDFA → {0, 1}}
defined as:

RDFA>(x,M) = M(x) ∧
(
|x|

?
> |Q|

)
It is easy to see that given constructions for DfaABE≤ and DfaABE>, we may

construct DfaABE simply by running them in parallel. This intuition is formalized in

Section 4.8.1.

125

Then, it suffices to construct the ingredients DfaABE≤ and DfaABE> – we do so

by leveraging existing constructions of unbounded kpABE and cpABE for monotone

span programs. Since the intuition was discussed in Section 4.1, we directly provide the

constructions in Section 4.8.2 and Section 4.8.3 respectively.

4.8.1 Construction: ABE for DFA

Below, we describe the construction of our ABE for DFA formally. We denote our

construction as DfaABE.

DfaABE.Setup(1λ): On input the security parameter 1λ, do the following:

1. Invoke DfaABE≤.Setup(1λ) and DfaABE>.Setup(1λ) to obtain
(DfaABE≤.mpk,DfaABE≤.msk) and (DfaABE>.mpk,DfaABE>.msk) respec-
tively.

2. Output DfaABE.mpk = (DfaABE≤.mpk,DfaABE>.mpk) and DfaABE.msk =
(DfaABE≤.msk,DfaABE>.msk).

DfaABE.Enc(DfaABE.mpk, µ,x): On input the master public key DfaABE.mpk, a

message bit µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e.,

bounded by 2λ), do the following:

1. Compute ct1 = DfaABE≤.Enc(DfaABE≤.mpk, µ,x).

2. Compute ct2 = DfaABE>.Enc(DfaABE>.mpk, µ,x).

3. Output (ct1, ct2).

DfaABE.KeyGen(DfaABE.msk,DfaABE.mpk,M): On input the master secret key

DfaABE.msk, the description of a DFA M ∈ BDFA do the following:

1. Compute sk1 = DfaABE≤.KeyGen(DfaABE≤.msk,DfaABE≤.mpk,M).

2. Compute sk2 = DfaABE>.KeyGen(DfaABE>.msk,DfaABE>.mpk,M).

3. Output (sk1, sk2).

DfaABE.Dec(DfaABE.mpk,DfaABE.ct,x,DfaABE.skM ,M): On input a ciphertext en-

coded under attribute x and a secret key for DFA M , proceed as follows. Let |Q|

be the number of states in the machine M .

1. If |x| ≤ |Q|, compute µ1 ← DfaABE≤.Dec(DfaABE≤.mpk, ct1,x, sk1,M)
and output it.

2. If |x| > |Q|, compute µ2 ← DfaABE>.Dec(DfaABE>.mpk, ct2,x, sk2,M)
and output it.

126

Correctness. Correctness follows directly from the correctness of the ingredient

schemes DfaABE≤ and DfaABE>, where the former is invoked for the case that |x| ≤ |Q|

and the latter otherwise.

Security. Security of the scheme DfaABE follows directly from the security of DfaABE≤

and DfaABE>. In more detail, we have:

Theorem 4.8.1. Assume that DfaABE≤ and DfaABE> are ABE schemes for relations

RDFA≤ and RDFA> respectively, that satisfy selective/selective*/adaptive security. Then,

DfaABE is an ABE scheme for relation RDFA that satisfies selective/selective*/adaptive

security.

The proof is straightforward: for the case that |x|≤|Q|, the theorem follows from

security of DfaABE≤, otherwise from the security of DfaABE>.

4.8.2 Construction of DfaABE≤

In this section, we construct the ABE scheme DfaABE≤ for the relation RDFA≤ =

{ADFA×BDFA → {0, 1}}whereRDFA≤(x,M) = M(x)∧
(
|x|

?

≤ |Q|
)
. Our construction

is built from the following ingredients:

1. An ABE scheme for the relation RMUKP : AMUKP × BMUKP → {0, 1}. Recall
from Section 4.7, that AMUKP := 2Z is the set of attributes, BMUKP is the set of
monotone span programs and RMUKP(S, (L, ρ)) = 1 iff the span program (L, ρ)
accepts the set S ∈ AMUKP. We denote such a scheme as kpABE, and construct it
in Appendix C.1.2.

2. A map fKP
e : ADFA → AMUKP and a map fKP

k : BDFA → BMUKP so that
RMUKP(Sx, (LM , ρM)) = 1 iff RDFA≤(x,M) = 1, where Sx = fKP

e (x) and
(LM , ρM) = fKP

k (M). These maps are constructed in Section 4.9.1.

The scheme DfaABE≤ is then defined as follows.

DfaABE≤.Setup(1λ): On input the security parameter 1λ, do the following:

1. Invoke kpABE.Setup(1λ) to obtain (kpABE.mpk, kpABE.msk).

2. Output DfaABE≤.mpk = kpABE.mpk and DfaABE≤.msk = kpABE.msk.

127

DfaABE≤.Enc(DfaABE≤.mpk, µ,x): On input the master public key DfaABE≤.mpk,

a message bit µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e.

length at most 2λ), do the following:

1. Convert x to attribute Sx by computing Sx = fKP
e (x) as described in Section

4.9.1.

2. Compute ct = kpABE.Enc(kpABE.mpk, µ, Sx) and output it.

DfaABE≤.KeyGen(DfaABE≤.msk,DfaABE≤.mpk,M): On input the master secret key

DfaABE≤.msk, the description of a DFA M ∈ BDFA do the following:

1. Convert M into an MSP (LM , ρM) by computing (LM , ρM) = fKP
k (M) as

described in Section 4.9.1.

2. Compute skM = kpABE.KeyGen
(
kpABE.msk, kpABE.mpk, (LM , ρM)

)
and

output it.

DfaABE≤.Dec(DfaABE≤.mpk,DfaABE≤.ct,x,DfaABE≤.skM ,M): On input a cipher-

text encoded under attribute x and a secret key for DFA M :

1. Compute Sx = fKP
e (x) and (LM , ρM) = fKP

k (M) as described in Section
4.9.1.

2. Compute µ← kpABE.Dec
(
kpABE.mpk, kpABE.ct, Sx, skM , (LM, ρM)

)
and

output it.

Correctness and Security. Correctness and security follow directly from the “embed-

ding lemma” (Lemma 4.7.1) provided in Section 4.7 by setting

A′ = ADFA, B′ = BDFA, RF ′ = RDFA≤,

A = AMUKP, B = BMUKP, RF = RMUKP

In more detail, we have the following theorem.

Theorem 4.8.2. Assume that kpABE is an ABE scheme for relation RMUKP satisfying

selective/selective*/adaptive security. Then, DfaABE≤ is an ABE scheme for relation

RDFA≤ satisfying selective/selective*/adaptive security.

128

4.8.3 Construction of DfaABE>

In this section, we construct the ABE scheme DfaABE> for the relation RDFA> =

{ADFA×BDFA → {0, 1}}whereRDFA>(x,M) = M(x)∧
(
|x|

?
> |Q|

)
. Our construction

is built from the following ingredients:

1. An ABE scheme for the relation RMUCP : AMUCP×BMUCP → {0, 1}. Recall from
Section 2.6, that AMUCP is the set of all monotone span programs, BMUCP is the
set of attributes and RMUCP((L, ρ), S) = 1 iff the span program (L, ρ) ∈ AMUCP

accepts the set S ∈ BMUCP. We denote such a scheme as cpABE, and construct it
in Appendix C.1.4.

2. A map fCP
e : ADFA → AMUCP and a map fCP

k : BDFA → BMUCP so that
RMUCP((Lx, ρx), SM) = 1 iff RDFA>(x,M) = 1, where (Lx, ρx) = fCP

e (x) and
SM = fCP

k (M). These maps are constructed in Section 4.9.2.

The scheme DfaABE> is then defined as follows.

DfaABE>.Setup(1λ): On input the security parameter 1λ, do the following:

1. Invoke cpABE.Setup(1λ) to obtain (cpABE.mpk, cpABE.msk).
2. Output DfaABE>.mpk = cpABE.mpk and DfaABE>.msk = cpABE.msk.

DfaABE>.Enc(DfaABE>.mpk, µ,x): On input the master public key DfaABE>.mpk, a

message µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e. length

at most 2λ), do the following:

1. Convert x to MSP (Lx, ρx) by computing (Lx, ρx) = fCP
e (x) as described

in Section 4.9.2.
2. Compute ct = cpABE.Enc(cpABE.mpk, µ, (Lx, ρx)) and output it.

DfaABE>.KeyGen(DfaABE>.msk,DfaABE>.mpk,M): On input the master secret key

DfaABE>.msk, the description of a DFA M do the following:

1. Convert M into an attribute SM by computing SM = fCP
k (M) as described

in Section 4.9.2.
2. Compute sk = cpABE.KeyGen(cpABE.msk, cpABE.mpk, SM) and output it.

DfaABE>.Dec(DfaABE>.mpk,DfaABE>.ct,x,DfaABE>.skM ,M): On input a cipher-

text encoded under attribute x and a secret key skM for DFA M :

1. Compute (Lx, ρx) = fCP
e (x) and SM = fCP

k (M) as described in Section
4.9.2.

2. Compute µ ← cpABE.Dec(cpABE.mpk, cpABE.ct, (Lx, ρx), skM , SM) and
output it.

129

Correctness and Security. Correctness and security follow exactly as in Section

4.8.2, by considering the maps defined in Section 4.9.2 instead of Section 4.9.1. In

more detail, we have the following theorem:

Theorem 4.8.3. Assume that cpABE is an ABE scheme for relation RMUCP satis-

fying selective/selective*/adaptive security. Then, DfaABE> is an ABE scheme for

relation RDFA> satisfying selective/selective*/adaptive security.

4.9 Mapping DFA Computation to Monotone Span Pro-

grams

In this section we will describe how to encode DFA computation over a binary alphabet

Σ = {0, 1} into a monotone span program (MSP). Section 4.9.1 shows the encoding

procedure for any DFA machine to a MSP and further how to encode its input to a set

of attributes associated with the MSP. In a dual view, Section 4.9.2 shows the encoding

procedure for any input string to a MSP while encoding the DFA machine itself as a set

of attributes associated with the MSP. For both sections, we denote any DFA machine as

M = (Q,Σ, T, qst, F) and x ∈ Σ∗ as its input of arbitrary (polynomial) length.

4.9.1 Encoding DFA to Monotone Span Programs

In this section, we construct two efficiently computable functions (please see Section 4.7

for the notation):

1. fKP
e : ADFA → AMUKP to encode w ∈ ADFA as a set of attributes Sw ∈ AMUKP,

and

2. fKP
k : BDFA → BMUKP to encode M ∈ BDFA into a MSP (LM , ρM) ∈ BMUKP.

We argue that RMUKP(Sw, (LM , ρM)) = 1 iff RDFA≤(w,M) = 1, where Sw =

fKP
e (w) and (LM , ρM) = fKP

k (M).

For ease of exposition, we represent the universe of attributes in the following form:

AMUKP := {“xi = b” | i ∈ [2λ], b ∈ {0, 1}} ∪ {“String length = i” | i ∈ [2λ]} ∪ {“Dummy”}.

130

We assume that these attributes are embedded into Z via an injective mapping such as

“Dummy” 7→ 0, “xi = b” 7→ 3i+ b “String length = i” 7→ 3i+ 2.

However, for maintaining intuitive notation, we make the mapping implicit. An input

string w = (w1, . . . , w`) ∈ ADFA of length ` is encoded to a set of attributes given by

fKP
e (w) = Sw ∈ AMUKP as:

Sw := {“Dummy”} ∪ {“xi = wi” | i ∈ [`]} ∪ {“String length = `”}.

When we represent Sw as a set of integers, we have Sw ⊆ [0, 4`] and thus in particular,

all the values in Sw are bounded by poly(`).

A DFA machine M = (Q,Σ, T, qst, F) ∈ BDFA is encoded into a MSP given by

fKP
k (M) = (LM , ρM) ∈ BMUKP. Here LM ∈ {0,±1}R×C withR = 1+(2·|Q|+1)·|Q|

and C = 1+|Q|+|Q|2. The label map ρM will be implicit in the description of the matrix

LM . Before providing the construction of LM , we define the following sub-matrices

useful in the construction:

• matrix IQ denoting the |Q| × |Q| identity matrix, and

• matrices Y(b) ∈ {0,−1}|Q|×|Q|,∀b ∈ {0, 1} defined as Y(b) :=
[
y

(b)
i,j

]
such that:

y
(b)
i,j = −1, if T (i, b) = j (i.e. there is a transition from state i to state j upon input b)

= 0, otherwise

We also denote 0Q×Q to be the all-zero matrix of size |Q| × |Q| and 0Q as the

column-vector of size |Q| containing all 0s.

We define LM and the map ρM in Table 4.2.

We observe that maxi ρM(i) ≤ 4|Q|, where we regard the attributes as integers

through the aforementioned injective mapping. In particular, LM is associated with

attributes bounded by poly(|Q|).

The last |Q| rows pertaining to attributes “String length = i”, i ∈ [|Q|] is a |Q| × C

submatrix containing all zeros except specific locations filled with 1s in a diagonal form

as shown. We prove the following theorem.

131

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = 0" 7→ 0Q IQ Y(0) 0Q×Q . . . 0Q×Q 0Q×Q

“x1 = 1" 7→ 0Q IQ Y(1) 0Q×Q . . . 0Q×Q 0Q×Q

“x2 = 0" 7→ 0Q 0Q×Q IQ Y(0) . . . 0Q×Q 0Q×Q

“x2 = 1" 7→ 0Q 0Q×Q IQ Y(1) . . . 0Q×Q 0Q×Q

...
...

...
...

...
...

“x|Q| = 0" 7→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(0)

“x|Q| = 1" 7→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(1)

“String length = 1" 7→ 0 0 . . . 0 0 . . . 01

“String length = 2" 7→ 0 0 . . . 00 0 . . . 01
...

... . . .

“String length = |Q|" 7→ 0 0 . . . 00 0 . . . 01

Table 4.2: Encoding a DFA M to matrix LM

Theorem 4.9.1. Let LM,w be the submatrix of LM restricted to the rows selected by

attribute set Sw (please see Definition 4.7.1). Then, for any DFAM = (Q,Σ, T, qst, F) ∈

BDFA and any input w ∈ ADFA we have e1 ∈ span(L>M,w) iff (M(w) = 1 ∧ |w| ≤ |Q|).

Proof. We first prove “if" direction. For any w ∈ ADFA with |w| = ` ≤ |Q|, the

submatrix LM,w of LM restricted by Sw is shown in Table 4.3.

Since M is a DFA, the matrix Y(b) will always have exactly one “−1" in each of

its rows. Let w = (w1, . . . , w`). To prove the theorem, we give an algorithm which

constructs a subset of rows L̂M,w of LM,w inductively that sums up to e1 iff M(w) = 1.

The algorithm proceeds as follows:

On input (M,w,LM,w), it does the following:

1. Initialize L̂M,w with the first row of LM,w labelled with attribute “Dummy”.

2. For i ∈ [`], do the following:

132

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = w1" 7→ 0Q IQ Y(w1)

“x2 = w2" 7→ 0Q IQ Y(w2)

...
... . . .

“x` = w`" 7→ 0Q IQ Y(w`)

“String length = `" 7→ 0 0 . . . 0 0 . . . 01

Table 4.3: Submatrix LM,w defined by Sw and LM

(a) If i = 1, populate L̂M,w with second row of LM,w labelled with “x1 = w1”.
Discard the remaining |Q| − 1 rows in the block labelled with “x1 = w1”.

For the chosen row, let k1 ∈ Q be such that T (1, w1) = k1. By construction
this implies y(w1)

1,k1
= −1 in Y(w1).

(b) If i ∈ [2, `], choose the ki−1-th row in the block labelled with “xi = wi” and
add it to L̂M,w. Discard the remaining |Q| − 1 rows in the block labelled
with “xi = wi”.
For the chosen row, let ki ∈ Q be such that T (ki−1, wi) = ki. By construction
this implies y(wi)

ki−1,ki
= −1 in Y(wi).

3. Add the row labelled “String length = `” to L̂M,w. Output L̂M,w and terminate.

It is easy to see that the above algorithm always terminates. The first two rows of

LM,w labelled with attributes “Dummy” and “x1 = w1” are chosen in Step 1 and Step

2(a) of the above algorithm respectively. The last row is chosen in a natural way in Step

3 based on the length of the input string.

Aside from these, note that the way the remaining rows are added to L̂M,w is governed

by the transition function T of the DFA M . Essentially, the computation of L̂M,w mirrors

the computation of M on input w. In particular, the order in which the rows are selected

iteratively in Step 2 always follow a loop invariant: at the end of the i-th iteration the

chosen rows sum to a vector vi = (1, 0, . . . , 0,−1, 0, . . . , 0), where −1 appears exactly

at the ki-th position associated with the |Q| × |Q|-sized block matrix Y(wi). Hence,

when M(w) = 1 with |w| = `, the vectors in L̂M,w at the end of the Step 2 sum to

v` = (1, 0, . . . , 0,−1). Here −1 is at position |Q| associated with Y(w`) and is also the

final state of M . By construction of LM,w, it follows that the last row selected in Step 3

labelled with “String length = `” when added to v` results to e1, as intended.

133

We then prove “only if" direction. For any w = (w1, . . . , w`) ∈ Σ` such that

M(w) 6= 1 and ` ≤ |Q|, note that the description of LM,w forces the first two rows corre-

sponding to attributes “Dummy” and “x1 = w1” to be chosen to build e1 progressively.

For i ∈ [2, ` − 1], let ki−1, ki ∈ Q be such that y(wi)
ki−1,ki

= −1 in Y(wi). Consequently,

the only choice left for selecting the next row further to nullify the −1 in y(wi)
ki−1,ki

is

restricted to the ki-th row in the block labelled with “xi+1 = wi+1” which again forces

the emulation of M ’s computation on input w. Since M(w) 6= 1, the sum of all the rows

at the end of the `-th iteration cannot have a “− 1” in its |Q|th position. When added to

the row labelled “String length = `”, this does not yield e1 as desired.

We then consider w = (w1, . . . , w`) ∈ Σ` such that ` > |Q|. In this case, the matrix

LM,w does not have the last row in Table 4.3. Therefore, we cannot nullify “−1" that

appears in the rightmost block as a result of enforced emulation of M ’s computation.

Therefore, we cannot obtain e1 as desired.

4.9.2 Encoding DFA Input Strings to Monotone Span Programs

In this case the DFA machine M is encoded into a set of attributes SM from an appropri-

ately defined attribute universe while the input string x ∈ Σ∗ will be encoded to a MSP

(Lx, ρx).

We construct two efficiently computable functions:

1. fCP
e : ADFA → AMUCP to encode x ∈ ADFA into a MSP (Lx, ρx) ∈ AMUCP.

2. fCP
k : BDFA → BMUCP to encode M ∈ BDFA as a set of attributes SM ∈ BMUCP.

We argue that RMUCP(SM , (Lx, ρx)) = 1 iff RDFA>(x,M) = 1, where SM =

fCP
k (M) and (Lx, ρx) = fCP

e (x).

For ease of exposition, we represent the universe of attributes as follows:

BMUCP := {(b, i, j) | b ∈ {0, 1}, i, j ∈ [2λ]} ∪ {“Size = s” | s ∈ [2λ]} ∪ {“Dummy”}.

134

We assume that these attributes are embedded into Z via an injective mapping such as

“Dummy” 7→ 0, “(b, i, j)” 7→ 4((i+ j)2 + j) + 2b “Size = s” 7→ 2s + 1,

But for maintaining intuitive notation, we make the mapping implicit.

A DFA M = (Q,Σ, T, qst, F) ∈ BDFA is encoded as a set of attributes given by

fCP
k (M) = SM ∈ BMUCP as:

SM := {“Dummy”} ∪ {(b, i, j) ∈ Σ×Q2 | T (i, b) = j} ∪ {“Size = |Q|”}.

When we represent SM as a set of integers, we have SM ⊆ [0, 20|Q|2] and thus in

particular, all the values in SM are bounded by poly(|Q|).

An input string x = (x1, . . . , x`) ∈ ADFA of length ` is encoded into a MSP given

by fCP
e (x) = (Lx, ρx) ∈ AMUCP. Here Lx ∈ {0,±1}R×C with R = 1 + `3 + ` and

C = 1 + ` + `2. The label map ρx will be implicit in the description of the matrix Lx.

Before providing the construction of Lx, we define the following sub-matrices useful in

the construction:

• matrix I` denoting the `× ` identity matrix and a column-vector g` = (1, . . . , 1)︸ ︷︷ ︸
`

>

• matrices S` and T` such that

S` := I`⊗ g` =


g` 0` . . . 0`

0` g` . . . 0`
...

...

0` 0` . . . g`


`2×`

,where 0` is the all-zero column-vector of size `

and T` = −g` ⊗ I` = [−I`‖ . . . ‖ − I`]
> of size `2 × `.

For a fixed b ∈ {0, 1}, we say “associate [S`‖T`] with b"4 when we label the rows of

[S`‖T`] as shown in Table 4.4.

We also denote 0`2 , 0`2×` and 0`×` to be all-zero column-vector of size `2 and all-zero

matrices of size `2 × ` and `× ` respectively. We now define Lx with its rows labelled

with attributes as specified in Table 4.5.

4For brevity, we express this as b⇔ [S`‖T`] in the final description of Lx.

135

(b, 1, 1) 7→
g` 0` . . . 0` −I`...

(b, 1, `) 7→
(b, 2, `) 7→

0` g` . . . 0` −I`...
(b, 2, `) 7→

...
...

...
...

(b, `, 1) 7→
0` 0` . . . g` −I`...

(b, `, `) 7→

Table 4.4: Submatrix [S`‖T`] with its row label map

We observe that we have maxi ρx(i) ≤ 20`2, where we regard the attributes as

integers through the aforementioned injective mapping. In particular, Lx is associated

with attributes bounded by poly(`).

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0`2 S` T` 0`2×` . . . 0`2×` 0`2×`

x2 ⇔ 0`2 0`2×` S` T` . . . 0`2×` 0`2×`

...
...

...
...

...
...

x` ⇔ 0`2 0`2×` 0`2×` 0`2×` . . . S` T`

“Size = 1" 7→ 0

0`×` 0`×` 0`×` . . . 0`×` I`
...

...

“Size = `" 7→ 0

Table 4.5: Encoding a string x to matrix Lx

The last ` rows pertaining to attributes “Size = i”, i ∈ [`] is a ` × C submatrix

containing all zeros except an identity matrix block I` located under the rightmost T`

with its i-th row labelled with attribute “Size = i”,∀i ∈ [`]. We show the following.

Theorem 4.9.2. Let LM,x be the submatrix of Lx restricted to the rows selected by the

set SM (please see Definition 4.7.1). Then, for any DFA M = (Q,Σ, T, qst, F) ∈ BDFA

and any input x ∈ ADFA we have e1 ∈ span(L>M,x) iff
(
M(x) = 1 ∧ |x| ≥ |Q|

)
.

Proof. We first remove all the all-zero columns from LM,x and call the remaining matrix

136

as LM,x w.l.o.g. since these columns do not influence on whether e1 ∈ span(L>M,x) or

not. This simplification ensures that LM,x is given as shown in Table 4.6. Note that the

rows present in LM,x is governed by the transition function, T of M (via the row labels

in Lx). We also note that the last row in Table 4.6 will be missing if we have |x| < |Q|.

Therefore, the matrix Y(b) here is the same as that was defined in Section 4.9.1. Hence,

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0Q IQ Y(x1)

x2 ⇔ 0Q IQ Y(x2)

...
... . . .

x` ⇔ 0Q IQ Y(x`)

“Size = |Q|" 7→ 0 0 . . . 0 0 . . . 01

Table 4.6: Submatrix LM,x defined by SM and Lx

the proof follows identically to that of Theorem 4.9.1.

4.10 Putting it all together: ABE for DFA

In this section, we discuss instantiation of our generic construction of ABE for DFA by

putting together all the ingredients developed so far.

As we have seen in Sec. 4.8.1, ABE for RDFA (i.e., ABE for DFA) can be constructed

from ABE for RDFA≥ and ABE for RDFA≤. Furthermore, as we have seen in Theorem

4.8.3 (resp., Theorem 4.8.2), ABE for RDFA> (resp., ABE for RDFA≤) is implied by ABE

for RMUCP (resp., RMUKP).

To instantiate the ABE for RMUKP, we use the construction in Appendix C.1.2. As

was shown in Theorem C.1.5, this construction is semi-adaptively secure under the

MDDHk assumption. To instantiate the ABE for RMUCP, we use the construction in

Appendix C.1.4. As was shown in Theorem C.1.15, this construction satisfies selective*

security under the DLIN assumption. Putting all pieces together, we obtain the following

theorem.

137

Theorem 4.10.1. There exists selective* secure key-policy ABE for RDFA from the DLIN

assumption.

Ciphertext Policy ABE for DFA. We observe that our construction DfaABE uses the

underlying kpABE and cpABE in a symmetric way. Thus, by swapping the use of kpABE

and cpABE in our construction, we can equivalently construct ciphertext-policy ABE

for DFA. Recall that analogous to ABE for MSP (Section 4.7), the ciphertext-policy

variant of ABE for DFA is defined simply by swapping the order of the domains in the

relation RDFA. In more detail, we set ACPDFA = BDFA and BCPDFA = ADFA and define

the relation RCPDFA analogously for a ciphertext policy scheme for DFA. Thus, in a

ciphertext-policy scheme, the encryptor to encrypt a machine and the key generator to

compute a key for an input x.

To modify DfaABE to be ciphertext-policy, we exchange the maps used by KeyGen

and Enc in the constructions of DfaABE≤ and DfaABE> in Sections 4.8.2 and 4.8.3

respectively. For instance, to construct a ciphertext-policy variant of DfaABE≤, we

modify the encrypt and key generation algorithms so that:

1. The key generation algorithm receives as input an attribute x, converts it to
attributes Sx using the map defined in Section 4.9.1 and computes cpABE key for
Sx.

2. The encryption algorithm receives as input an MSP M , converts it to an MSP
(LM , ρM) using the map defined in Section 4.9.1 and computes cpABE encryption
for policy (LM , ρM).

The modification to DfaABE> is analogous. The compiler DfaABE remains the

same.

Thus, we additionally obtain the following theorem:

Theorem 4.10.2. There exists selective* secure ciphertext-policy ABE for RDFA from

the DLIN assumption.

138

CHAPTER 5

Conclusions

In this thesis, we studied computation on encrypted data, where computation is modeled

using uniform models of computation.

We provided a generic approach to compile FE for Turing machines, given the same

for circuits. This enables translating advances in the FE for circuits literature directly

to the FE for Turing machine literature and reduces the underlying assumptions to be

polynomial rather than sub-exponential. We also obtained such generic compilers for

multi-input FE and iO. Several interesting questions arise from our work. For instance, it

would be useful to study if our techniques can be extended to support unbounded number

of encryptors in the multi-input setting. It would also be desirable to replace the single

input public key FE for circuits in the multi-input construction by a private key scheme

since the multi-input construction is in the private-key setting. Finally, we believe our

techniques can find other applications in replacing the use of iO by FE. We leave these

to future work.

Continuing with the same motivation, we provided two new constructions of ABE

for finite automata based on static assumptions from lattices and bilinear maps. The first

one shows how to construct ABE schemes (and also its generalizations namely, predicate

encryption, bounded key FE and reusable garbling) for nondeterministic finite automata

from the learning with errors assumption. An important question here is whether we

may generalize our techniques to support more advanced models of computation like

Turing machines or RAM. In this context we note that getting an ABE scheme for Turing

machines does not really imply an ABE scheme for RAMs with all efficiency guarantees.

A RAM program, by definition, has random access to an additional database much

larger than the local memory available to the program. Therefore, the runtime of such

ABE schemes supporting RAM may be at most sub-linear in the database size. On the

contrary, the runtime for an ABE scheme for Turing machines may be at least linear in

the size of the input since it has to parse the whole input at least. While Turing machines

and RAMs are equivalent in terms of computational power, the efficiency properties and

meaningfulness of a RAM are lost when it is converted to a Turing machine. Another

important point to note is that this construction is restricted to the private-key setting. It

would be interesting to design a public-key variant of our scheme as well as to upgrade

the security proof to satisfy adaptive security. In the second construction, we obtained

both key-policy and ciphertext-policy, public key ABE schemes for deterministic finite

automata, given the same for monotone span programs. Our construction is generic

and modular and is the first to be based on standard static assumptions over bilinear

maps. It also reduces the question of obtaining adaptive security for deterministic finite

automata for both key-policy and ciphertext-policy ABE to that of adaptive security for

unbounded key-policy and ciphertext-policy ABE for monotone span programs. Two

interesting questions arise from this work. The first one is whether our techniques can be

further generalized to also support nondeterministic finite automata. Secondly, obtaining

adaptively secure unbounded ABE schemes for monotone span programs is also an

interesting direction to pursue.

Finally, all our results employ new techniques. Hence, it would be nice to find other

applications for them.

Last but not least, our constructions in this thesis are feasibility results and mainly of

theoretical interest. Therefore, in general, another important future direction includes

designing ABE and FE systems that are more efficient and useful in practice.

140

APPENDIX A

Appendices for Chapter 2

A.1 Missing Details in Proof of Theorem 2.7.1

Proof. In the following we argue that consecutive hybrids as defined in Section 2.7.3

are indistinguishable.

Claim A.1.1. If 1FE1 is a secure CktFE scheme, then hybrids H(0) and H(1, 1) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(0) and H(1, 1), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and two random strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space
of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs
(σ0

T−1, q
0
T−1) and (σ0

T−2, q
0
T−2) at time steps T − 1 and T − 2 respectively. It

also records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these two (symbol, state) pairs are generated and then pre-
pares a new pair of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger
as follows

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap0), with Trap0.mode-real = 1 and all other fields set
to ⊥.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥

mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ0
T−1 ST TS1 : T − 2 ST val1 : q0

T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0

T−2

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure A.1: Trap1 configuration inH(1, 1)

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(K0, i, `, w0,i,Trap1), with the modified fields in Trap1 as shown in Fig-
ure A.1.

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B first requests for a function key to
the 1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives
SKReRand. B computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
by itself and returns toA a function key forM as SKM = (SKReRand, SKNext).

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T − 2, T ′′, T − 3}, the decryption outputs

are exactly the same ciphertexts in both the H(0) and H(1, 1), since these ciphertexts

are computed according to the real world functionality of Next. At a time step t ∈

{T ′, T − 2, T ′′, T − 3} in H(1, 1), the decryption mimics the real world decryption of

H(0) due to the execution paths in the Next function conditioned on Trap1.mode-trap1 =

Trap1.mode-trap2 = 1. Therefore, B is an admissible adversary against the 1FE1

challenger since the outputs for the two challenge message sets are exactly the same. If

b = 0, A sees the distribution ofH(0), while if b = 1, A sees the distribution ofH(1, 1).

Thus the advantage of A translates to the advantage of B.

Claim A.1.2. If SKE is a secure symmetric-key encryption scheme, then hybridsH(1, 1)

andH(1, 2) are indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(1, 1) andH(1, 2), we construct

another PPT adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)←
1FE2.Setup(1λ) and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

142

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs
(σ0

T−1, q
0
T−1) and (σ0

T−2, q
0
T−2) at time steps T − 1 and T − 2 respectively. It

also records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these two (symbol, state) pairs are generated. It then simulates
the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where
∀i ∈ [`], x1,i = (K0, i, `, w0,i,Trap1) and Trap1 is as per Figure A.1. It
returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).
ii. It then computes 1FE2 encodings of (σ0

T−1, q
0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT) and gen-
erate the encryption randomness for time step T − 1 as rT−1 =
F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′ for the future time step T−1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−1), where z0

1 = (SYM, salt,KT , T − 1, `, σ0
T−1,Trap1) and

Trap1 is as per Figure A.1.

• Compute the 1FE2 state ciphertext to be given as output at time step
T−2 for the future time step T−1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2,
z0

2;rT−1), where z0
2 = (ST, q0

T−1).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−1,CT0

st,T−1 to the challenger of
the SKE scheme and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE encryptions

programmed in the function key is random inH(1, 1) and are valid SKE encryptions of

(CT0
sym,T−1,CT0

st,T−1) encoding the (symbol, state) pair for time step T − 1 inH(1, 2).

Hence the advantage of an adversary who distinguishes between the two hybrids trans-

lates to an advantage of an adversary against the SKE scheme.

Claim A.1.3. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 2) andH(1, 3) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 2) and (1, 3), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

143

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and a key K← SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs
(σ0

T−1, q
0
T−1) and (σ0

T−2, q
0
T−2) at time steps T − 1 and T − 2 respectively. It

also records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these two (symbol, state) pairs are generated and then prepares
a new pair of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as
follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap0) with the fields of Trap0 being same as that of in
Trap1 inH(1, 2) as per Figure A.1.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(K0, i, `, w0,i,Trap1), with the modified fields in Trap1 as shown in Fig-
ure A.2.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥

mode-trap1 : ⊥ Target TS1 : ⊥ Sym TS1 : ⊥ Sym val1 : ⊥ ST TS1 : ⊥ ST val1 : ⊥

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0

T−2

mode-trap3 : 1 Target TS : T − 1 Sym TS : T ′ ⊥ ST TS : T − 2 ⊥

Figure A.2: Trap1 configuration inH(1, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1

challenger and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT) and gen-
erate the encryption randomness for time step T − 1 as rT−1 =
F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′ for the future time step T−1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−1), where z0

1 = (SYM, salt,KT , T − 1, `, σ0
T−1,Trap1) and

Trap1 is as per Figure A.2 now.

144

• Compute the 1FE2 state ciphertext to be given as output at time step
T−2 for the future time step T−1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2,
z0

2; rT−1), where z0
2 = (ST, q0

T−1).
iii. Once it has generated the two 1FE2 ciphertexts CT0

sym,T−1 and CT0
st,T−1,

it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0
sym,T−1) and

ct2 = SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T − 2}, the decryption outputs are exactly the

same ciphertexts in bothH(1, 2) andH(1, 3). At time step t ∈ {T ′, T − 2} inH(1, 2),

Trap0.mode-trap1 = 1 (in Figure A.1) dictates the decryption to output two decomposed

components of a single 1FE2 ciphertext, one component encoding Trap0.Sym val1 =

σ0
T−1 at time step T ′ and the other encoding Trap0.ST val1 = q0

T−1 at time step T − 2.

Alternatively inH(1, 3), Trap1.mode-trap3 = 1 (in Figure A.2) dictates the decryption

to firstly use Trap1.SKE.K = K to decrypt the hardwired ciphertext ct1 and output

CT0
sym,T−1 at time step T ′ (respectively, ct2 and output CT0

st,T−1 at time step T − 2). In

both the hybrids, these symbol and state ciphertext pieces are computed for target time

step T − 1. Thus B is an admissible 1FE1 adversary. If b = 0, A sees the distribution of

H(1, 2), while if b = 1, A sees the distribution of H(1, 3). Hence the advantage of A

translates to the advantage of B.

Claim A.1.4. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 3) andH(1, 4) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(1, 3) andH(1, 4), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and a key K← SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

145

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs
(σ0

T−1, q
0
T−1) and (σ0

T−2, q
0
T−2) at time steps T − 1 and T − 2 respectively. It

also records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these two (symbol, state) pairs are generated. It then computes
a root key punctured at point (T − 1‖salt) as KT−1

0 = F.Constrain(K0, (T −
1‖salt)) and then prepares a new pair of challenge distributions (D̂`0, D̂`1) for
the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap1) with the fields of Trap1 being same as that of in
Trap1 inH(1, 3) as per Figure A.2.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(KT−1

0 , i, `, w0,i,Trap1), with Trap1 as per Figure A.2.

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1

challenger and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1), as follows.

• Compute a punctured, delegated key KT−1
T = F.KeyDel(KT−1

0 , fT)
and generate the encryption randomness for time step T − 1 as
rT−1 = F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′ for the future time step T−1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−1), where z0

1 = (SYM, salt,KT−1
T , T − 1, `, σ0

T−1,Trap1) and
Trap1 is as per Figure A.2.

• Compute the 1FE2 state ciphertext to be given as output at time step
T−2 for future time step T−1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2,
z0

2;rT−1), where z0
2 = (ST, q0

T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and
ct2 = SKE.Enc(K,CT0

st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference in H(1, 3) and H(1, 4) is the replacement of the root

cPRF key K0 with a punctured root key KT−1
0 at point (T − 1‖salt) in time step T − 1 in

the 1FE1 ciphertext. Moreover, in both hybrids, the field Trap1.mode-trap3 = 1 dictates

the output at time step t ∈ {T ′, T − 2} to be a ciphertext component for time step

T − 1 as argued in Claim A.1.3. Thus, the cPRF key is only required to compute

randomness at points 6= (T − 1‖salt) for which the punctured root key suffices. Further,

146

it evaluates to the same value as the normal key on all such points in both the hybrids. As

a consequence, the decryption values are exactly the same for all the time steps proving

the admissibility of B. Thus if b = 0, A sees the distribution ofH(1, 3), while if b = 1,

A sees the distribution ofH(1, 4). Hence the advantage of A translates to the advantage

of B.

Claim A.1.5. If F is a secure punctured, delegatable cPRF scheme, then hybridsH(1, 4)

andH(1, 5) are indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(1, 4) andH(1, 5), we construct

another PPT adversary B who breaks the security of the punctured, delegatable cPRF

scheme F as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)←
1FE2.Setup(1λ), salt ← {0, 1}λ and K ← SKE.KeyGen(1λ). It sends PK =
1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It receives KT−1

0 on querying for a punctured key at the point (T − 1‖salt) to
the cPRF challenger for F.

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs
(σ0

T−1, q
0
T−1) and (σ0

T−2, q
0
T−2) at time steps T − 1 and T − 2 respectively. It

also records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these two (symbol, state) pairs are generated. It then simulates
the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where
∀i ∈ [`], x1,i = (KT−1

0 , i, `, w0,i,Trap1) and Trap1 is as per Figure A.2. It
returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).
ii. It then computes 1FE2 encodings of (σ0

T−1, q
0
T−1), as follows.

• Compute a delegated key from the punctured root key as KT−1
T =

F.KeyDel(KT−1
0 , fT).

• Query the cPRF challenger at point (T − 1‖salt) to receive an
encryption randomness RE for time step T − 1.

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′ for the future time step T−1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1,

z0
1; RE), where z0

1 = (SYM, salt,KT−1
T , T − 1, `, σ0

T−1,Trap1) and
Trap1 is as per Figure A.2.

147

• Compute the 1FE2 state ciphertext to be given as output at time step
T−2 for the future time step T−1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2,
z0

2; RE), where z0
2 = (ST, q0

T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and
ct2 = SKE.Enc(K,CT0

st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that when RE is computed using K0 as a pseudorandom value, A’s view is

identical to that of H(1, 4), and when RE is sampled uniformly at random, A’s view

is identical to that of H(1, 5). Hence the advantage of A in distinguishing H(1, 4)

andH(1, 5) translates to the advantage of B in breaking the security of the punctured,

delegatable cPRF F.

Claim A.1.6. If 1FE2 is a secure CktFE scheme, then hybridsH(1, 5) andH(1, 6) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(1, 5) andH(1, 6), we construct

another PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), salt ← {0, 1}λ and K ←
SKE.KeyGen(1λ) and gets 1FE2.PK from the 1FE2 challenger. It sends PK =
1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−1, q
0
T−1) and (σ1

T−1, q
1
T−1) respectively at time step T−1. Ad-

ditionally, B also learns the (symbol, state) pair (σ0
T−2, q

0
T−2) that is generated

at time step T−2 whenM is executed on w0. Further, it records the time steps
(T ′, T−2) and (T ′′, T−3) when the individual components of these (symbol,
state) pairs for w0 and w1 are generated and then computes a root key punc-
tured at point (T − 1‖salt) as KT−1

0 = F.Constrain(K0, (T − 1‖salt)). It then
simulates the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK,
x1,i), where ∀i ∈ [`], x1,i = (KT−1

0 , i, `, w0,i,Trap1) and Trap1 is as per
Figure A.2. It returns the ciphertext CT = {CTi}i∈[`] to A.

148

(c) To simulate a function key for M , B does the following.

i. It computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two
SKE ciphertexts which it computes with the help of 1FE2 challenger as
follows.

• Delegate the punctured root key to compute KT−1
T = F.KeyDel(KT−1

0 , fT).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such

that ∀b ∈ {0, 1}, zb1 = (SYM, salt,KT−1
T , T − 1, `, σbT−1,Trap1) and

zb2 = (ST, qbT−1).

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2

challenger and gets back (CTsym,T−1,CTst,T−1).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−1)
and ct2 = SKE.Enc(K,CTst,T−1).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2

to the 1FE2 challenger and returns a function key for M as SKM =
(SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next

that outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2 itself.

Therefore, B is an admissible 1FE2 adversary. Further, when the ciphertext for time step

T − 1 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding to bit

b = 0, A’s view is identical to that of H(1, 5), and when the ciphertext for time step

T − 1 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding to bit

b = 1,A’s view is identical to that ofH(1, 6). Thus, the advantage ofA in distinguishing

H(1, 5) andH(1, 6) translates to the advantage of B in breaking the 1FE2 scheme.

Claim A.1.7. If F is a secure punctured, delegatable cPRF scheme, then hybridsH(1, 6)

andH(1, 7) are indistinguishable.

Proof. The proof is almost identical to Claim A.1.5 where the reduction plays as an

adversary against the cPRF challenger and simulates the TMFE adversary A. The only

major exceptions now are that B runs M on both the challenge messages w0 and w1 to

know the (symbol, state) pairs for both of them at the required time steps for constructing

the data structure Trap and that the 1FE2 ciphertext for the symbol and state corresponds

to bit b = 1. Hence, we omit the details.

Claim A.1.8. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 7) andH(1, 8) are

indistinguishable.

149

Proof. The proof is almost identical to Claim A.1.4 where the reduction plays as an

adversary against the 1FE1 challenger and simulates the TMFE adversary A. The only

major exceptions now are that B runs M on both the challenge messages w0 and w1 to

know the (symbol, state) pairs for both of them at the required time steps for constructing

the data structure Trap and that the 1FE2 ciphertext for the symbol and state corresponds

to bit b = 1. Hence, we omit the details.

Claim A.1.9. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 8) andH(2, 1) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(1, 8) andH(2, 1), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and two random strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space
of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1

respectively. Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2)
when the individual components of these (symbol, state) pairs for w0 and
w1 respectively are generated and then prepares a new pair of challenge
distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap0) with Trap0 being same as Trap1 from Figure A.2.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(K0, i, `, w0,i,Trap1), with the new fields in Trap1 as shown in Fig-
ure A.3.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥

mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1
T−1 ST TS1 : T − 2 ST val1 : q1

T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0

T−2

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure A.3: Trap1 configuration inH(2, 1)

150

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B first requests for a function key to
the 1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives
SKReRand. B computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
by itself and returns toA a function key forM as SKM = (SKReRand, SKNext).

3. When A outputs a guess, B does the same.

Note that for all time steps t /∈ {T ′, T − 2}, the decryption outputs are exactly the

same ciphertexts in both the H(1, 8) and H(2, 1). At a time step t ∈ {T ′, T − 2} in

H(2, 1), the decryption mimics the decryption ofH(1, 8) dictated by (Trap1.mode-trap1 =

1 ∧ Trap1.mode-trap3 = ⊥). More specifically, inH(1, 8) the symbol and state cipher-

texts corresponding to time step T −1 is first computed by decrypting the SKE ciphertext

components hardwired in Next and outputting them at time steps T ′ and T − 2 respec-

tively. Alternatively, in H(2, 1), (Trap1.mode-trap1 = 1 ∧ Trap1.mode-trap3 = ⊥)

dictates that these ciphertext components are computed with the same randomness at

exactly the same time steps T ′ and T − 2 respectively. Thus B is an admissible adversary

against the 1FE1 challenger since the outputs for the two challenge message sets are

exactly the same. If b = 0, A sees the distribution ofH(1, 8), while if b = 1, A sees the

distribution ofH(2, 1). Thus the advantage of A translates to the advantage of B.

Claim A.1.10. If SKE is a secure symmetric-key encryption scheme, then hybridsH(2, 1)

andH(2, 2) are indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(2, 1) andH(2, 2), we construct

another PPT adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)←
1FE2.Setup(1λ) and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T −

151

1 respectively. It also records the time steps (T ′′, T − 3) and (T ′, T −
2) when the individual components of these two (symbol, state) pairs are
generated. It then simulates the encryption oracle by computing CTi =
1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i = (K0, i, `, w0,i,Trap1) and
Trap1 is as per Figure A.3. It returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2) as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and
generate the encryption randomness for time step T − 2 as rT−2 =
F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′′ for the future time step T−2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−2), where z0

1 = (SYM, salt,KT−1, T − 2, `, σ0
T−2,Trap1) and

Trap1 is as per Figure A.3.

• Compute the 1FE2 state ciphertext to be given as output at time step
T−3 for the future time step T−2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2,
z0

2; rT−2), where z0
2 = (ST, q0

T−2).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−2,CT0

st,T−2 to the challenger of
the SKE scheme and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE ciphertexts

hardwired in the function key are random strings inH(2, 1) and are valid SKE encryp-

tions of (CT0
sym,T−2,CT0

st,T−2) encoding the (symbol, state) pair for time step T − 2

in H(2, 2). Hence the advantage of an adversary who distinguishes between the two

hybrids translates to an advantage of an adversary against the SKE scheme.

Claim A.1.11. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 2) andH(2, 3) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(2, 2) andH(2, 3), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Addi-
tionally, it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ←
{0, 1}λ,K← SKE.KeyGen(1λ).

152

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1

respectively. Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2)
when the individual components of these (symbol, state) pairs for w0 and
w1 respectively are generated and then prepares a new pair of challenge
distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap0) with Trap0 being same as Trap1 from Figure A.3.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(K0, i, `, w0,i,Trap1), with the new fields in Trap1 as shown in Fig-
ure A.4.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥

mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1
T−1 ST TS1 : T − 2 ST val1 : q1

T−1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥

mode-trap3 : 1 Target TS : T − 2 Sym TS : T ′′ ⊥ ST TS : T − 3 ⊥

Figure A.4: Trap1 configuration inH(2, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1

challenger and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and
generate the encryption randomness for time step T − 2 as rT−2 =
F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′′ for the future time step T−2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−2), where z0

1 = (SYM, salt,KT−1, T − 2, `, σ0
T−2,Trap1) and

Trap1 is as per Figure A.4.

• Compute the 1FE2 state ciphertext to be given as output at time step
T−3 for future time step T−2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2,
z0

2; rT−2), where z0
2 = (ST, q0

T−2).

153

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and
ct2 = SKE.Enc(K,CT0

st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′′, T − 3}, the decryption outputs are exactly

the same ciphertexts in both the H(2, 2) and H(2, 3). At time step t ∈ {T ′′, T − 3}

in H(2, 2), (Trap0.mode-trap2 = 1 ∧ Trap0.mode-trap3 = ⊥) (in Figure A.3) dictates

the decryption to output two decomposed components of a single 1FE2 ciphertext, one

component encoding Trap0.Sym val2 = σ0
T−2 at time step T ′′ and the other encoding

Trap0.ST val2 = q0
T−2 at time step T−3. Alternatively inH(2, 3), (Trap0.mode-trap2 =

⊥ ∧ Trap1.mode-trap3 = 1) (in Figure A.4) dictates the decryption to firstly use

Trap1.SKE.K = K to decrypt the hardwired ciphertext ct1 and output CT0
sym,T−2 at

time step T ′′ (respectively, ct2 and output CT0
st,T−2 at time step T − 3). In both the

hybrids these symbol and state ciphertext pieces are computed for target time step T − 2.

Thus B is an admissible 1FE1 adversary. If b = 0, A sees the distribution of H(2, 2),

while if b = 1, A sees the distribution ofH(2, 3). Hence the advantage of A translates

to the advantage of B.

Claim A.1.12. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 3) andH(2, 4) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(2, 3) andH(2, 4), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and a key K← SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

154

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1

respectively. Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2)
when the individual components of these (symbol, state) pairs for w0 and w1

respectively are generated. It then computes a root key punctured at point
(T − 2‖salt) as KT−2

0 = F.Constrain(K0, (T − 2‖salt)) and prepares a new
pair of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap1) with Trap1 as per Figure A.4.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(KT−2

0 , i, `, w0,i,Trap1), with Trap1 as per Figure A.4.

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1

challenger and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a punctured, delegated key KT−2
T−1 = F.KeyDel(KT−2

0 , fT−1)
and generate the encryption randomness for time step T − 2 as
rT−2 = F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time
step T ′′ for the future time step T−2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1,

z0
1; rT−2), where z0

1 = (SYM, salt,KT−2
T−1, T − 2, `, σ0

T−2,Trap1) and
Trap1 is as per Figure A.4.

• Compute the 1FE2 state ciphertext to be given as output at time step
T−3 for future time step T−2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2,
z0

2; rT−2), where z0
2 = (ST, q0

T−2).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and
ct2 = SKE.Enc(K,CT0

st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference in H(2, 3) and H(2, 4) is the replacement of the root

cPRF key K0 with a punctured root key KT−2
0 at point (T − 2‖salt) in time step T − 2

in the 1FE1 ciphertext. Moreover, in both the hybrids, the field Trap1.mode-trap3 = 1

dictates the output at time step t ∈ {T ′′, T − 3} to be a ciphertext component for time

step T − 2 as argued in Claim A.1.11. Thus, the cPRF key is only required to compute

randomness at points 6= (T − 2‖salt) for which the punctured root key suffices. Further,

155

it evaluates to the same value as the normal key on all such points in both the hybrids. As

a consequence, the decryption values are exactly the same for all the time steps proving

the admissibility of B. Thus if b = 0, A sees the distribution ofH(2, 3), while if b = 1,

A sees the distribution ofH(2, 4). Hence the advantage of A translates to the advantage

of B.

Claim A.1.13. If F is a secure punctured, delegatable cPRF scheme, then hybrids

H(2, 4) andH(2, 5) are indistinguishable.

Proof. The proof is almost identical to Claim A.1.5 where the reduction plays as an

adversary against the cPRF challenger and simulates the TMFE adversary A with the

following major exceptions.

1. B runs M on both the sampled messages w0 and w1 to know the (symbol, state)
pairs at the time steps T − 2 and T − 1 respectively for constructing the data
structure Trap as inH(2, 4). The challenge ciphertext encodes KT−2

0 , i.e., a root
key punctured at point (T − 2‖salt).

2. The cPRF challenger is queried at the point (T − 2‖salt) to receive an encryption
randomness for time step T − 2. This is used in computing the 1FE2 ciphertext
encoding the (symbol, state) pair generated at time steps (T ′′, T − 3) for time step
T − 2 when M is run on w0.

The other details follow as before and hence we omit them.

Claim A.1.14. If 1FE2 is a secure CktFE scheme, then hybridsH(2, 5) andH(2, 6) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(2, 5) andH(2, 6), we construct

another PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), salt ← {0, 1}λ and K ←
SKE.KeyGen(1λ) and gets 1FE2.PK from the 1FE2 challenger. It sends PK =
1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

156

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−2, q
1
T−2) respectively at time step T−2. Ad-

ditionally, B also learns the (symbol, state) pair (σ1
T−1, q

1
T−1) that is generated

at time step T−1 whenM is executed on w1. Further, it records the time steps
(T ′′, T−3) and (T ′, T−2) when the individual components of these (symbol,
state) pairs for w0 and w1 are generated and then computes a root key punc-
tured at point (T − 2‖salt) as KT−2

0 = F.Constrain(K0, (T − 2‖salt)). It then
simulates the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK,
x1,i), where ∀i ∈ [`], x1,i = (KT−2

0 , i, `, w0,i,Trap1) and Trap1 is as per
Figure A.4. It returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two
SKE ciphertexts which it computes with the help of 1FE2 challenger as
follows.

• Delegate the punctured root key to compute KT−2
T−1 = F.KeyDel(KT−2

0 ,
fT−1).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such

that ∀b ∈ {0, 1}, zb1 = (SYM, salt,KT−2
T−1, T − 2, `, σbT−2,Trap1) and

zb2 = (ST, qbT−2), where Trap1 is as per Figure A.4.

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2

challenger and gets back (CTsym,T−2,CTst,T−2).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−2)
and ct2 = SKE.Enc(K,CTst,T−2).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2

to the 1FE2 challenger and returns a function key for M as SKM =
(SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next

that outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2 itself.

Therefore, B is an admissible 1FE2 adversary. Further, when the ciphertext for time step

T − 2 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding to bit

b = 0, A’s view is identical to that of H(2, 5), and when the ciphertext for time step

T − 2 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding to bit

b = 1,A’s view is identical to that ofH(2, 6). Thus, the advantage ofA in distinguishing

H(2, 5) andH(2, 6) translates to the advantage of B in breaking the 1FE2 scheme.

Claim A.1.15. If F is a secure punctured, delegatable cPRF scheme, then hybrids

H(2, 6) andH(2, 7) are indistinguishable.

157

Proof. The proof is similar to Claim A.1.7 and hence we omit the details.

Claim A.1.16. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 7) andH(2, 8) are

indistinguishable.

Proof. The proof is similar to Claim A.1.8 and hence we omit the details.

Claim A.1.17. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 8) andH(3, 1) are

indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(2, 8) andH(3, 1), we construct

another PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ
and two random strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space
of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M obeying the admissibility
criteria that ∀b ∈ {0, 1},wb ← D`b, runtime(M,w0) = runtime(M,w1) and
M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−3, q
0
T−3) and (σ1

T−2, q
1
T−2) at time steps T − 3 and T − 2

respectively. Further, it records the time steps (T ′′′, T − 4) and (T ′′, T − 3)
when the individual components of these (symbol, state) pairs for w0 and
w1 respectively are generated and then prepares a new pair of challenge
distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i =
(K0, i, `, w0,i,Trap0) with Trap0 being same as Trap1 from Figure A.4.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i =
(K0, i, `, w0,i,Trap1), with the new fields in Trap1 as shown in Fig-
ure A.5.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥

mode-trap1 : 1 Target TS1 : T − 2 Sym TS1 : T ′′ Sym val1 : σ1
T−2 ST TS1 : T − 3 ST val1 : q1

T−2

mode-trap2 : 1 Target TS2 : T − 3 Sym TS2 : T ′′′ Sym val2 : σ0
T−3 ST TS2 : T − 4 ST val2 : q0

T−3

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure A.5: Trap1 configuration inH(3, 1)

158

(c) It sends the distribution pair to the 1FE1 challenger and relays the response
back to A.

(d) To simulate a function key for M , B first requests for a function key to
the 1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives
SKReRand. B computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
by itself and returns toA a function key forM as SKM = (SKReRand, SKNext).

Note that the (symbol, state) pair for time step T − 2 has already been switched to

correspond to b = 1 from the prior hybrid. Thus, maintaining the trapdoor information

for time step T − 1 is now redundant and follows by normal decryption from time step

T − 2. The (symbol,state) pair for time step T − 3 now corresponds to bit b = 0 and

therefore the decryption chain inconsistency arises at time step T − 2 now. Hence,

intuitively we “slide" the trapdoor by replacing a new trapdoor data structure inH(3, 1)

in a way that still maintains functional equivalence withH(2, 8) at all the time steps but

contains hardwired information about the time steps T − 3 and T − 2 now. We show the

admissibility of the reduction B as follows.

Observe that for all time steps t /∈ {T ′′, T − 3, T ′′′, T − 4}, the decryption outputs

are exactly the same sequence of ciphertexts in both the hybrids which are output by the

normal decryption. At a time step t ∈ {T ′′, T − 3, T ′′′, T − 4} inH(3, 1), the decryption

is dictated by Trap1.mode-trap1 = Trap1.mode-trap2 = 1. In particular, the ciphertext

components for time step T − 2 corresponding to b = 1 is output at time steps T ′′ and

T−3 and is triggered by Trap0.mode-trap3 = 1 inH(2, 8) and Trap1.mode-trap1 = 1 in

H(3, 1). On the other hand, the ciphertext components for time step T −3 corresponding

to b = 0 is output at time steps T ′′′ and T −4 and is triggered by the normal decryption in

H(2, 8) and by Trap0.mode-trap2 = 1 inH(3, 1). The ciphertext components for time

step T − 1 corresponding to b = 1 is output at time steps T ′ and T − 2 and is triggered

by Trap0.mode-trap1 = 1 in H(2, 8) and by the normal decryption (as a consequence

of already having the outputs at time step T − 2 switched to b = 1) inH(3, 1). Further,

note that all these ciphertext components are exactly the same for both the hybrids.

Therefore, B is an admissible adversary against the 1FE1 challenger since the outputs

for the two challenge message sets are exactly the same. Hence A sees the distribution

ofH(2, 8), if b = 0, and that ofH(3, 1), if b = 1. Thus the advantage of A translates to

the advantage of B.

Note that H(3, i) is analogous to H(2, i),∀i ∈ [8]. Now consider any pair of

159

challenge message vectors {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1} of arbitrary length

` with any TM M taking T time steps to halt on either inputs. In general, we have

that H(t, i) is analogous to H(t − 1, i), for all t ∈ [3, T − (` + 1)], i ∈ [8]. Observe

further that for any given k ∈ [3, T − (` + 1)], we have the following computational

indistinguishability chain via the intermediate hybrids.

H(k−1, 1)
c
≈ H(k−1, 2)

c
≈ · · ·

c
≈ H(k−1, 8)

c
≈ H(k, 1)

c
≈ H(k, 2)

c
≈ · · ·

c
≈ H(k, 8)

We can easily extend this computational indistinguishability chain further to have the

following.

H(0)
c
≈ H(1, 1)

c
≈ H(1, 8)

c
≈ H(2, 1)

c
≈ H(2, 8)

c
≈ · · ·

c
≈ H(T−(`+1), 1)

c
≈ H(T−(`+1), 8)

Note that inH(T − (`+ 1), 8), the (symbol, state) pair corresponding to the output at

time step ` + 1 has already been switched to b = 1. Proceeding one step backward in

the execution chain we reach time step ` where the 1FE2 ciphertext components are

computed partially by each of SKReRand and SKNext. More specifically, at any time step

j ∈ [2, `] the 1FE2 ciphertext component encoding the “symbol" wj is output by ReRand.

Accordingly, the 1FE2 ciphertext component encoding the “state" qj for the same time

step j is output by Next only when it gets (wj−1, qj−1) as input, i.e., the symbol and

state at time step j − 1, each of which is encrypted with the exact same randomness.

Hence, to proceed with the security proof at any time step j ∈ [2, `], while switching

from b = 0 to b = 1 the reduction B simulating 1FE1 itself will now hardwire the

SKE ciphertext encoding 1FE2.CT(wb,j) into ReRand and the SKE ciphertext encoding

1FE2.CT(qbj) into Next after receiving them from the 1FE2 challenger. At time step

j = 1, B hardwires the SKE ciphertext encoding both 1FE2.CT(wb,1) and 1FE2.CT(qst)

into ReRand function only. This is since ReRand outputs the (symbol, state) ciphertext

pair at the first time step as per functionality. Indistinguishability between these hybrids

is as before.

Similar to the transition fromH(2, 8) toH(3, 1), at time step j = `+ 1 we slide the

trapdoor to switch the ciphertext in slot 1 for time step `+ 1 (corresponding to b = 1)

and slot 2 for time step ` (corresponding to b = 0). We also set Trap1.mode-trap3 =

⊥,Trap1.mode-trap1 = Trap1.mode-trap2 = 1. The decryption values being exactly

the same inH(T − (`+ 1), 8) andH(T − `, 1), security follows from 1FE1.

160

However, once we reach time step ` atH(T − `, 8) when the bit b (for time step `)

has already been switched from 0 to 1 and we are about to slide the trapdoor to go to the

next hybrid, we must add an additional hybridH(T − j, 9) for all j ∈ [1, `], as discussed

in Section 2.7.3, namely:

H(T − j, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position j as

follows: the encoded message is changed corresponding to b = 1 and flag mode-real = 1.

The other flags mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

Consider j = `. Note that all ciphertexts previous to time step ` remain unchanged,

and output their corresponding symbol ciphertexts correctly. The Next circuit outputs

the state ciphertext for time step ` corresponding to bit b = 1. The only difference

between this hybrid and the previous one is that here we use the real mode to output the

symbol ciphertext for b = 1 whereas previously we used the trapdoor mode to output the

same symbol CT. Hence, decryption values in both hybrids are exactly the same, and

indistinguishability follows from security of 1FE1.

As before from H(1, 8) to H(2, 5) and H(2, 6) to H(3, 1), we get two similar se-

quence of hybrids from H(T − (` + 1), 8) to H(T − `, 5) and from H(T − `, 6) to

H(T − `, 8). Additionally, we now go from H(T − `, 8) to H(T − (`− 1), 1) via the

intermediate extra hybridH(T − `, 9) as follows.

H(T − (`+ 1), 8)

1FE1
c
≈ H(T − `, 1)

SKE
c
≈ H(T − `, 2)

1FE1
c
≈ H(T − `, 3)

1FE1
c
≈

H(T − `, 4)

cPRF
c
≈ H(T − `, 5)

H(T − `, 6)

cPRF
c
≈ H(T − `, 7)

1FE1
c
≈ H(T − `, 8) and H(T − `, 8)

1FE1
c
≈ H(T − `, 9)︸ ︷︷ ︸

1FE1
c
≈

H(T − (`− 1), 1)

In the following claims, we show a formal reduction between H(T − `, 5) and

H(T − `, 6) and sketch a high level proof of computational indistinguishability for that

of betweenH(T − `, 8) andH(T − `, 9) thereby connecting the above computational

indistinguishability chains into one when the symbol and state at time step ` gets switched

from b = 0 to b = 1 finally.

Claim A.1.18. If 1FE2 is a secure CktFE scheme, then hybridsH(T − `, 5) andH(T −

161

`, 6) are indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(T − `, 5) andH(T − `, 6), we

construct another PPT adversary B who breaks the security of the 1FE2 scheme as

follows.

1. B samples (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), salt ← {0, 1}λ and K ←
SKE.KeyGen(1λ) and gets 1FE2.PK from the 1FE2 challenger. It sends PK =
1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for
any arbitrary ` = poly(λ) and a function query M which obeys the admissibility
criteria, B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge mes-
sages (w0,w1)← (D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}.
It also samples a root cPRF key K0 ← F.Setup(1λ).

(b) B learns the two (symbol, state) pairs at time step ` when the oblivious TM
M is run on both w0 and w1. Denote these pairs as (σ0

` , q
0
`) and (σ1

` , q
1
`),

where σb` = wb,` now. B also learns the (symbol, state) pair at time step
`+ 1 when M is run on w1 and denote this pair as (σ1

`+1, q
1
`+1). Further, it

also records the time steps (`, `− 1) and (`′, `), `′ ≤ ` when the individual
components of the (symbol, state) pairs (σb` , q

b
`),∀b ∈ {0, 1} and (σ1

`+1, q
1
`+1)

respectively are generated and then computes a root key punctured at point
(`‖salt) as K`

0 = F.Constrain(K0, (`‖salt)). It then simulates the encryption
oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i =
(K`

0, i, `, w0,i,Trap1) and Trap1 is as perH(T − `, 3) shown in Figure A.6. It
returns the ciphertext CT = {CTi}i∈[`] to A.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥

mode-trap1 : 1 Target TS1 : `+ 1 Sym TS1 : `′ Sym val1 : σ1
`+1 ST TS1 : ` ST val1 : q1

`+1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥

mode-trap3 : 1 Target TS : ` Sym TS : ` ⊥ ST TS : `− 1 ⊥

Figure A.6: Trap1 configuration inH(T − `, 3)

(c) To simulate a function key for M , B does the following.

i. In order to construct a function key for ReRand and Next, B now needs
to hardwire an SKE ciphertext in each of the functions which it computes
with the help of 1FE2 challenger as follows.
• Delegate the punctured root key to compute K`

`+1 = F.KeyDel(K`
0, f`+1).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such

that ∀b ∈ {0, 1}, zb1 = (SYM, salt,K`
`+1, `, `, σ

b
` ,Trap1) and zb2 =

(ST, qb`).

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2

challenger and gets back (CTsym,`,CTst,`).

162

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,`)
and ct2 = SKE.Enc(K,CTst,`).

ii. B computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,ct1,⊥)
by itself.

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,⊥,ct2
to the 1FE2 challenger and returns a function key for M as SKM =
(SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function

Next that outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2

itself. Therefore, B is an admissible 1FE2 adversary. Further, when the ciphertext for

time step ` is computed as a 1FE2 encryption of a (symbol, state) pair corresponding

to bit b = 0, A’s view is identical to that of H(T − `, 5), and when the ciphertext for

time step ` is computed as a 1FE2 encryption of a (symbol, state) pair corresponding

to bit b = 1, A’s view is identical to that ofH(T − `, 6). Hence the advantage of A in

distinguishingH(T − `, 5) andH(T − `, 6) translates to the advantage of B in breaking

the 1FE2 scheme.

Claim A.1.19. If 1FE1 is a secure CktFE scheme, then hybridsH(T − `, 8) andH(T −

`, 9) are indistinguishable.

Proof. We describe the proof at a high level and omit the details. Note that all ciphertexts

previous to time step ` remain unchanged, and output their corresponding symbol

ciphertexts correctly. The Next circuit outputs the state ciphertext for time step `

corresponding to bit b = 1. The only difference between this hybrid and the previous

one is that here we use the real mode to output the symbol ciphertext for b = 1 whereas

previously we used the trapdoor mode to output the same symbol ciphertext. Hence,

decryption values in both hybrids are exactly the same. When the 1FE1 ciphertext

for time step ` is computed corresponding to b = 0, A’s view is identical to that of

H(T − `, 8), and when the 1FE1 ciphertext for time step ` is computed corresponding

to b = 1, A’s view is identical to that of H(T − `, 9). Hence the advantage of A in

distinguishingH(T − `, 8) andH(T − `, 9) translates to the advantage of B in breaking

the 1FE1 scheme.

Denoting τ = (T − j) for any j ∈ [`], we get a sequence of hybrids shown below, where

163

we defineH(T, 1)
∆
= H(T) and have the final Claim A.1.20 which completes the proof

of Theorem 2.7.1.

H(τ, 8)

1FE1
c
≈ H(τ, 9)

1FE1
c
≈ H(τ + 1, 1)

SKE
c
≈ · · ·

cPRF
c
≈ H(τ + 1, 5)

1FE2
c
≈ H(τ + 1, 6)

cPRF
c
≈ · · ·

1FE1
c
≈

H(τ + 1, 8)

1FE1
c
≈ H(τ + 1, 9)

1FE1
c
≈ H(τ + 2, 1)

Claim A.1.20. If 1FE1 is a secure CktFE scheme, then hybridsH(T − 1, 9) andH(T)

are indistinguishable.

Proof. Note that Trap1.mode-real = 1 for ciphertexts in both worlds. The only

difference between both these hybrids is that in the former Trap contains other in-

formation whereas in the latter all other fields disabled with ⊥. However, since

Trap1.mode-real = 1, these fields anyway play no role in decryption, so the decryption

values stay the same.

Selective Security. The above proof shows security as per the weak selective definition,

in which the adversary submits the challenge messages and keys at the same time. This

can be easily strengthened to selective security in which the key requests can be made

after seeing the challenge ciphertext. Since the full selective game requires an additional

trapdoor structure, we did not show it here for ease of exposition, as the current proof

is already quite complex. Note that currently, the proof is restricted to weak selective

because in order to program the symbol and state messages for some time step in the

Trap data structure, the machine which produces these symbol, state pairs must be

specified. This dependency may be easily overcome by instead having an additional

trapdoor data structure in the key, which contains the above information. Thus, the

challenge ciphertext can be programmed without knowledge of the keys, and selective

security can be achieved.

A.2 Missing Details in Proof of Theorem 2.8.1

The modified trapdoor data structure is shown in Figure A.7. There is an additional field

that records the global salt value.

164

mode-real key-id global-salt val0 val1 SKE.K

mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1

mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2

mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure A.7: Data Structure Trap used for Proof

The Hybrids. We consider the case where the adversary makes a single key query but

makes Q ciphertext queries in each co-ordinate. We assume a lexicographic ordering

over the Qk global salt values, and denote by gsaltj the jth member of this sequence.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 =

mode-trap3 = ⊥ for all ciphertexts.

For j ∈ [Qk], do:

H(j, 1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function

keys) have mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥.

We program the last link in the decryption chain corresponding to gsaltj for

switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and

state ciphertext pieces are generated for time step T − 1, and the fields Sym val1

and ST val1 contain the symbol and state values which must be encrypted by the

function key in the above time steps when mode-trap1 is set.

Indistinguishability follows from security of kFE, since the decryption values in

both hybrids are exactly the same.

H(j, 1, 2): Hardwire the Next key with an SKE encryption of symbol and state cipher-

texts output at step T − 1 corresponding to execution thread gsaltj for b = 0. Use

the same ciphertexts would be generated in the previous hybrid.

Indistinguishability follows from security of SKE, since the only difference is the

value of the message encrypted using SKE which is embedded in the key.

H(j, 1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS =

T − 1. In this hybrid the hardwired value in the key is used to be output as step

165

T − 1 ciphertext corresponding to execution thread gsaltj .

Indistinguishability follows from security of kFE, since the decryption values in

both hybrids are exactly the same.

H(j, 1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all

delegated keys at point (T − 1‖key-id‖gsaltj).

Indistinguishability follows from security of kFE.

H(j, 1, 5): Switch the randomness in the 1FE ciphertexts which are hardwired in the

key to true randomness.

Indistinguishability follows from security of punctured cPRF for the aforemen-

tioned function family, since the remainder of the distribution only uses the

punctured key.

H(j, 1, 6): Switch the value encoded in the 1FE ciphertexts which are hardwired in the

key to correspond to b = 1.

Indistinguishability follows from security of 1FE.

H(j, 1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in

key, using the punctured key for all but the hardwired ciphertext.

Indistinguishability follows from security of cPRF as discussed above.

H(j, 1, 8): Switch the punctured root key to the normal root key.

Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains

b = 0. Set mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of kFE, since the decryption values in

both hybrids are exactly the same.

H(j, 2, 2): Hardwire key with SKE encryption of 1FE ciphertext for time step T − 2

and bit b = 0 (same as hybrid (1, 2) but for T − 2).

Indistinguishability follows from security of SKE as above.

H(j, 2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 =

1 with target T − 2.

166

Indistinguishability follows from security of kFE, since the decryption values in

both hybrids are exactly the same.

H(j, 2, 4): Switch normal root key to punctured key at position T − 2.

Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 5): Switch randomness to true in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 6): Switch hardwired 1FE ciphertext for step T − 2 to correspond to bit b = 1.

Indistinguishability follows from security of 1FE.

H(j, 2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 8): Switch punctured root key to normal root key.

Indistinguishability follows from security of kFE as discussed above.

H(j, 3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-

steps to T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds

to b = 1 and slot 2 for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and

mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of kFE, since the decryption values in

both hybrids are exactly the same. Note that now slot T − 1 is redundant, since

T − 2 ciphertext is already switched to b = 1.

HybridH(j, 3, i) will be analogous toH(j, 2, i) for i ∈ [8].

As we proceed left in the execution chain one step at a time, we reach step ` where

` = |w|, i.e. time steps for which kFE ciphertexts are provided by the encryptor.

At this point we will hardwire the Agg key instead for the symbol ciphertexts and

the Next key for the state ciphertexts with the exception at time step 1 when we

will hardwire both the symbol ciphertext and the start state ciphertext in Agg key

itself.

After going through all the global salt values and all the key values, we replace the

challenge ciphertext to have mode-real = 1 and message corresponding to b = 1,

167

one step at a time. This is analogous to the case of single input TMFE, except that

we must additionally track global salt values.

H(T): In this hybrid all ciphertexts have mode-real = 1, all other trapdoor information

is set to ⊥ and b = 1 is used. This is the real world with b = 1.

Indistinguishability from H(j + 1, 1, 1) follows from security of kFE since the

decryption values in both hybrids are exactly the same.

A.3 Constrained PRF for our Function Family

Our proof makes use of a set of delegatable constrained pseudorandom functions (cPRF).

We require T delegatable cPRFs, denoted by Fi for i ∈ [T], where each cPRF in

turn supports T delegations. The sequence of delegated keys for Fi are denoted by

{Ki,t}i,t∈[T], corresponding to functions fi,t, such that the satisfying set of fi,t+1 is

strictly contained within the satisfying set of fi,t, for all i, t ∈ [T].

In more detail, for any polynomial poly(λ), define fi,t : {0, 1}λ+poly(λ) → {0, 1} as

follows.

fi,t(x‖z) = 1 if x ≥ t ∧ (x‖z) 6= i

= 0 otherwise

Thus, the root key (and hence all delegated keys) of Fi are punctured at the point i.

Overview. We provide a construction for a cPRF F which supports puncturing and

delegation as required; the T cPRFs Fi for i ∈ [T] may each be constructed similarly. To

begin, note that we require the root key of F to be punctured at a point i∗ (say). The cPRF

construction for punctured PRF [Boneh and Waters (2013); Kiayias et al. (2013); Boyle

et al. (2014)] (which is in turn inherited from the standard PRG based GGM [Goldreich

et al. (1986)]) immediately satisfies this constraint, so we are left with the question of

delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime

of the Turing machine on the encrypted input (please see Section 2.7), and the jth

168

delegated key must support evaluation of points {(k‖z) : z ∈ {0, 1}λ} for k ≥ j,

except when (k‖z) = i∗. This may be viewed as the jth key being punctured on points

[1, j − 1] ∪ i∗. We show that the GGM based construction for puncturing a single point

can be extended to puncturing an interval (plus an extra point). Intuitively, puncturing an

interval corresponds to puncturing at most λ internal nodes in the GGM tree. In more

detail, we show that regardless of the value of j, it suffices to puncture at most λ points

in the GGM tree to achieve puncturing of the entire interval [1, j − 1].

Construction. Formally, the cPRF F is defined as follows. Our constrain algorithm

takes as input the set of points on which to puncture the PRF, as opposed to the satisfying

set. We compute the GGM tree as in Figure A.8 and number the leaves from 1 to

2(λ+poly(λ)).

K

0G0(K)

00G0(G0(K))

000 001

01 G1(G0(K))

010 011

1 G1(K)

10G0(G1(K))

100 101

11 G1(G1(K))

110 111

i∗j − 1

Figure A.8: To puncture i∗ = 010 draw path from root to i∗ and reveal nodes
that are siblings along the path. To puncture interval [1, 2] ∪ {i∗} =
{000, 001} ∪ {010}, compute the set Grey = {000, 001, 00} and the
punctured set P = {00, 010}. Further compute the initial revealed set
R0 = {(1, 01), (1, 00, 011)} and replace 00 and 01 by 011 to get the final
revealed setRf = {1, 011}.

Setup(1λ): Sample a standard length doubling PRG G with seed s0. Output mpk = G

and K0 = s0. As usual, we will denote by G0 the first half of the PRG output and

by G1 the second half.

Constrain(K0, [1, j − 1] ∪ i∗): Upon input the root key K0 and the set of points to be

punctured, do the following:

1. Compute puncturing set P: Initialize P to contain the point i∗. Compute
the path from the root node to node corresponding to point j − 1. For any

169

right edge (a, b) along the path, mark the left child of a grey. Mark the final
node j − 1 grey. At this point we have a set of grey nodes which must be
punctured. Minimize this set by checking whether both children of a node
are grey, in which case, also mark the parent grey. Finally, add the grey nodes
which do not have grey parents to a set P .

2. Computing revealed set R: For every node in the set P , compute the
punctured key (as in GGM) as follows. For every node k ∈ P , compute the
path from the root to k, and add the siblings of all nodes along the path to the
setR 1. Trim this set so as to remove conflicts caused by overlapping paths
as follows: if any punctured node b in P is a descendent of some node a in
R, remove a fromR, compute the path from a to b and add all the siblings
of the nodes on this path toR. Repeat until there are no more changes toR.

3. Output Kj = R.

KeyDel(Kj, fj+1): Given the punctured key for set [1, j], compute the punctured key

for [1, j + 1] as follows. Note that it suffices to delegate from j to j + 1 to imply

delegation from j to any j′ for j′ > j.

1. Consider the case when j is a left child and j + 1 is a right child of the same
parent. In this case, the set Kj contains the node corresponding to j + 1.
Delete this node and return the resultant set as Kj+1.

2. Consider the case when j is a right child and j + 1 is a left child of the
neighbouring parent. In this case Kj contains the parent of node j + 1. Use
the parent to evaluate the value corresponding to node j + 2, remove the
parent and add the value corresponding to node j + 2.

Eval(Kj, y): Evaluate the GGM tree on input y as Gy1 ◦ . . . ◦ Gyn(s0) and output it.

Note that Kj contains enough information to compute the path from root to y as

long as y is supported by Kj .

Correctness. We argue correctness of the Constrain algorithm first. To begin, we

claim that to puncture the interval [1, j − 1], it suffices to compute the path from the root

node to j − 1, and puncture the left siblings of any right edges along the path, i.e. if

(a, b) is a right edge along the path, we puncture the left child of a. Since a descendent

of the left child of a must necessarily have value < j − 1, it is necessary to puncture

these nodes. Moreover it is sufficient, along with j − 1 to puncture these nodes, because

i) any node of value < j− 1 must have an ancestor, say aj−1 which lies along the path P

from root to j − 1 ii) If (aj−1, bj−1) ∈ P for some bj−1, then (aj−1, bj−1) is a right edge.

Since Constrain algorithm populates P with this set of points and then minimizes this

1Note that this is exactly the constrained key provided for a single punctured point in the GGM based
construction.

170

set, we have that P represents the punctured points in the tree. Next, we argue that the

nodes returned via the setR is correct: to see this, note thatR is initially populated with

all the constrained keys for each punctured point in P , and this set is trimmed to remove

conflicts caused by overlapping paths. Thus, the resultant nodes returned in the set R

capture the intersection of points whose evaluation is admitted by each punctured key.

Finally, note that the Constrain algorithm runs in polynomial time: this is because

we may use binary search to compute the path from the root to any node in the graph,

and all operations deal with listing the siblings along these paths which take O(poly(λ)).

Moreover, we note that there is at most one punctured point at every level for any interval

[1, j − 1], which implies that the total runtime of Constrain is O((poly(λ))2).

Correctness of Eval is immediate, since evaluation is exactly the same as GGM

evaluation. Correctness of KeyDel is also straightforward, since we only delegate one

step at a time, hence it suffices to simply puncture one additional node corresponding to

a point j + 1, which is either the right child of the same parent as j, or the left child of

the neighbouring parent. Puncturing a single node is immediate in either of these cases,

as described in KeyDel above.

Security. We argue that given a punctured key, an adversary cannot distinguish a

pseudorandom value from a random value on any input y that is not supported by the

punctured key. Since by construction of the constrained key, the adversary does not

possess any node along the path from the root to the node corresponding to y, we have

that the node corresponding to y is pseudorandom by the standard hybrid argument for

GGM security.

A.4 Constructing DI Secure Functional Encryption

Let 1FE be a single input functional encryption scheme which satisfies standard indis-

tinguishability based security. We will construct a single input functional encryption

scheme DiFE satisfying distributional indistinguishability as shown below. Our proof

follows the strategy of embedding a hidden thread in the functionality which is only

active during simulation [Caro et al. (2013); Ananth et al. (2015a)] and therefore, uses

an additional CPA-secure symmetric key encryption scheme Sym = (Gen,Enc,Dec).

171

We note that the scheme presented below is public key, but directly lends itself to a

private key version by instead relying on private key 1FE.

DiFE.Setup(1λ, 1n): Upon input the security parameter and length of input message,

do the following:

1. Invoke (PK,MSK)← 1FE.Setup(1λ, 1n+λ+1) and output (PK,MSK).

DiFE.Enc(PK,x): Upon input the public key PK and a vector x ∈ X n, do the following:

1. Output CTx = 1FE.Enc
(
PK, (x,0, 0)

)
.

DiFE.KeyGen(MSK, f): Upon input the master secret key MSK and a circuit f , do the

following:

1. Choose CT randomly from the space of Sym ciphertexts.

2. Output SKf = 1FE.KeyGen(MSK, f ′) where f ′ is as defined in Figure A.9.

Functionality f ′f,CT(x, Sym.K,mode)

If mode = 0, output y = f(x) else output y = Sym.Dec(K,CT).

Figure A.9: Functionality f ′f,CT

DiFE.Dec(PK,CTx, SKf): Upon input the public key PK, a ciphertext CTx and a

function key SKf , compute 1FE.Dec(PK,CTx, SKf) and output it.

Correctness. We have by correctness of 1FE that decryption recovers f(x) as desired.

Proof of Security.

Next, we argue that the DiFE scheme constructed above is secure.

Theorem A.4.1. Assume that 1FE is an FE scheme that satisfies standard indistin-

guishability based security and that Sym is a CPA-secure symmetric key encryption

scheme. Then, the DiFE scheme constructed above satisfies selective, distributional

indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds

to an encryption of vector x0 chosen from distributionD0 and the last hybrid corresponds

to an encryption of vector x1 chosen from distribution D1.

172

Hybrid 0: This is the real world with x0 ← D0.

Hybrid 1: In this world, we hardwire the output of the function y = f(x0), where

x0 ← D0 into the function key using symmetric key encryption. That is, let

Sym.K← Sym.Gen(1λ) and CT = Sym.Enc(Sym.K, y).

Hybrid 2: In this world, change the message in the ciphertext, i.e. message encoded is

(⊥, Sym.K,mode = 1).

Hybrid 3: In this world, we change the value of y to y = f(x1).

Hybrid 4: In this world, we change the message encrypted to (x1,0,mode = 0) where

x1 ← D1.

Hybrid 5: In this world, we change the value of CT hardwired in the key back to

random.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma A.4.2. Hybrids 0 and 1 are indistinguishable assuming the security of Sym.

Proof. The only thing that changes between Hybrid 0 and 1 is the choice of CT, so that

in the former it is chosen randomly and in the latter case it is an honest encryption of the

scheme Sym. Given an adversary A who distinguishes between Hybrids 0 and Hybrid 1,

we construct an adversary B who breaks the semantic security of Sym.

B generates the public key honestly and returns it to A. When A outputs two

challenge distributions D0, D1, B samples x0 ← D0. It honestly computes ciphertexts

for (x0,0,mode = 0) and returns these to A. When A requests a function key f , B

computes the value y = f(x0), and sends y to the Sym challenger. The Sym challenger

responds with CT which is either an honest encryption of y or an element chosen

randomly from the ciphertext space. B uses CT in constructing the function key and

returns this to A. Now, if CT is random, A sees the view of Hybrid 0 and if it is an

encryption of y, it sees the view of Hybrid 1.

Lemma A.4.3. Hybrids 1 and 2 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 1 and 2 is that in the former the encrypted

message is (x0,0,mode = 0) and in the latter it is (⊥, Sym.K,mode = 1). Assume

173

there is an adversary A who distinguishes between Hybrid 1 and Hybrid 2, we construct

an adversary B who can break the security of 1FE.

B does the following:

1. It obtains the public key from the 1FE challenger and returns this to A.

2. When A outputs two distribution pairs (D0, D1), it samples x0 ← D0, Sym.K
and returns challenges (x0,0,mode = 0) and (⊥, Sym.K,mode = 1) to the 1FE
challenger. It obtains an encryption of one of them chosen at random and returns
this to A.

3. When A outputs a function f , B constructs the function f ′ as described in
Figure A.9 and sends this to the 1FE challenger. Here, CT is computed as
Sym.Enc(Sym.K, y) where y = f(x0). It returns the obtained key to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns an encryption of (x0,0,mode = 0), A sees the

view of Hybrid 1, and when it returns an encryption of (⊥, Sym.K,mode = 1), it sees

the view of Hybrid 2. Note that in either case the decrypted value is the same. Thus, the

advantage of A translates to the advantage of B.

Lemma A.4.4. Hybrids 2 and 3 are indistinguishable since f(x0) ≈ f(x1).

Proof. The only thing that differs in these two hybrids is the value of y. Given an

adversary A who distinguishes between Hybrids 2 and 3, we construct an adversary B

who distinguishes between f(x0) and f(x1). B does the following:

1. It samples the public key honestly and gives it to A.

2. When A outputs challenge distributions D0 and D1, it computes the ciphertext for
(⊥, Sym.K,mode = 1) honestly and returns it.

3. When A outputs a key request for function f , B outputs (D0, D1, f) to the dis-
tribution challenger. B receives y0 = f(x0) or y1 = f(x1), where xb ← Db for
b ∈ {0, 1}. It uses this to construct the circuit f ′. It then computes the key for f ′

honestly and returns this to A.

4. When A outputs a guess, B outputs the same.

If B receives y0, A sees the distribution of Hybrid 2, else it sees the distribution of

Hybrid 3. The advantage of A therefore translates to an advantage of B.

Lemma A.4.5. Hybrids 3 and 4 are indistinguishable assuming the security of 1FE.

174

Proof. The only difference between Hybrids 3 and 4 is that in the former, the mes-

sage encoded in the ciphertext is (⊥, Sym.K,mode = 1) and in the latter the message

encrypted is (x1,0,mode = 0). Note that in both cases, we have the same output of

decryption hence the two ciphertexts are indistinguishable by security of 1FE.

Lemma A.4.6. Hybrids 4 and 5 are indistinguishable assuming the security of Sym.

Proof. The proof is similar to Lemma A.4.2.

A.5 Constructing Decomposable Functional Encryption

for Circuits

Given any single-input circuit FE scheme 1FE satisfying standard indistinguishability

based security, a projective garbled circuit scheme GC = (GCirc,GInp,GEval) with

indistinguishability based security [Jafargholi et al. (2017)] supporting a circuit class

C = {Cλ}λ∈N with n-bit inputs, a simple PRF F = (F.Setup,F.Eval) and a symmetric

encryption scheme SYM, we can construct a single-input decomposable FE scheme DFE

supporting the circuit class C2. We note that projective garbled circuit schemes satisfying

indistinguishability based security are implied from one-way functions [Jafargholi et al.

(2017)]. The intuition behind the construction is as follows.

Intuition: The public key and master secret key for DFE would be the same as that of

1FE. Given an n-bit message x = (x1, . . . , xn), the DFE encryption algorithm samples

a PRF key K and generates n 1FE ciphertexts encoding (K, i, xi). DFE key generation

takes the master secret key and a circuit C as input and generates a secret key for a

circuit ĈC,salt. The circuit ĈC,salt takes a 1FE message (K, i, xi) as input and generates a

garbled circuit C̃ corresponding to C and a garbled input label for the ith bit xi using

randomness PRF(K, salt). This relies on the projective property of GC [Jafargholi et al.

(2017)], i.e., each bit of the garbled input x̃ only depends on one bit of the actual input x.

For decryption, DFE runs the 1FE decryption on all the n 1FE ciphertexts to obtain the

2We thank Vinod Vaikuntanathan for suggesting the generic transformation from FE to decomposable
FE.

175

garbled circuit C̃ and the garbled input x̃ and then evaluates the garbled circuit to get the

output C(x).

For proving security, we additionally need to rely on a symmetric key scheme

following standard techniques employing trapdoor modes from [Caro et al. (2013);

Ananth et al. (2015a)]. The details follow as shown below.

DFE.Setup(1λ, 1n): On input the security parameter λ and input message size n, do

the following:

1. Generate (1FE.PK, 1FE.MSK)← 1FE.Setup(1λ, 12λ+logn+2).

2. Output (PK,MSK) = (1FE.PK, 1FE.MSK).

DFE.Enc(PK,x): On input the public key PK and a message x = (x1, . . . , xn) of length

n = |x|, do the following:

1. Sample a PRF key K← F.Setup(1λ) and set a flag mode = 0.

2. Compute CTxi = 1FE.Enc(PK, (K,0, i, xi,mode)),∀i ∈ [n] and output
CTx = {CTxi}i∈[n].

DFE.KeyGen(MSK, C): On input the master secret key MSK and a circuit C ∈ Cλ, do

the following:

1. Sample a random salt← {0, 1}λ, CTi ← {0, 1}`(λ),∀i ∈ [0, n].

2. Output SKĈ = 1FE.KeyGen(MSK, ĈC,salt,{CTi}i∈[n],CT0), where the circuit
ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ is a circuit described in Figure A.10.

DFE.Dec(SKĈ ,CTx): On input a function key SKĈ and a decomposed ciphertext

CTx = {CTxi}i∈[n], do the following:

1. For i = 1, invoke 1FE.Dec(SKĈ ,CTx1) to obtain a pair (`1,x1 , C̃).

2. For all i ∈ [2, n], invoke 1FE.Dec(SKĈ ,CTxi) to obtain (`i,xi ,⊥).

3. Note that x̃ = {`i,xi}i∈[n] represents the labels corresponding to the garbled
input underlying CTx generated as outputs of Ĉ, while C̃ represents the
garbled circuit for C.

4. Run GEval(C̃, x̃) to get y.

Correctness. We have by correctness of 1FE.Dec that it outputs the garbled input x̃

and the garbled circuit C̃ correctly. The correctness of GEval implies that decryption

recovers C(x) as desired.

176

Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ (K, SYM.K, i, xi,mode)

(a) Initialize the vector out = (c1, c2), where cj = ⊥, ∀j ∈ [2].

(b) If mode = 1, do the following:
i. Let out.c1 = SYM.Dec(SYM.K, SYM.CTi).

ii. If i = 1, let out.c2 = SYM.Dec(SYM.K, SYM.CTC̃).

(c) If mode = 0, do the following:
i. Compute randomness r = F.Eval(K, salt).

ii. Use randomness r to generate the garbled circuit for C as (C̃, sk) =
GCirc(1λ, C; r) as well as to generate the label corresponding to the ith

input wire as `i,xi = GInp(sk, (xi, i); r).

iii. Let out.c1 = `i,xi . If i = 1, let out.c2 = C̃.

(d) Output : out.

Figure A.10: Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

Proof of Security.

Next, we argue that the DFE scheme constructed above is secure.

Theorem A.5.1. Assume that 1FE is an FE scheme satisfying standard indistinguisha-

bility based security, GC is a projective garbling scheme for circuits satisfying indistin-

guishability based security, Sym is a secure symmetric key encryption scheme and F is a

secure PRF. Then, the DFE scheme constructed above is a single-input, decomposable

FE scheme satisfying selective indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds

to an encryption of message x0 ∈ {0, 1}n and the last hybrid corresponds to an encryption

of message x1 ∈ {0, 1}n.

Hybrid 0: This is the real world with message x0 = (x0
1, . . . , x

0
n) ∈ {0, 1}n.

Hybrid 1: In this world, we hardwire Ĉ with its output, namely the garbled circuit

(C̃, sk) and input labels {`i,x0i }i∈[n], using symmetric key encryption.

Hybrid 2: In this world, we change the message in each of the n 1FE ciphertexts

from (K,0, i, x0
i , 0) to (⊥, Sym.K, i,⊥, 1), i.e., the message encoded in CTxi is

(⊥, Sym.K, i,⊥,mode = 1),∀i ∈ [n].

177

Hybrid 3: In this world, we use true randomness to generate the garbled circuit and

garbled inputs instead of using randomness generated by PRF. Everything else

remains the same as that of the previous hybrid. Note that the garbled input labels

{`i,x0i }i∈[n] encoded by {SYM.CTi}i∈[n] correspond to the input message bits of

x0 = (x0
1, . . . , x

0
n) from the previous hybrids.

Hybrid 4: In this world, we change the garbled input labels to {`i,x1i }i∈[n] corresponding

to the input message bits of x1 = (x1
1, . . . , x

1
n) encoded by {SYM.CTi}i∈[n] and

hardwired in the key for Ĉ.

Hybrid 5: In this world, we change the true randomness back to randomness generated

by the PRF for computing the garbled circuit and garbled inputs. Everything else

remains the same as that of the previous hybrid. Note that the garbled input labels

{`i,x1i }i∈[n] encoded by {SYM.CTi}i∈[n] now correspond to the input message bits

of x1 = (x1
1, . . . , x

1
n) from the previous hybrid.

Hybrid 6: In this world, we change the message in each of the n 1FE ciphertexts from

(⊥, Sym.K, i,⊥, 1) to (K,0, i, x1
i , 0), i.e., the message encoded in CTxi now is

(K,0, i, x1
i , 0),∀i ∈ [n].

Hybrid 7: In this world, we change the hardwired values in Ĉ corresponding to the

{SYM.CTi}i∈[n] and SYM.CTC̃ slots back to random strings from the ciphertext

space of SYM. Note that this corresponds to the real world with message x1 =

(x1
1, . . . , x

1
n) ∈ {0, 1}n.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma A.5.2. Hybrids 0 and 1 are indistinguishable assuming the security of SYM.

Proof. The only thing that changes between Hybrids 0 and 1 are the choices of {SYM.CTi}i∈[0,n],

so that in the former it is chosen randomly and in the latter case it is an honest encryption

of the scheme SYM. Given an adversary A which distinguishes between Hybrid 0 and

Hybrid 1, we construct an adversary B which breaks the semantic security of SYM. B

does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2)
honestly and returns PK to A.

178

2. WhenA outputs a pair of challenge messages (x0,x1), B samples a PRF key K←
F.Setup(1λ) and honestly computes CTxi = 1FE.Enc(PK, (K,0, i, x0

i ,mode =
0)),∀i ∈ [n] and returns CTx ={CTxi}i∈[n] to A.

3. When A requests a function key for C, B samples salt← {0, 1}λ and computes
r = F.Eval(K, salt). It then generates the garbled circuit (C̃, sk) = GCirc(1λ, C; r)
and the input labels {`i,x0i = GInp(sk, (i, xi); r)}i∈[n] honestly. B then sends(
{`i,x0i }i∈[n], C̃

)
to the SYM challenger. The SYM challenger responds with(

{SYM.CTi}i∈[n], SYM.CTC̃

)
upon whichB constructs ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

and generates a secret key SKĈ = 1FE.KeyGen
(
MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

)
honestly. B sends SKĈ to A.

4. When A outputs a guess bit, it outputs the same.

Now, A sees the view of Hybrid 0 if
(
{SYM.CTi}i∈[n], SYM.CTC̃

)
is random

and A sees the view of Hybrid 1 if
(
{SYM.CTi}i∈[n], SYM.CTC̃

)
is an encryption

of
(
{`i,x0i }i∈[n], C̃

)
.

Lemma A.5.3. Hybrids 1 and 2 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 1 and 2 is that in the former the encrypted

messages are {(K,0, i, x0
i ,mode = 0)}i∈[n] and in the latter as {(⊥, SYM.K, i,⊥,mode =

1)}i∈[n]. Assuming there is an adversary A which distinguishes between Hybrid 1 and

Hybrid 2, we construct an adversary B which breaks the security of 1FE.

B does the following:

1. It obtains the public key PK from the 1FE challenger and returns this to A.

2. WhenA outputs a pair of challenge messages (x0,x1), it samples K← F.Setup(1λ),
a symmetric encryption key SYM.K and then returns n 1FE challenge message
pairs {(K,0, i, x0

i ,mode = 0) , (⊥, SYM.K, i,⊥,mode = 1)}i∈[n] w.l.o.g. to the
1FE challenger. It obtains CTx = {CTxi}i∈[n] and returns this to A.

3. When A outputs a function query for C, B constructs ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃
as described in Figure A.10 and sends this to the 1FE challenger. Here, SYM.CTC̃

is computed as SYM.Enc(SYM.K, C̃) where (C̃, sk) = GCirc(1λ, C; F.Eval(K, salt))
while SYM.CTi are computed as SYM.Enc(SYM.K, `i,x0i) where `i,x0i = GInp(sk, (i, x0

i);
F.Eval(K, salt)), ∀i ∈ [n]. It returns the obtained key SKĈ to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns encryptions of {(K,0, i, x0
i ,mode = 0)}i∈[n], A

sees the view of Hybrid 1, and when it returns an encryption of {(⊥, SYM.K, i,⊥,mode =

1)}i∈[n], it sees the view of Hybrid 2. Note that in either case the decrypted value is

179

the same and thus the reduction B is a valid 1FE adversary. Thus, the advantage of A

translates to the advantage of B.

Lemma A.5.4. Hybrids 2 and 3 are indistinguishable assuming the security of PRF F.

Proof. The only difference in Hybrid 2 from Hybrid 3 is that instead of randomness

generated by the PRF, true randomness is used now to generate the garbled circuit and

garbled input. Note that the PRF key is not explicitly needed in the Hybrid 2. Thus,

assuming there is an adversary A which distinguishes between Hybrid 2 and Hybrid 3,

we construct an adversary B which breaks the security of PRF F. B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2)
honestly and returns PK to A.

2. WhenA outputs a pair of challenge messages (x0,x1), B samples SYM.K and sim-
ulates the challenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥,
SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first queries the PRF challenger upon
which it receives r. It then uses r to compute the garbled circuit (C̃, sk) =
GCirc(1λ, C; r) as well as the garbled input labels `i,x0i = GInp(sk, (i, x0

i); r)∀i ∈
[n], honestly. B then samples salt ← {0, 1}λ and computes {SYM.CTi =

SYM.Enc(SYM.K, `i,x0i)}i∈[n] and SYM.CTC̃ = SYM.Enc(SYM.K, C̃). It then
computes SKĈ = 1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃) for the func-
tion ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ as described in Figure A.10 and returns SKĈ to
A.

4. When A outputs a guess bit, B outputs the same.

If B had received r = F.Eval(K, salt) from the the PRF challenger, A sees the

distribution of Hybrid 2, else it sees the distribution of Hybrid 3 if r was sampled

uniformly at random by the PRF challenger. The advantage of A therefore translates to

an advantage of B.

Lemma A.5.5. Hybrids 3 and 4 are indistinguishable assuming the security of GC.

Proof. The only difference between Hybrids 3 and 4 is that in the former, the messages

encoded in {SYM.CTi}i∈[n] ciphertexts hardwired in Ĉ were {`i,x0i }i∈[n] while in the later,

the encoded messages are {`i,x1i }i∈[n]. Note that in both cases, we have the same output

of decryption since C(x0) = C(x1) and hence the two hybrids are indistinguishable

by indistinguishability based security of GC. More formally, we show that if there is

an adversary A which distinguishes between Hybrid 3 and Hybrid 4, we construct an

adversary B which breaks the security of GC. B does the following:

180

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2)
honestly and returns PK to A.

2. WhenA outputs a pair of challenge messages (x0,x1), B samples SYM.K and sim-
ulates the challenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥,
SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first constructs and sends the chal-
lenge message pair ((C,x0), (C,x1)) to the GC challenger. On receiving (C̃, x̃ =
{`i,xi}i∈[n]) from the GC challenger, B computes {SYM.CTi=SYM.Enc(SYM.K, `i,xi)}i∈[n]

and SYM.CTC̃ = SYM.Enc(SYM.K, C̃). It then samples salt ← {0, 1}λ and
generates a function key for the function ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ as SKĈ =

1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃). B returns SKĈ to A.

4. When A outputs a guess bit, B outputs the same.

Note that sinceA is a valid DFE adversary satisfying C(x0) = C(x1), this implies B

is a valid GC adversary. Further, if the GC challenger had returned (C̃, x̃ = {`i,x0i }i∈[n]),

then A sees the view of Hybrid 3 and if the GC challenger had returned (C̃, x̃ =

{`i,x1i }i∈[n]), then A sees the view of Hybrid 4. The advantage of A therefore translates

to an advantage of B.

Lemma A.5.6. Hybrids 4 and 5 are indistinguishable assuming the security of PRF F.

Proof. The proof is similar to Lemma A.5.4.

Lemma A.5.7. Hybrids 5 and 6 are indistinguishable assuming the security of 1FE.

Proof. The proof is similar to Lemma A.5.3.

Lemma A.5.8. Hybrids 6 and 7 are indistinguishable assuming the security of SYM.

Proof. The proof is similar to Lemma A.5.2.

A.5.1 Decomposable Functional Encryption for Circuits: Instanti-

ations

We note that most functional encryption schemes in the literature are already decom-

posable, since a long input x is typically encoded bit by bit, using a separate public key

181

component. Indeed, we do not know of any exception in the literature. For instance,

recall the ciphertext of [Ananth et al. (2015a)]:

CT0 ← OneCT.Enc(OneCT.SK,x) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.SK,K, 0λ, 0)).

Above, CT1 is a ciphertext component which is independent of the message (and depends

only on randomness), hence it may be denoted as CTindpt in the notation above. Therefore,

it remains to show that CT0 is decomposable. This depends on the particular OneCT

scheme that is chosen, but for instance, it was shown in [Ananth and Sahai (2016)] that

the OneCT succinct FE scheme from LWE constructed by [Goldwasser et al. (2013a)]

is decomposable. We refer the reader to [Ananth and Sahai (2016)] for details.

We note that the recent constructions of FE from constant degree multilinear maps

[Lin (2017); Lin and Tessaro (2017)] also satisfy decomposability, despite the fact that

they precompute high degree monomials which are encoded. To see this, note that the

encrypt algorithm in [Lin (2017); Lin and Tessaro (2017)] takes as input a message x

and chooses a PRG seed s (say) represented as a matrix. The encryptor computes a long

message y (say) that consists of monomials computed over x, s. While the computation

of arbitrary monomials would violate decomposability, in the above constructions, the

monomials are linear in bits of x, and the high degree terms are all computed over

the bits of the seed s. Our construction requires that the bits corresponding to the

symbol and state of a TM be encoded separately, and these would form the input x in

the constructions of [Lin (2017); Lin and Tessaro (2017)]. Intuitively, the PRG seed is

used to derive randomness meant for computing a randomized encoding and is chosen

independently of the input message x. Hence, the constructions of [Lin (2017); Lin and

Tessaro (2017)] also satisfy decomposability required by our compilers.

Next, we sketch how the construction of [Garg et al. (2013a)] can be seen to satisfy

decomposability, with minor modifications. The ciphertext for a single bit message

m in this scheme is (e1, e2, π), where e1 = Enc(PK1,m) and e2 = Enc(PK2,m) and

π is a NIZK proof that e1 and e2 both encrypt the same bit. Note that here the two

ciphertexts e1 and e2 are using distinct public key encryption schemes (i.e. these are

not ciphertext components in decomposable FE). To argue decomposability, consider

message m = (m1, . . . ,mn) as a vector of n bits rather than a single bit. Then, we

182

may compute the encryptions bit by bit, and also test equality bit by bit in the NIZK,

tying together all bits of m by common randomness, satisfying the given definition of

decomposability.

In more detail, we may compute e1 = (e1,1, . . . , e1,n) and e2 = (e2,1, . . . , e2,n) as well

as e∗ = Enc(PK3,R) where:

• ∀i ∈ [n], e1,i and e2,i encode message (mi,R) where R is shared across all i. Note
that R here is part of the encoded message (the encryption randomness used to
construct the ciphertexts e1,i and e2,i is different and not denoted here).

• Denote by πi the NIZK proof that e1,i and e2,i encode the same bit mi and that
e1,i, e2,i encode the same R as e∗.

Then, the n ciphertext components of the decomposable FE are (e1,1, e2,1, π1), . . . , (e1,n, e2,n, πn)

and the independent ciphertext component is e∗ (CTindpt from Definition 2.6.2). Note

that if an attacker tried to replace any one piece in this set, the R would not match (except

with negligible probability) and the NIZK proof would not validate.

The proof of security is similar to [Garg et al. (2013a)].

183

APPENDIX B

Appendices for Chapter 3

B.1 Definitions: Predicate and Functional Encryption

B.1.1 Predicate and Bounded Key Functional Encryption for Cir-

cuits

We present the definition of predicate and bounded key functional encryption for general

circuits similarly to [Gorbunov et al. (2015); Goldwasser et al. (2013a); Agrawal (2017)].

We follow the notation of [Agrawal (2017)] which provides a single definition for

predicate encryption and succinct bounded key functional encryption. Since this primitive

interpolates predicate and functional encryption, we denote it by PE+. We note that this

definition achieves input privacy but not machine privacy.

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an a-priori

bounded depth d, and binary output and C = {Cinp(λ),d(λ)}λ∈N. A predicate encryption

scheme PE+ for C over a message spaceM = {Mλ}λ∈N consists of four algorithms:

• PE+.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation
of the security parameter, the length inp = inp(λ) of the input and the depth
d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It outputs the master
public key and the master secret key (PE+.mpk,PE+.msk).

• PE+.Enc(PE+.mpk,x,m) is a PPT algorithm that takes as input the master public
key PE+.mpk, a string x ∈ {0, 1}inp and a messagem ∈M. It outputs a ciphertext
PE+.ct.

• PE+.KeyGen(PE+.mpk,PE+.msk, C) is a PPT algorithm that takes as input the
master public key PE+.mpk, master secret key PE+.msk, and a circuit C ∈
Cinp(λ),d(λ) and outputs a corresponding secret key PE+.skC .

• PE+.Dec(PE+.mpk,PE+.skC , C,PE+.ct) is a deterministic algorithm that takes
as input the master public key PE+.mpk, the secret key PE+.skC , its associated
circuit C, and a ciphertext PE+.ct and outputs either a message m′ or ⊥.

Definition B.1.1 (Correctness). A predicate encryption scheme for circuits PE+ is

correct if for all λ ∈ N, polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all

x ∈ {0, 1}inp such that C(x) = 1 and for all messages m ∈M,

Pr



(PE+.mpk,PE+.msk)← PE+.Setup(1λ, 1inp, 1d),

PE+.ct← PE+.Enc(PE+.mpk,x,m),

PE+.skC ← PE+.KeyGen(PE+.mpk,PE+.msk, C) :

PE+.Dec
(

PE+.mpk,PE+.skC , C,PE+.ct
)
6= m


= negl(λ)

where the probability is taken over the coins of PE+.Setup, PE+.KeyGen, and PE+.Enc.

Security. Next, we define simulation based security for PE+. Note that simulation

based security is impossible for functional encryption against an adversary that requests

even a single key after seeing the challenge ciphertext [Boneh et al. (2011)], or an

unbounded number of keys before seeing the challenge ciphertext [Agrawal et al. (2013)].

However, against an adversary who only requests an a-priori bounded number of keys

before seeing the challenge ciphertext, simulation based security is possible but causes

the ciphertext size to grow with the number of requested keys [Agrawal et al. (2013)].

Following [Agrawal (2017)], we provide a definition that subsumes single (or

bounded) key functional encryption as well as predicate encryption; namely where

an attacker can make an unbounded number of function queries Ci so long as it holds

that the function keys do not decrypt the challenge ciphertext PE+.Enc(PE+.mpk,x,m)

to recover m. Thus, it holds that Ci(x) = 0 for all requested Ci. We shall refer to such

Ci as 0-keys, and any C such that C(x) = 1 as a 1-key. In our definition, the adversary

can request a single arbitrary (i.e. 0 or 1) key followed by an unbounded polynomial

number of 0-keys. As in [Agrawal (2017)], we refer to this security notion as (1, poly)

simulation security.

Definition B.1.2 ((1, poly)-Sel-SIM Security). Let PE+ be a predicate encryption scheme

for a Boolean circuit family C. For a stateful PPT adversary A and a stateful PPT simula-

tor Sim, consider the following two experiments:

186

Expreal
PE+,A(1λ): Expideal

PE+,Sim(1λ):

1: (X,Msg, C∗)← A(1λ)

2: (PE+.mpk,PE+.msk)← PE+.Setup(1λ, 1inp, 1d)

3: For xi ∈ X , let bi = mi.

4: Let CTX :=

{PE+.ctxi
← PE+.Enc

(
PE+.mpk,xi, bi

)
}i∈[|X|]

5: PE+.skC∗ ← PE+.KeyGen(PE+.mpk,PE+.msk, C∗)

6: α←APE+.KeyGen(PE+.mpk,PE+.msk,·)(CTX ,PE+.skC∗)

7: Output (X,Msg, α)

1: (X,Msg, C∗)← A(1λ)

2: PE+.mpk← Sim(1λ, 1inp, 1d, C∗)

3: For xi ∈ X , let bi = mi if C∗(xi) = 1,

⊥ otherwise.

4: Let CTX :=

{PE+.ctxi
← Sim(1|xi|, C∗, bi)}i∈[|X|]

5: PE+.skC∗ ← Sim(C∗)

6: α←ASim(CTX ,PE+.skC∗)

7: Output (X,Msg, α)

Here, X = {x1, . . . ,x|X|} is the target set of attributes of length inp, and let Msg =

{m1, . . . ,m|X|} be the corresponding set of messages inM. We say an adversary A is

admissible if:

1. For a single query C∗, it may hold that C∗(x) = 1 or C∗(x) = 0 for any x ∈ X .

2. For all other queries Ci 6= C∗, it holds that Ci(x) = 0 for any x ∈ X .

The functional encryption scheme CktFE is then said to be (1, poly)-Sel-SIM-secure

if there is an admissible stateful PPT simulator Sim such that for every admissible PPT

adversary A, the following two distributions are computationally indistinguishable.

{
Expreal

PE+,A(1λ)

}
λ∈N

c
≈
{

Expideal
PE+,Sim(1λ)

}
λ∈N

For the (Q, poly) version of the above game, we replace each occurrence of C∗

with a tuple C∗1 , . . . , C
∗
Q and set bi = mi if there is j ∈ [Q] such that C∗j (xi) = 1 and

otherwise bi = ⊥.

Remark B.1.3. Note that the above definition is a multi-challenge one, where the adver-

sary can obtain multiple challenge ciphertexts. While this security notion implies more

standard notion of single-challenge security, the latter may not imply the former since the

simulator is stateful and may use some secret information to simulate the game. Because

187

of the reason, it is impossible to perform the hybrid argument to prove the implication.

However, in the special case of Agrawal’s PE+ scheme [Agrawal (2017)], which is only

proven secure in the single-challenge setting, actually satisfies the above stronger notion,

since the simulator for the ciphertext does not use any secret information not known to

the adversary in her construction.

In our construction of PE+ for NFA in Appendix B.2, we will use the scheme by

[Agrawal (2017)] as a building block. The following theorem summarizes the efficiency

properties of her construction.

Theorem B.1.4 (Adapted from [Agrawal (2017)]). There exists a selectively secure

FE scheme PE+ = (PE+.Setup,PE+.KeyGen,PE+.Enc,PE+.Dec) with the following

properties under the LWE assumption.

1. The circuit PE+.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a randomness
r and outputs PE+.msk = PE+.Setup(1λ, 1inp, 1d; r), can be implemented with
depth poly(λ, d). In particular, the depth of the circuit is independent of inp and
the length of the randomness r.

2. We have |PE+.skC | ≤ poly(λ, d) for anyC ∈ Cinp,d, where (PE+.mpk,PE+.msk)←
PE+.Setup(1λ, 1inp, 1d) and PE+.skC ← PE+.KeyGen(PE+.mpk,PE+.msk, C).
In particular, the length of the secret key is independent of the input length inp and
the size of the circuit C.

3. Let C : {0, 1}inp+` → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for
any v ∈ {0, 1}`. Then, the circuit PE+.KeyGen(·, ·, C[·]; ·), that takes as input
PE+.mpk, PE+.msk, v, and randomness r and outputs PE+.KeyGen(PE+.mpk,PE+.msk,
C[v]; r), can be implemented with depth depth(C) · poly(λ, d).

Proof. The proof follows from the proof of Theorem 3.5.9 and the structure of the PE+

scheme of [Agrawal (2017)]. We note that the PE+ scheme of [Agrawal (2017)] uses

fully homomorphic encryption (as in [Gorbunov et al. (2015)]), to hide the attributes

in the ABE scheme of [Boneh et al. (2014)], and reverses the FHE encryption by

augmenting the circuit in the function key with an FHE decryption circuit. Thus, if a

key is requested for a circuit C, then the PE+ scheme must construct a function key

for a circuit Ĉ ◦ IP where Ĉ is the FHE evaluation circuit corresponding to circuit C,

and IP is the FHE decryption procedure, which in turn, involves computing an inner

product followed by a modular reduction [Brakerski et al. (2012); Gentry et al. (2013)].

Since the FHE evaluation circuit corresponding to some circuit C only causes constant

polynomial blowup in depth [Brakerski et al. (2012); Gentry et al. (2013)] and the FHE

188

decryption circuit is in NC1, we have that the depth of the augmented circuit Ĉ ◦ IP is

poly(λ)·depth(C). The setup and encryption algorithms of the PE+ scheme of [Agrawal

(2017)] are the same as that of [Boneh et al. (2014)]. Hence, the theorem follows from

the proof of Theorem 3.5.9.

B.1.2 Predicate Encryption and Bounded Key Functional Encryp-

tion for NFA

A secret-key functional encryption scheme NfaPE+ for a message spaceM = {Mλ}λ∈N
consists of four algorithms. In the following, we fix some alphabet Σ = Σλ of size

2 ≤ |Σ| ≤ poly(λ).

• NfaPE+.Setup(1λ) is a PPT algorithm takes as input the unary representation of
the security parameter and outputs the master secret key NfaPE+.msk.

• NfaPE+.Enc(NfaPE+.msk,x,m) is a PPT algorithm that takes as input the master
secret key NfaPE+.msk, a string x ∈ Σ∗ of arbitrary length and a messagem ∈M.
It outputs a ciphertext NfaPE+.ct.

• NfaPE+.KeyGen(NfaPE+.msk,M) is a PPT algorithm that takes as input the
master secret key NfaPE+.msk and a description of an NFA machine M . It
outputs a corresponding secret key NfaPE+.skM .

• NfaPE+.Dec(NfaPE+.skM ,M,NfaPE+.ct) is a deterministic polynomial time al-
gorithm that takes as input the secret key NfaPE+.skM , its associated NFA M , and
a ciphertext NfaPE+.ct and outputs either a message m′ or ⊥.

Remark B.1.5. As in the construction in Sec. 3.6.2, we will pass an additional parameter

s = s(λ) to the NfaPE+.Setup,NfaPE+.Enc,NfaPE+.KeyGen algorithms denoting the

description size of NFAs that the scheme can deal with. The construction in Sec. 3.7 can

be adapted in a straightforward way to support NFAs with arbitrary size.

Definition B.1.6 (Correctness). A scheme NfaPE+ is correct if for all NFAs M , all

x ∈ Σ∗ such that M(x) = 1 and for all messages m ∈M,

Pr



NfaPE+.msk← NfaPE+.Setup(1λ) ,

NfaPE+.skM ← NfaPE+.KeyGen(NfaPE+.msk,M) ,

NfaPE+.ct← NfaPE+.Enc(NfaPE+.msk,x,m) :

NfaPE+.Dec
(
NfaPE+.skM ,M,NfaPE+.ct

)
6= m


= negl(λ)

189

where the probability is taken over the coins of NfaPE+.Setup, NfaPE+.KeyGen, and

NfaPE+.Enc.

Definition B.1.7 ((1, poly)-Sel-SIM Security). The definition is adapted from Defn B.1.2

in the symmetric key setting. For a stateful PPT adversary A and a stateful PPT simulator

Sim, consider the following two experiments:

Expreal
NfaPE+,A(1λ): Expideal

NfaPE+,Sim(1λ):

1: (X,Msg,M∗)← A(1λ)

2: For xi ∈ X , let bi = mi.

Let NfaPE+.msk← NfaPE+.Setup(1λ).

3: Let CTX :=

{PE+.ctxi ← NfaPE+.Enc
(
NfaPE+.msk,xi, bi

)
}i∈[|X|]

4: PE+.skM∗ ← NfaPE+.KeyGen(NfaPE+.msk,M∗)

5: α←ANfaPE+.KeyGen(NfaPE+.msk,·)(CTX ,PE
+.skM∗)

6: Output (X,Msg, α)

1: (X,Msg,M∗)← A(1λ)

2: For xi ∈ X , let bi = mi if M∗(xi) = 1,

⊥ otherwise.

3: let CTX :=

{PE+.ctxi ← Sim(1|xi|,M∗, bi)}i∈[|X|]

4: PE+.skM∗ ← Sim(M∗)

5: α←ASim(CTX ,PE
+.skM∗)

6: Output (X,Msg, α)

Here, X = {x1, . . . ,x|X|} is the target set of attributes over Σ∗, and let Msg =

{m1, . . . ,m|X|} be the corresponding set of messages inM. We say an adversary A is

admissible if:

1. For a single query M∗, it may hold that M∗(xi) = 1 or M∗(xi) = 0 for any
xi ∈ X .

2. For all other queries Mj 6= M∗, it holds that Mj(xi) = 0 for any xi ∈ X .

The PE+ scheme NfaPE+ is then said to be (1, poly)-Sel-SIM-secure if there is an

admissible stateful PPT simulator Sim such that for every admissible PPT adversary A,

the following two distributions are computationally indistinguishable.

{
Expreal

NfaPE+,A(1λ)

}
λ∈N

c
≈
{

Expideal
NfaPE+,Sim(1λ)

}
λ∈N

For the (Q, poly) version of the above game, we replace each occurrence of M∗

with a tuple M∗
1 , . . . ,M

∗
Q and set bi = mi if there is j ∈ [Q] such that M∗

j (xi) = 1 and

otherwise bi = ⊥.

190

B.1.3 Symmetric Key Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a

finite set. Let F =
{
Fλ
}
λ∈N denote an ensemble where each Fλ is a finite collection of

circuits, and each circuit g ∈ Fλ takes as input a string x ∈ Xλ and outputs g(x) ∈ Yλ.

A symmetric key functional encryption scheme SKFE for F consists of four al-

gorithms SKFE = (SKFE.Setup, SKFE.KeyGen, SKFE.Enc, SKFE.Dec) defined as fol-

lows.

• SKFE.Setup(1λ) is a PPT algorithm takes as input the unary representation of the
security parameter and outputs the master secret key msk.

• SKFE.KeyGen(msk, g) is a PPT algorithm that takes as input the master secret key
msk and a circuit g ∈ Fλ and outputs a corresponding secret key skg.

• SKFE.Enc(msk, x) is a PPT algorithm that takes as input the master secret key
msk and an input message x ∈ Xλ and outputs a ciphertext ct.

• SKFE.Dec(skg, ctx) is a deterministic algorithm that takes as input the secret key
skg and a ciphertext ctx and outputs g(x).

Definition B.1.8 (Correctness). A symmetric key functional encryption scheme SKFE

is correct if for all g ∈ Fλ and all x ∈ Xλ,

Pr

 msk← SKFE.Setup(1λ);

SKFE.Dec
(

SKFE.KeyGen(msk, g), SKFE.Enc(msk, x)
)
6= g(x)

 = negl(λ)

where the probability is taken over the coins of SKFE.Setup, SKFE.KeyGen, and

SKFE.Enc.

Security. In this paper we will consider the standard indistinguishability based defini-

tion.

Definition B.1.9. A symmetric key functional encryption scheme SKFE for a function

family F is very selectively secure under the unbounded collusion, if for all PPT

adversaries A, the advantage of A in the following experiment is negligible in the security

parameter λ:

1. Key Queries and Challenge Queries. Given the security parameter 1λ, A submits
key queries g1, . . . , gq ∈ Fλ and ciphertext queries (x

(0)
1 , . . . , x

(0)
q′), (x

(1)
1 , . . . , x

(1)
q′)

191

to the challenger. Here, the number of key queries and the challenge queries can
be arbitrarily large polynomial. These queries should satisfy gi(x

(0)
j) = gi(x

(1)
j)

for all i ∈ [q] and j ∈ [q′].

2. Challenge. Then, the challenger runs msk ← SKFE.Setup(1λ) and chooses
random bit b. Then it computes ski ← SKFE.KeyGen(msk, gi) for i ∈ [q] and
ctj ← SKFE.Enc(msk, x

(b)
j) for j ∈ [q′] and gives {ski}i∈[q] and {ctj}j∈[q′] to the

adversary.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is |Pr[b = b′]− 1/2| in the above game.

Function Class. For our purposes, we consider two function classes for SKFE. The

first one is circuits, namely we set Xλ = {0, 1}inp(λ) and Yλ is the circuits of input length

inp(λ) and fixed depth depth(λ) and output length out(λ). The second class is DFAs,

namely we set Xλ = Σ∗ and Yλ is DFA with alphabet Σ.

B.2 Construction: Predicate and Bounded Key Func-

tional Encryption for NFA

We construct a secret key predicate and bounded key FE scheme for NFA denoted

by NfaPE+ = (NfaPE+.Setup,NfaPE+.KeyGen,NfaPE+.Enc,NfaPE+.Dec) from the

following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We
denote the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 3.5.15. We
can instantiate FE with the scheme proposed by [Goldwasser et al. (2013a)].

3. PE+ = (PE+.Setup,PE+.KeyGen,PE+.Enc,PE+.Dec): A PE+ scheme for cir-
cuits that satisfies the efficiency properties described in Theorem B.1.4. We can
instantiate PE+ with the scheme proposed by [Agrawal (2017)].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size and
an input x to the circuit and outputs C(x). We often denote by U [C](·) = U(C, ·)
a universal circuit U with the first input C being hardwired. We need to have
depth(U) ≤ O(depth(C)). For construction of such a universal circuit, we refer
to [Cook and Hoover, (1985)].

192

Below we provide our construction for secret key PE+ for NFA, where size of

machines is s. This restriction can be removed by the same trick as in Sec. 3.7. In the

description below, we abuse notation and denote as if the randomness used in a PPT

algorithm was a key K of the pseudorandom function PRF. Namely, for a PPT algorithm

(or circuit) A that takes as input x and a randomness r ∈ {0, 1}` and outputs y, A(x; K)

denotes an algorithm that computes r := PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, `) and

runs A(x; r). Note that if A is a circuit, this transformation makes the size of the circuit

polynomially larger and adds a fixed polynomial overhead to its depth. In particular,

even if we add this change to PE+.Setup and PE+.KeyGen, the efficiency properties of

PE+ described in Theorem B.1.4 is preserved.

NfaPE+.Setup(1λ, 1s): On input the security parameter 1λ and a description size s of

an NFA, do the following:

1. For all j ∈ [0, λ], sample PRF keys K̂j,Rj ← PRF.Setup(1λ).

2. For all j ∈ [0, λ], sample (FE.mpkj,FE.mskj)← Setup(1λ, 1inp(λ), 1d(λ), 1out(λ)).

Here, we generate λ + 1 instances of FE. Note that all instances support a
circuit class with input length inp(λ) = s + 2|K|, output length out(λ), and
depth d(λ), where out(λ) and d(λ) are polynomials in the security parameter
that will be specified later.

3. Output NfaPE+.msk = ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

NfaPE+.Enc(NfaPE+.msk,x, m, 1s): On input the master secret key NfaPE+.msk, an

attribute x ∈ Σ∗ of length at most 2λ, a message m and the bound s on NFA size,

do the following:

1. Parse the master secret key as NfaPE+.msk→ ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.
3. Compute a PE+ key pair (PE+.mpki,PE+.mski) = PE+.Setup(1λ, 12iη, 1d̂; K̂i)

with K̂i as the randomness.

Here, we generate an instance of PE+ that supports a circuit class with input
domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2i and depth d̂.

4. Compute PE+.ct← PE+.Enc(PE+.mpki, x̂,m) as an PE+ ciphertext for the
message m under attribute x̂.

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ; Ri), where Cs,2i is a
circuit described in Figure B.1.

6. Output NfaPE+.ct = (FE.ski,PE+.mpki,PE+.ct).

Without loss of generality, we assume that i is revealed from PE+.ct.

193

Function Cs,2i

(a) Parse the input w = (M, K̂, R̂), where M is an NFA and K̂ and R̂ are PRF keys.

(b) Compute (PE+.mpk,PE+.msk) = PE+.Setup(1λ, 12iη, 1d̂; K̂).

(c) Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.6.1 for the definition of To-Circuit.)

(d) Compute and output PE+.sk
U [M̂2i]

= PE+.KeyGen(PE+.mpk,PE+.msk, U [M̂2i]; R̂).

Figure B.1: Circuit Cs,2i , supported by the FE scheme. Cs,2i takes NFA M as input and
outputs a secret key for the universal circuit U [M̂2i] (hardwired with M̂2i)
under the PE+ scheme.

NfaPE+.KeyGen(NfaPE+.msk,M , 1s): On input the master secret key NfaPE+.msk,

the description of an NFA M and a size s of the NFA, if |M | 6= s, output ⊥ and

abort. Else, proceed as follows.

1. Parse the master secret key as NfaPE+.msk→ ({K̂j,Rj,FE.mpkj,FE.mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute FE.ctj ← FE.Enc(FE.mpkj, (M, K̂j, R̂j)) for all j ∈ [0, λ].

4. Output NfaPE+.skM = {FE.ctj}j∈[0,λ].

NfaPE+.Dec(NfaPE+.skM ,M,NfaPE+.ct): On input a secret key for NFA M and a

ciphertext, proceed as follows:

1. Parse the secret key as NfaPE+.skM → {FE.ctj}j∈[0,λ] and the ciphertext as
NfaPE+.ct→ (FE.ski,PE+.mpki,PE+.ct).

2. Learn i from PE+.ct and choose FE.cti from NfaPE+.skM = {FE.ctj}j∈[0,λ].

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).

4. Compute and output z = PE+.Dec(PE+.mpki, y, U [M̂2i],PE+.cti), where
we interpret y as a secret key.

Correctness follows as in Section 3.6.3 by appropriately setting out(λ) and d(λ). For

security, we prove the following theorem.

Theorem B.2.1. Assume that FE satisfies full simulation based security, PE+ is Sel-SIM

secure, and that PRF is a secure pseudorandom function. Then, NfaPE+ satisfies

selective simulation based security.

We note that the structure of hybrids is almost the same as in the proof of Theorem

3.6.4. The difference is that instead of changing ciphertexts corresponding to each

194

instance of PE+ from an encryption ofm0 tom1, we change honest setup, key generation,

and encryption of each instance of PE+ to the simulated ones. To do so, we must replace

the reliance on ABE for circuits with PE+ for circuits. In more detail, we consider

Gamei for i ∈ [0, imax + 1] as follows, where imax is defined as in the proof of Theorem

3.6.4.

Gamei: The game proceeds as follows. In the following FE.Sim and PE+.Sim are the

simulators for FE and PE+, respectively.

Setup phase. At the beginning of the game, A takes 1λ as input and submits 1s and

(X,Msg,M∗) to the challenger. Then, the challenger chooses {K̂j,Rj}j∈[0,λ]

and {FE.mpkj,FE.mskj}j∈[0,λ]. It further samples PE+.mpkj ← PE+.Sim(1λ, 12jη,

1d̂, U [M̂∗
2j]) and FE.skj ← FE.KeyGen(FE.mpkj,FE.mskj, Cs,2j) for j ≤

i− 1.

The challenger answers the encryption and key queries made by A as follows.

Simulating Keys. During the game, secret key for M (which is possibly M∗) is

answered as follows. For j ∈ [0, λ], the challenger computes

FE.ctj ←

FE.Enc(FE.mpkj, (M, K̂j, R̂j)) If λ ≥ j ≥ i

FE.Sim(FE.mpkj,FE.skj, Cs,2j ,PE+.skU [M̂
2j

], 1
inp(λ)) If j ≤ i− 1,

(B.1)

where PE+.skU [M̂
2j

] ← PE+.KeyGen(PE+.mpkj,PE+.mskj, U [M̂2j]) and

returns {FE.ctj} to A.

Simulating Ciphertexts. To generate a ciphertext for m ∈ Msg associated with

x ∈ X , the challenger sets j := dlog |x|e and computes

PE+.ct←

PE+.Enc(PE+.mpkj, x̂,m) If imax ≥ j ≥ i

PE+.Sim(12jη, M̂∗
2j , b) If j ≤ i− 1,

where b = m if M∗(x) = 1 and ⊥ otherwise. It also computes FE.skj =

FE.KeyGen(FE.mpkj,FE.mskj, Cs,2j ; Rj) if j ≥ i. The ciphertext is NfaPE+.ct =

(FE.skj,PE+.mpkj,PE+.ct).

Finally, A outputs its guess b′.

195

It is easy to see that Game0 is the same as Expreal
NfaPE+,A(1λ). Furthermore, we can

construct a simulator for NfaPE+ from the challenger in Gameimax+1 appropriately,

since the challenger in Gameimax+1 only uses b and |x| to simulate the ciphertext.

Therefore, it suffices to show the indistinguishability between Gamei and Gamei+1.

To do so, we further consider following sequence of games, which closely follows the

proof of Theorem 3.6.4 except that we do not need counterpart of Gamei,6, where we

undo changes we made from Gamei,1 to Gamei,5. We directly go to Gamei+1,0 from

Gamei,5.

Gamei,0: The game is the same as Gamei.

Gamei,1: The game is the same as the previous game except that (PE+.mpki,PE+.mski)

and FE.ski are computed at the setup phase using K̂i and Ri.

Gamei,2: The game is the same as the previous game except that FE.ski is generated

using true randomness instead of using the PRF keys.

Gamei,3: In this game, to answer a key query, FE.cti is computed using FE.Sim on

input PE+.skU [M̂2i]
= PE+.KeyGen(PE+.mpki,PE+.mski, U [M̂2i]; R̂i).

Gamei,4: In this game, to answer a key query, PE+.skU [M̂2i]
is generated using true

randomness instead of using the PRF key.

Gamei,5: In this game, we generate PE+.mpki using PE+.Sim. We also generate

PE+.ct using PE+.Sim when dlog |x|e = i.

Note that we have Gamei,5 = Gamei+1,0. Furthermore, indistinguishability between

Gamei,j−1 and Gamei,j for j ∈ [4] can be established in exactly the same manners as

in Theorem 3.6.4. For Gamei,4 and Gamei,5, we give the proof in the following.

Lemma B.2.2. We have |Pr[Ei,4]− Pr[Ei,5]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,4] − Pr[Ei,5]| is non-negligible

and construct an adversary B that breaks the selective simulation security of PE+ using

A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and gets (X,Msg,M∗)

and 1s from A. Then PE+ challenger chooses PE+.mpk and sends it to B, where

196

PE+.mpk is honestly chosen or simulated, depending on whether B is playing the

real game or simulated game. B then sets PE+.mpki := PE+.mpk and chooses

K̂j,Rj ← PRF.Setup(1λ) and (FE.mpkj,FE.mskj)← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ))

for j ∈ [0, λ]. It also computes FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i).

Finally, B sets

Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 < |x| ≤ 2i}

and

Msgi := {mj ∈ Msg : 2i−1 < |xj| ≤ 2i}

and submits its target as (Xi,Msgi, M̂
∗
2i) and (12iη, 1d̂, 1s) to the PE+ challenger,

where M̂∗
2i = To-Circuit|M∗|,2i(M

∗).

After B specifies its target, it is given a secret key PE+.skU [M̂∗
2i

] and ciphertexts {PE+.ctx̂}x̂∈Xi .

They are honestly generated or simulated depending on whether B is playing the real

game or simulated game. B then simulates the ciphertexts {NfaPE+.ctx}x∈X as follows.

Simulating Ciphertexts. To generate a ciphertext for x ∈ X associated with m ∈ Msg,

B computes the ciphertext NfaPE+.ctx as follows. For the case of dlog |x|e 6= i, it

proceeds as in the previous game. Otherwise, it retrieves corresponding component

PE+.ctx̂ to x̂ from {PE+.ctx̂}x̂∈Xi and sets NfaPE+.ctx = (FE.ski,PE+.mpki,PE+.ctx̂),

where B uses PE+.mpki and FE.ski that are sampled in the setup phase.

B also simulates the 1-key NfaPE+.skM∗ := {FE.ctj}j∈[0,λ] from PE+.skU [M̂∗
2i

] as in

Eq. (B.1). B then gives NfaPE+.skM∗ and {NfaPE+.ctx}x∈X to A and answers the key

queries as follows.

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ)

for j ∈ [0, λ]. It then queries a secret key for U [M̂2i] to its challenger. Then,

the challenger returns PE+.skU [M̂2i]
to B. The key is honestly generated or sim-

ulated depending on whether B is playing the real game or simulated game. It

then computes FE.ctj for j ∈ [0, λ] as in Eq. (B.1) and returns NfaPE+.skM :=

{FE.ctj}j∈[0,λ] to A.

It is easy to see that B simulates Gamei,4 if it is in the real game and Gamei,5 if it is in

197

the simulated game. Therefore, B breaks the security of PE+ if A distinguishes the two

games. It remains to prove that B is a legitimate adversary (i.e., it does not make any

prohibited key queries). For any attribute x̂ for which B makes an encryption query and

for any circuit U [M̂2i] for which B makes a key query, we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x),

where the second equality above follows from Item 1 of Theorem 3.6.1. Therefore, B is

a legitimate adversary as long as so is A. This completes the proof of the lemma.

B.3 Definitions: Reusable Garbled Nondeterministic Fi-

nite Automata

In this section, we will define garbled NFAs and notions of input and function privacy,

adapting corresponding definitions from [Agrawal and Singh (2017)]. We further show

how to construct garbled NFAs (with unbounded inputs) that can be used to evaluate

multiple inputs (of possibly varying size).

Definition B.3.1. (Garbled NFA scheme) A garbling scheme for a family of NFAs

M = {Mλ}λ∈N with Mλ a family of NFAs Σλ × Qλ → Qλ, is a tuple of PPT

algorithms RGbNFA = (RGNfa.Garble,RGNfa.Encode,RGNfa.Eval) such that

• RGbNFA.Setup(1λ) takes as input the security parameter λ and outputs a secret
key gsk.

• RGNfa.Garble(gsk,M) takes as input a secret key gsk and an NFA M ∈Mλ and
outputs the garbled NFA MG.

• RGNfa.Encode(gsk,w) takes as input the vector w ∈ Σ∗, the secret key gsk and
outputs an encoding c.

• RGNfa.Eval(MG, c) takes as input a garbled NFA MG, an encoding c and outputs
1 iff M accepts w, 0 otherwise.

Definition B.3.2. (Correctness). For all sufficiently large security parameters λ, for all

NFAs M ∈Mλ and all w ∈ Σ∗, we have:

Pr

 gsk← RGbNFA.Setup(1λ),MG ← RGNfa.Garble(gsk,M);

c← RGNfa.Encode(gsk,w); b← RGNfa.Eval(MG, c) : M(w) = b

 = 1−negl(λ)

198

Definition B.3.3. (Efficiency) There exist universal polynomials p1 = p1(λ) and p2 =

p2(λ, ·) such that for all security parameters λ, for all NFAs M ∈Mλ, for all w ∈ Σ∗,

Pr

 gsk← RGbNFA.Setup(1λ) :

|gsk| ≤ p1(λ) and runtime (RGNfa.Encode(gsk,w)) ≤ p2(λ, |w|)

 = 1.

Definition B.3.4. (Input and machine privacy with reusability) Let RGbNFA be a gar-

bling scheme for a family of NFAsM = {Mλ}λ∈N. For a pair of stateful PPT algorithms

A and a PPT simulator Sim, consider the following two experiments:

Expreal
RGbNFA,A(1λ): Expideal

RGbNFA,A,Sim(1λ):

1: M ← A(1λ)

2: gsk← RGbNFA.Setup(1λ)

MG ← RGNfa.Garble(gsk,M)

3: α← ARGNfa.Encode(gsk,·)(M,MG)

4: Output α

1: M ← A(1λ)

2: M̃G ← Sim(1λ, 1|M |)

3: α← AO(·,M)(M, M̃G)

4: Output α

Here, O(·,M) is an oracle that on input w from A, runs Sim with inputs M(w), 1|w|, and

the latest state of Sim; it returns the output of Sim (Note that Sim updates and maintains

its internal states upon its invocation, since it is a stateful algorithm.).

A garbling scheme RGbNFA is input and machine private with reusability if there

exists a PPT simulator Sim such that for all pairs of PPT adversaries A, the following

two distributions are computationally indistinguishable:

{
Expreal

RGbNFA,A(1λ)

}
λ∈N

c
≈
{

Expideal
RGbNFA,A,Sim(1λ)

}
λ∈N

Selective Simulation Security. We can consider a weaker version of the above security

notion where A outputs a set X = {x1, . . . ,x|X|} ⊂ Σ∗ along with M at the beginning

of the game andA is only allowed to query x ∈ X to RGNfa.Encode(gsk, ·) and O(·,M).

We call this security notion selective simulation security.

199

B.4 Construction: Reusable Garbled NFA

We first note that one could consider replacing the underlying PE+ scheme in Section

B.2 with a Reusable Garbled circuit scheme, RGC to obtain a construction of Reusable

Garbled NFA. Following the previous template of our constructions from Sec. 3.6.2

and Sec. B.2, this makes the circuit supported by the underlying FE scheme to work as

follows.

1. Convert the input NFA machine M to an equivalent circuit M̂2i that can handle
inputs of length 2i.

2. Compute an RGC secret key to encode M̂2i and output this as its garbled version.

This intuitive conversion fails to work since the resulting encoding as the garbled

machine cannot be shorter than the circuit description length |M̂2i |, while we need it to

be independent of equivalent circuit size. At a high level, to avoid this problem and still

ensure machine privacy, we will encrypt M under a symmetric key encryption scheme,

SKE. Further, we will use another FE scheme (detailed below) with suitable efficiency

guarantees to decrypt this SKE ciphertext encoding M and then run its equivalent circuit

description on the encoded input to obtain the desired output.

To this end, we use the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We
denote the length of K by |K|.

2. SKE = (SKE.Setup, SKE.Enc, SKE.Dec): a secret key encryption, where the
length of a secret key S ← SKE.Setup(1λ) is denoted by |S|. For the sake of
concreteness and simplicity, we assume that the ciphertext length encrypting a
message of length s is s + λ. Furthermore, we assume that the depth of the decryp-
tion circuit is bounded by some fixed polynomial poly(λ) that is independent of
the length of the message. These properties can be easily achieved by using PRF
for instance.

3. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 3.5.15. We
can instantiate FE by the scheme proposed by [Goldwasser et al. (2013a)].

4. F̂E = (F̂E.Setup, F̂E.KeyGen, F̂E.Enc, F̂E.Dec): a functional encryption scheme
for circuit with the efficiency properties described in Theorem B.1.4. We can

200

instantiate F̂E with the PE+ scheme proposed by [Agrawal (2017)].1 Alternatively,
we can instantiate F̂E by the scheme proposed by Goldwasser et. al with the
underlying ABE scheme used in their construction being instantiated by the
scheme by [Boneh et al. (2014)]. In both cases, the scheme will only have selective
simulation security rather than full simulation security. See Remark 3.5.14 for the
definition of selective simulation security and Remark 3.5.10 for the reason why
we only have selective simulation secure FE scheme with the required efficiency
properties.

The reusable garbled NFA scheme is defined as follows. The encode algorithm here

needs the size s of NFA. This requirement will be removed later using similar technique

to Sec. 3.7.

RGbNFA.Setup(1λ) : Upon input the security parameter, sample PRF keys Kj, K̂j,Rj ←

PRF.Setup(1λ) and SKE key Sj ← SKE.Setup(1λ) for all j ∈ [0, λ]. Then, output

gsk = ({K̂j,Kj,Rj, Sj}j∈[0,λ]).

RGNfa.Garble(gsk,M): Upon input a secret key gsk and an NFA machine M of size

|M | = s, do the following:

1. For all j ∈ [0, λ], sample (FE.mpkj,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ); Kj).

Here, we generate λ + 1 instances of FE. Note that all instances support a
circuit class with input length inp(λ) = s+λ+2|K|, output length out(λ), and
depth d(λ), where out(λ) and d(λ) are polynomials in the security parameter
as in Section 3.6.

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute SKE.ctj ← SKE.Enc(Sj,M) for all j ∈ [0, λ].

4. Compute FE.ctj ← FE.Enc(FE.mpkj, (SKE.ctj, K̂j, R̂j)) for all j ∈ [0, λ].

5. Output garbled NFA MG = ({SKE.ctj,FE.mpkj,FE.ctj}j∈[0,λ]).

RGNfa.Encode(gsk,x, 1s): Upon input a secret key gsk, a vector x, and the size of NFA

1s do the following:

1. Parse gsk as gsk→ ({K̂j,Kj,Rj, Sj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.
3. Sample (FE.mpki,FE.mski)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ); Ki).

1Though PE+ has different syntax from functional encryption, it is easy to convert the former into the
latter. For example, we encrypt a random message under an attribute x using PE+ and append the message
to the PE+ ciphertext to form a functional encryption of a message x. To decrypt the ciphertext, we use
PE+ secret key to decrypt the PE+ ciphertext and output 1 if it corresponds to the appended message and
0 otherwise.

201

4. Sample (F̂E.mpki, F̂E.mski) = F̂E.Setup(1λ, 12iη, 1d̂(λ), 11; K̂i). Note that
this FE supports a circuit class with input domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2i ,
single bit output, and depth d̂.

5. Compute F̂E.ct← F̂E.Enc(F̂E.mpki, (Si, x̂)).
6. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ; Ri), where Cs,2i is a

circuit described in Figure B.2.

Function Cs,2i

(a) Parse the input w = (SKE.ct, K̂, R̂), where SKE.ct is an SKE ciphertext and K̂ and R̂ are
PRF keys.

(b) Compute (F̂E.mpk, F̂E.msk) = F̂E.Setup(1λ, 12iη, 1d̂; K̂)

(c) Compute and output F̂E.sk = F̂E.KeyGen(F̂E.mpk, F̂E.msk, Ds,2i [SKE.ct]; R̂). (See
Figure B.3 for the definition of Ds,2i [SKE.ct])

Figure B.2: Circuit Cs,2i , supported by the FE scheme. Cs,2i takes SKE.ct (encoding
NFA M) as input and outputs a secret key under the F̂E scheme for another
circuit Ds,2i that is also hardwired with SKE.ct.

Function Ds,2i [SKE.ct]

(a) Parse the input w = (S, x̂), where S is an SKE secret key.

(b) Compute M = SKE.Dec(S,SKE.ct).

(c) Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.6.1 for the definition of To-Circuit.)

(d) Compute and output M̂2i(x̂). (This part of the computation is implemented by U [M̂2i]
where the universal circuit U is instantiated by [Cook and Hoover, (1985)].)

Figure B.3: Circuit Ds,2i [SKE.ct], supported by the F̂E scheme. Ds,2i [SKE.ct] takes a
secret key S (encoding NFA M) and x̂ as input. It computes and outputs
M(x) after decrypting M using S and SKE.ct.

7. Output c = (F̂E.mpki,FE.ski, F̂E.ct).

RGNfa.Eval(MG, c): Upon input the reusable garbled NFA MG and the input encoding

c, do the following:

1. Parse the garbled machine as MG → ({SKE.ctj,FE.mpkj,FE.ctj}j∈[0,λ]) and
the encoding as c→ (F̂E.mpki,FE.ski, F̂E.ct).

2. Set ` = |x| and choose FE.cti such that i = dlog `e < λ.
3. Compute y = FE.Dec(FE.mpki,FE.ski, Cs,2i ,FE.cti).
4. Construct Ds,2i [SKE.cti] from SKE.cti.

5. Compute and output z = FE.Dec(F̂E.mpki, y,Ds,2i [SKE.cti], F̂E.ct), where
we interpret y as a secret key of the underlying FE.

202

Correctness. Correctness of the scheme follows from the correctness of FE and F̂E as

in Section 3.6.4 if we appropriately set d̂, out, and d. Here, we give a brief explanation.

We first observe that Ds,2i [SKE.cti] can be implemented by combining the decryption

circuit of SKE, To-Circuits,2i , and U [M̂2i]. The depth of the first circuit (resp., the

latter two circuits) can be bounded by some fixed polynomial, which is in particular

independent of 2i, by our assumption on SKE (resp., by Theorem 3.6.1). Therefore, the

depth of the overall circuit Ds,2i [SKE.cti] can be bounded by some fixed polynomial. We

would set d̂(λ) to be larger than this polynomial so that we can invoke the correctness

of F̂E. By our assumption on the secret key size of F̂E, we can bound the length of

F̂E.sk that is output by Cs,2i by a polynomial in d̂ and λ, which can be bounded by

some fixed polynomial in λ. We would set out(λ) to be larger than this polynomial.

Furthermore, we can see that the depth of Cs,2i can be bounded by some fixed polynomial

by the assumptions we posed on the depth of the setup and key generation circuits

of F̂E and by the fact that the depth of Ds,2i [SKE.ct] can be bounded by some fixed

polynomial. We would set d(λ) to be larger than this polynomial. Since the depth

and output length of Cs,2i are bounded by d and out respectively, the circuit Cs,2i is

supported by the scheme and thus we can invoke the correctness of FE. We therefore have

y = Cs,2i(SKE.cti,Ki,Ri) = F̂E.KeyGen(F̂E.mski,Ds,2i [SKE.cti]; R̂i) by the correctness

of FE and z = Ds,2i [SKE.cti](Si, x̂) = M̂2i(x̂) = M(x) by the correctness of F̂E and

SKE.

Security. Here, we prove that RGbNFA defined above is secure, if so is FE. Formally,

we have the following theorem.

Theorem B.4.1. Assume that FE satisfies full simulation based security, F̂E satisfies

selective simulation security, and that PRF is a secure pseudorandom function. Then,

NfaABE satisfies selective simulation security.

Proof. Security follows analogously to that of Theorem B.2.1. The main difference is

that the PE+ simulator is replaced by the FE simulator and we additionally invoke the

security of SKE to achieve the function privacy. Other differences are that we have to

change (FE.mpkj,FE.mskj) to be sampled using true randomness instead of Kj using

the security of the PRF and we introduce the step where we undo the changes added

during the hybrid games similarly to the proof of Theorem 3.6.4. Below, we give the

203

hybrid games to prove the security. In more detail, we consider Gamei for i ∈ [0, λ+ 1]

as follows.

Gamei: The game proceeds as follows. In the following FE.Sim is the simulator for

FE.

Setup. At the beginning of the game, the challenger takes 1λ as input and

samples {Kj, K̂j,Rj, Sj}j∈[0,λ]. It also computes (FE.mpkj,FE.mskj) ←

FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ); Kj) for j ∈ [0, λ].

The challenger answers the queries made by A as follows.

Garbling the NFA. A takes 1λ as input and submits an NFA machine M of size

s and a set X = {x1, . . . ,x|X|} ⊂ Σ∗ to the challenger. The challenger

computes MG as follows. The challenger computes SKE.ctj and FE.ctj for

j ∈ [0, λ] as

FE.ctj ← FE.Enc(FE.mpkj, (SKE.ctj, K̂j, R̂j)), SKE.ctj ←

SKE.Enc(Sj,M) If λ ≥ j ≥ i

SKE.Enc(Sj, 0
s) If j ≤ i− 1,

and returns MG = ({SKE.ctj,FE.mpkj,FE.ctj}j∈[0,λ]) to A.

Simulating Encodings. To generate an encoding for x ∈ X , the challenger sets

j := dlog |x|e and generates (F̂E.mpkj, F̂E.mskj) = F̂E.Setup(1λ, 12jη, 1d̂(λ), 11; K̂j).

It then computes

F̂E.ct←

F̂E.Enc(F̂E.mpkj, (Sj, x̂)) If λ ≥ j ≥ i

F̂E.Sim(F̂E.mpkj, F̂E.skDs,2j [SKE.ctj], Ds,2j [SKE.ctj],M(x)) If j ≤ i− 1

, (B.2)

where F̂E.skDs,2j [SKE.ctj] ← F̂E.KeyGen(F̂E.mskj, Ds,2j [SKE.ctj]; R̂j). It also

computes FE.skj = FE.KeyGen(FE.mpkj,FE.mskj, Cs,2j ; Rj). The encod-

ing of x is c = (F̂E.mpkj,FE.skj, F̂E.ct).

Finally, A outputs its guess b′.

It is easy to see that Game0 is the same as Expreal
RGbNFA,A(1λ). Furthermore, we

can construct a simulator for RGbNFA from the challenger in Gameλ+1 appropriately,

204

since the challenger in Gameλ+1 only uses s and |x| to simulate a garbled NFA and an

encoding, respectively. Therefore, it suffices to show the indistinguishability between

Gamei and Gamei+1. To do so, we consider two cases separately depending on

whether i ≤ imax or not, where imax is defined as in the proof of Theorem 3.6.4.

We first consider the case of i ≥ imax + 1. In this case, the only difference between

Gamei and Gamei+1 is the way SKE.cti is generated, since the upper branch of

Equation (B.2) is never triggered when answering the encoding query because of the

definition of imax. The indistinguishability of the two games immediately follows from

the security of SKE since Si is never used except when generating SKE.cti.

We then consider the case of i ≤ imax. The proof for this case closely follows the

proof of Theorem B.2.1 except for we some changes that we explained at the beginning

of the proof.

Gamei,0: The game is the same as Gamei.

Gamei,1: The game is the same as the previous game except that FE.ski = FE.KeyGen(

FE.mpki,FE.mski, Cs,2i ; Ri) and (F̂E.mpki, F̂E.mski) = F̂E.Setup(1λ, 12iη, 1d̂(λ), 11; K̂i)

are computed at the setup phase.

Gamei,2: The game is the same as the previous game except that (FE.mpki,FE.mski)

and FE.ski are generated using true randomness instead of using the PRF keys.

Gamei,3: In this game, to answer a garbling query, FE.cti is computed as

FE.cti ← FE.Sim(FE.mpki,FE.ski,Cs,2i , F̂E.skD
s,2i

[SKE.cti], 1
inp(λ))

where F̂E.skDs,2i [SKE.cti]
← F̂E.KeyGen(F̂E.mski, Ds,2i [SKE.cti]; R̂i).

Gamei,4: In this game, to answer a garbling query, (F̂E.mpki, F̂E.mski) and F̂E.skDs,2i [SKE.cti]

are generated using true randomness instead of using the PRF keys K̂i and R̂i.

Gamei,5: In this game, to answer an encoding query, we generate

F̂E.ct← F̂E.Sim(F̂E.mpki, F̂E.skD
s,2i

[SKE.cti],Ds,2i [SKE.cti],M(x))

instead of honestly generating it.

205

Gamei,6: In this game, SKE.cti is changed to be SKE.Enc(Si, 0
|M|).

Gamei,7: In this game, we undo the changes we added from Gamei,0 to Gamei,4.

Namely, we generate (F̂E.mpki, F̂E.mski) by using K̂i, R̂i, FE.cti by honestly en-

crypting (SKE.cti, K̂i, R̂i) (but SKE.cti is still an encryption of 0|M |), and (FE.mpki,FE.mski)

by using Ki,Ri.

The indistinguishability between Gamei,j−1 and Gamei,j for j ∈ [5] follows similarly

to the proof of Theorem B.2.1, except that we use the security of F̂E rather than PE+ when

moving from Gamei,4 to Gamei,5. The indistinguishability between Gamei,5 and

Gamei,6 follows from the security of SKE, since Si is never used except when generating

SKE.cti in these games even if the upper branch of Equation (B.2) is triggered, due to the

change we added in Gamei,5. The indistinguishability between Gamei,6 and Gamei,7

can be shown by repeating the same argument for showing Gamei,0
c
≈Gamei,4 in

the reverse order. Finally, we note that Gamei,7 is equivalent to Gamei+1. These

imply that Gamei and Gamei+1 are indistinguishable, which completes the proof of

the theorem.

Efficiency. In the above construction, the efficiency requirement (Definition B.3.3) is

not satisfied, since the encoding algorithm constructs Cs,2i whose size is polynomially

dependent on the size of NFA M . This is problematic when |M | � |x|. To resolve the

issue, we use the same idea as that we used in Sec. 3.7. Namely, we combine our RGC

construction above with the one that poses upper-bound on the input length [Goldwasser

et al. (2013a)]. Namely, when we garble an NFA with size |M |, we convert M into an

equivalent circuit M̂|M |,j with input length j for all j ∈ [|M |] and then garble all of them

using [Goldwasser et al. (2013a)]. In addition, we garble M with the above scheme with

s = |M |, which supports unbounded length. We do this by deriving randomness from a

single PRF key and therefore gsk is compact. To encode x, we encode it with the above

scheme with different s in parallel. Namely, we encode x by the above scheme with all of

s ≤ [|x|]. Furthermore, we also choose |x|-th instance of the RGC of [Goldwasser et al.

(2013a)] and encodes it. Similarly to the construction in Sec. 3.7, evaluation algorithm

first sees if |x| > |M | and uses the above scheme to decode if so. Otherwise, it uses

the bounded input scheme [Goldwasser et al. (2013a)]. It can be seen that the encoding

algorithm runs in polynomial time in |x| independent of |M |. Furthermore, the security

206

of the scheme is preserved, since the construction simply runs secure schemes in parallel.

Generalizing to Bounded Keys. We note that by replacing the inner scheme with

a bounded key FE scheme [Gorbunov et al. (2012); Agrawal and Rosen (2017)], the

construction immediately generalizes to support bounded number of (reusable) garbled

circuits.

207

APPENDIX C

Appendices for Chapter 4

C.1 Instantiating the Ingredients

Here, we instantiate the necessary ingredients for our construction, namely ABE schemes

for the relations RMUKP (i.e., multi-use key-policy unbounded ABE with polynomial

valued attributes) and RMUCP (i.e., multi-use ciphertext-policy unbounded ABE with

polynomial valued attributes). For both key-policy and ciphertext-policy cases, we

essentially use schemes from [Chen et al. (2018)], but with the modification that we

allow unbounded multi-use of the same attribute in an MSP, which is essential for our

purpose. Due to this modification, we can no longer prove the adaptive security of the

scheme from the MDDHk assumption as was done by [Chen et al. (2018)]. However,

we can still prove semi-adaptive security from the same assumption for the key-policy

case and selective* security from the DLIN assumption for the ciphertext-policy case

(please see Section 4.7.3 for the definitions).

C.1.1 Preliminaries

Here, we recap necessary notations and definitions for this section following [Chen et al.

(2018)].

Notation on Bilinear Maps. A bilinear group generator takes as input 1λ and outputs a

group description G = (p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2, and

GT are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear

map. We require that the group operations in G1, G2, and GT as well as the bilinear

map e can be efficiently computed. We employ the implicit representation of group

elements: for a matrix A over Zp, we define [A]1 := gA1 , [A]2 := gA2 , [A]T := gAT ,

where exponentiation is carried out component-wise. We also let e([A]1, [B]2) = [AB]T

for [A]1 and [B]2.

Here, we define the decisional linear assumption (DLIN) and the MDDHk assump-

tion.

Definition C.1.1 (Decisional linear assumption.). We say that the DLIN assumption

holds on G if we have

(G, [x1]1, [x2]1, [x1y1]1, [x2y2]1, [y1 + y2]2) ≈c (G, [x1]1, [x2]1, [x1y1]1, [x2y2]1, [Φ]2)

for x1, x2, y1, y2 ← Zp and Φ← Zp.

Definition C.1.2. Let k ≥ 1 be an integer. We say that the MDDHk assumption holds

on G1 if we have

(G, [B]1, [Bs]1) ≈c (G, [B]1, [t]1)

for B← Z(k+1)×k
p , s← Zkp, and t← Zk+1

p .

The MDDHk assumption on G2 can be defined in an analogous way. As [Escala et al.

(2017)] showed, the MDDHk assumption on a group is implied by the k-Lin assumption

on the same group.

We also recall the following statistical lemma.

Lemma C.1.3 (Adapted from Lemma 1 in [Chen et al. (2018)]). Let L := Z`×mp

be a matrix and {δj ∈ {0, 1}}j∈[`] be a set of binary integers such that the vector

(1, 0, . . . , 0)> is not in span({L>j }j:δj=1). Then, the following distributions are the same:

{(0‖k′)L>j + rjδj}j∈[`] and {(1‖k′)L>j + rjδj}j∈[`],

where k′ ← Zm−1
p is a row vector and rj ← Zp.

C.1.2 The Construction of Ingredient KP-ABE

Here, we provide an ABE scheme for RMUKP, denoted by kpABE. The construction is

essentially the same as the unbounded KP-ABE given in [Chen et al. (2018)] with the

modification that we allow unbounded multi-use of the same attribute in an MSP.

Setup(1λ): On input 1λ, sample

A1 ← Z(2k+1)×k
p ,B← Z(k+1)×k

p ,W,W0,W1 ← Z(2k+1)×(k+1)
p ,k← Z2k+1

p

210

and output

mpk :=
(
[A>1 ,A

>
1 W,A>1 W0,A

>
1 W1]1, e([A

>
1]1, [k]2)

)
∈ Gk×(2k+1)

1 ×(Gk×(k+1)
1)3×Gk

T

and

msk := (k,B,W,W0,W1).

Enc(mpk, (S, 1smax), µ): On input an attribute set S = {s1, . . . , s`} ⊂ Z, and µ ∈ GT ,

pick c, cs ← span(A1) for s ∈ S and output

ctS :=

 C0 = [c>]1, C := e([c]>, [k]2) · µ,{
C1,s := [c>W + c>s (W0 + sW1)]1, C2,s := [c>s]1

}
s∈S

 .

KeyGen(msk,mpk, ((L, ρ), 1ρmax)): On input a monotone span program (L ∈ Z`×mp , ρ),

pick K′ ← Z(2k+1)×(m−1)
p , dj ← span(B) for all j ∈ [`] and output

sk(L,ρ) :=




K0,j := [(k‖K′)L>j + Wdj]2,

K1,j := [dj]2, K2,j := [(W0 + ρ(j)W1)dj]2


j∈[`]

 ,

where Lj is the j-th row of L.

Dec(mpk, ct, (S, 1smax), sk(L,ρ), ((L, ρ), 1ρmax)): Since S satisfies (L, ρ), one can com-

pute {ωj} such that ∑
j:ρ(j)∈S

ωjLj = (1, 0, . . . , 0).

Then, compute

K =
∏

j:ρ(j)∈S

(
e(C0, K0,j)e(C1,ρ(j), K1,j)

−1e(C2,ρ(j), K2,j)
)ωj

and retrieve the message by C/K.

211

Correctness. For j such that ρ(j) ∈ S, we have

e(C0, K0,j)e(C1,ρ(j), K1,j)
−1e(C2,ρ(j), K2,j)

= e([c>]1, [(k‖K′)L>j + Wdj]2) · e([c>W + c>j (W0 + ρ(j)W)]1, [dj]2)−1

·e([c>j], [(W0 + ρ(j)W1)dj]2)

= [c>(k‖K′)L>j]T .

The correctness readily follows from the following equation.

K =
∏

j:ρ(j)∈S

[ωjc
>(k‖K′)L>j]T = [c>(k‖K′)

∑
j:ρ(j)∈S

ωjL
>
j]T = [c>k]T .

C.1.3 Security Proof

Here, we prove the semi-adaptive security of the construction in Appendix C.1.2. To

do so, we first recall a special case of the prime-order entropy expansion lemma from

[Chen et al. (2018)].

Lemma C.1.4 (Lemma 12 from [Chen et al. (2018)]). Pick basis (A1, a2,A3) ←

Z(2k+1)×k
p × Z2k+1

p × Z(2k+1)×k
p and define its dual (A

‖
1, a
‖
2,A

‖
3) such that A>i Aj = I if

i = j and A>i Aj = 0 otherwise, where we set A2 := a2. With B ← Z(k+1)×k
p and for

any polynomially bounded n ∈ N, we have
aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c>]1, [c
>W + c>s (W0 + sW1)]1, [c

>
s]1

sk : [WDs]2, [Ds]2, [(W0 + sW1)Ds]2


s∈[n]

c
≈


aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c >]1, [c
>(W + V

(2)
s) + cs

>(W0 + sW1 + U
(2)
s)]1, [cs

>]1

sk : [(W + V
(2)
s)Ds]2, [Ds]2, [(W0 + sW1 + U

(2)
s)Ds]2


s∈[n]

,

under the MDDHk assumption on G1 and G2, where W,W0,W1 ← Z(2k+1)×(k+1)
p ,

U
(2)
s ,V

(2)
s ← spank+1(a

‖
2), Ds ← spank+1(B), and c, cs ← span(A1) in the left

distribution while c, cs ← span(A1, a2) in the right distribution.

212

We then state the following theorem. The proof is similar to that of [Chen et al.

(2018)], but since certain information theoretic step in [Chen et al. (2018)] does not work

in the multi-use setting, we modify the proof so that we decompose the secret key into

smaller pieces and gradually change their distributions by a carefully chosen sequence

of hybrid games. Since it is essential for the simulator to know the challenge attribute

S in these hybrid games, we can only prove semi-adaptive security instead of adaptive

security.

Theorem C.1.5. The ABE scheme for relation RMUKP (i.e., multi-use key-policy un-

bounded ABE with polynomial valued attributes) in Appendix C.1.2 is semi-adaptively

secure under the MDDHk assumption.

Proof. To prove the theorem, we define various forms of ciphertext (of message µ under

attribute S).

Normal: A normal ciphertext is generated by Enc. In particular, c, cs ← span(A1).

E-normal: This is the same as normal ciphertext except that c, cs ← span(A1, a2)

and we use the following substitution:

W 7→ V̂s := W+V(2)
s in the s-th component and W0+sW1 7→ Ûs := W0+sW1+U(2)

s

where U
(2)
s ,V

(2)
s ← spank+1(a

‖
2). Concretely, an E-normal ciphertext is of the

form

ctS :=
(

[c>]1,
{

[c> V̂s + c>s Ûs]1, [c>s]1

}
s∈S

, e([c]>, [k]2) · µ
)
,

where c, cs ← span(A1, a2) .

We then define various forms of keys (for span program L).

Normal. A normal key is generated by KeyGen.

E-normal: An E-normal key skL,ρ = {K0,j, K1,j, K2,j}j∈[`] is sampled as

skL,ρ :=

({
[(k‖K′)L>j + V̂ρ(j) dj]2, [dj]2, [Ûρ(j) dj]2

}
j∈[`]

)
.

213

Here, di ← span(B) and K′ ← Z(2k+1)×(m−1)
p are sampled freshly for every key

generation. On the other hand, we use the same Ûs and V̂s that are used when

generating the E-normal challenge ciphertext.

SF: An SF key skL,ρ = {K0,j, K1,j, K2,j}j∈[`] is sampled as

(K0,j, K1,j, K2,j) :=
(

[(k + αa
‖
2 ‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S(

[(k + αa
‖
2 ‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S

where rj ← Zp , dj ← span(B), K′ ← Z(2k+1)×(m−1)
p and S is the attribute

associated with the challenge ciphertext. We note that S is well-defined when

generating a secret key because we are in the semi-adaptive security game. We

sample fresh dj and rj for every key generation, while we use the same α← Zp
throughout the game. We also note that we use the same Ûs and V̂s that are used

for generating the E-normal challenge ciphertext.

We define the following sequence of games to prove the security. Let the number of key

generation queries made by an adversary be q.

Game0: This is the real security game for semi-adaptive security where all ciphertexts

and keys are normal.

Game0′ : In this game, we change the challenge ciphertext and all keys to be E-normal

ones.

Gamei?: In this game, the challenge ciphertext and the first i? − 1 secret keys given to

the adversary are SF, while rest of the secret keys are E-normal.

GameFinal: This is the same as Gameq+1 except that the challenge ciphertext is a

E-normal one for a random message in GT .

Let us fix a PPT adversaryA and denote the advantage ofA in Gamexx by Axx. We can

easily see that Game0′ = Game1 and AFinal = 0. Therefore, to complete the proof of

Theorem C.1.5, it suffices to prove Lemma C.1.6, C.1.7, and C.1.8 in the following.

214

Lemma C.1.6. Under the MDDHk assumption on G1 and G2, we have |A0 − A0′| =

negl(λ).

Proof. For the sake of contradiction, we assume that A distinguishes Game0 and

Game0′ with non-negligible advantage and show that we can construct another adversary

B that distinguishes the two distributions in Lemma C.1.4 with the same advantage.

By the same lemma, this implies an adversary against MDDHk with non-negligible

advantage. Let n be the upper bound on the running time of A. On input
aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [C0]1, [C1,s]1, [C2,s]1

sk : [K0,s]2, [K1,s]2, [K2,s]2


s∈[n]

,

B proceeds as follows.

Setup. It samples k ← Z2k+1
p and give mpk := (aux, e([A>1]1, [k]2)) to A. Then, A

declares its target (S, 1smax) to B.

Ciphertext. WhenA asks for the challenge ciphertext with respect to messages (µ0, µ1),

B samples β ← {0, 1} and sets the challenge ciphertext as

ctS := {[C0]1, {[C1,s]1, [C2,s]1}s∈S, e([C0]1, [k]2) · µβ} .

Note that since n ≥ smax = maxs∈S |s|, A can simulate the challenge ciphertext using

the given terms.

Secret Keys. When A asks for the secret key for ((L ∈ Z`×mp , ρ), 1ρmax), B samples

K′ ← Z(2k+1)×(m−1)
p and d̃j ← Zk+1

p for j ∈ [`] and sets

sk(L,ρ) :=
{

[(k‖K′)L>j + K0,ρ(j)d̃j]2, [K1,ρ(j)d̃j]2, [K2,ρ(j)d̃j]2

}
j∈[`]

,

where we implicitly set dj := Dρ(j)d̃j , which is uniformly distributed over span(B).

Note that since n ≥ ρmax = maxj∈[`] |ρ(j)|, A can simulate the challenge ciphertext

using the given terms.

Guess. When A halts with output β′, B outputs 1 if β′ = β and 0 otherwise.

215

Observe that when B’s input is from the left distribution in Lemma C.1.4, it simulates

Game0 and when it is the right distribution, it simulates Game0′ . This completes the

proof of Lemma C.1.6.

Lemma C.1.7. We have |Aq+1 − AFinal| = negl(λ) unconditionally.

Proof. Let us fix all the randomness used in the games except for k ← Z2k+1
p and

α← Zp. We set k̃ := k + αa
‖
2 and show that the view of the adversary except for the

challenge ciphertext can be simulated by k̃. Namely, we show that the information of α

(or equivalently, k) is not used during the simulation, except for the challenge phase.

Setup. The only place where k is used in the generation of master public key is in

the computation of the term e([A>1]1, [k]2). However, this term can be simulated by k̃

instead, since we have

e([A>1]1, [k̃]2) = e([A>1]1, [k + αa
‖
2]2) = e([A>1]1, [k]2).

Secret Keys. Then, we observe that any secret key skL,ρ = {K0,j, K1,j, K2,j}j∈[`]

generated during the game can be represented as

(K0,j, K1,j, K2,j) :=
(

[(k̃‖K′)L>j + V̂ρ(j)dj + rja
‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S(

[(k̃‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S

.

Namely, they can be simulated only from k̃.

Next, we investigate the distribution of the challenge ciphertext.

Ciphertext. Recall that the challenge ciphertext consists of the components [c>]1,

[c>V̂s + c>s Ûs]1, and e([c]>, [k]2) · µβ, where β is the challenge bit chosen by the

challenger. Let us assume that c 6∈ span(A1), since it occurs with probability 1− 1/p.

Then we show that the last component of the challenge ciphertext is uniformly at random

over GT . To see this, we observe

e([c]>, [k]2) = e([c>], [k̃]2) · e([c>], [a
‖
2])α ,

where the boxed term above is distributed uniformly at random over GT since c>a‖2 6= 0

and the information of α is not used anywhere else in the game. Therefore, the view of

216

Gameq+1 is exactly the same as that of GameFinal, where random message on GT is

encrypted. This completes the proof of Lemma C.1.7.

Lemma C.1.8. Under the MDDHk assumption on G2, we have |Ai? −Ai?+1| = negl(λ)

for i? ∈ [q].

Proof. In order to prove Lemma C.1.8, we further consider the following hybrid games.

Let the i?-th key extraction query made by A be ((L ∈ Z`×mp , ρ), 1ρmax).

Gamei?,j?,1: This is the same as Gamei? , except that the secret key skL,ρ = {K0,j, K1,j, K2,j}j∈[`]

for the i?-th key extraction query is sampled as

(K0,j, K1,j, K2,j) :=
(

[(k‖K′)L>j + V̂ρ(j)dj + rja
‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If j ≤ j? − 1 ∧ ρ(j) 6∈ S(

[(k‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If j ≥ j? ∨ ρ(j) ∈ S

where dj ← span(B) is freshly sampled. It can be seen that the distribution of

the key in this game is a hybrid between that of an SF key and an E-normal key.

Gamei?,j?,2: This game is the same as Gamei?,j?,1 except that to sample the j?-th

component (K0,j? , K1,j? , K2,j?) of the i?-th secret key, we sample dj? ← Zk+1
p

instead of dj? ← span(B).

Gamei?,j?,3: This game is the same as Gamei?,j?,2, except that j?-th component

(K0,j? , K1,j? , K2,j?) of the i?-th secret key is sampled as

(K0,j? , K1,j? , K2,j?) :=
(

[(k‖K′)L>j? + V̂ρ(j?)dj? + rj?a
‖
2]2, [dj?]2 [Ûρ(j?)dj?]2

)
If ρ(j?) 6∈ S(

[(k‖K′)L>j? + V̂ρ(j?)dj?]2, [dj?]2, [Ûρ(j?)dj?]2

)
If ρ(j?) ∈ S

,

where rj? ← Zp, dj? ← Zk+1
p .

Gamei?,j?,4: This game is the same as Gamei?,j?,3, except that to sample the j?-th

component (K0,j? , K1,j? , K2,j?) of the i?-th secret key, we sample dj? ← span(B)

instead of dj? ← Zk+1
p .

217

Gamei?,`+2: This game is identical to Gamei?,`+1,1, except that the secret key skL,ρ =

{K0,j, K1,j, K2,j}j∈[`] for the i?-th key extraction query is sampled as

(K0,j, K1,j, K2,j) :=
(

[(k + αa
‖
2 ‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S(

[(k + αa
‖
2 ‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S

where dj ← span(B).

We note that Gamei?,1,1 and Gamei? are identical, Gamei?,j?,4 and Gamei?,j?+1,1

are identical, and Gamei?,`+2 and Gamei?+1 are identical. Therefore, to complete the

proof of Lemma C.1.8, it suffices to show Lemma C.1.9, C.1.10, C.1.11, and C.1.12 in

the following.

Here, we recall that we denote the advantage of a PPT adversary A in Gamexx by

Axx.

Lemma C.1.9. Under the MDDHk assumption on G2, we have |Ai?,j?,1 − Ai?,j?,2| =

negl(λ) for i? ∈ [q] and j? ∈ [`].

Proof. For the sake of contradiction, we assume that A distinguishes Gamei?,j?,1 and

Gamei?,j?,2 with non-negligible and show that we can construct another adversary B

against MDDHk with the same advantage. At the beginning of the game, B is given an

instance (G, [B]2, [t]2) of MDDHk, and proceeds as follows.

Setup. B first samples (A1, a2,A3)← Z(2k+1)×k
p ×Z2k+1

p ×Z(2k+1)×k
p , W,W0,W1 ←

Z(2k+1)×(k+1)
p , k← Z2k+1

p , and α← Zp. It then set mpk = ([A>1 ,A
>
1 W,A>1 W0,A

>
1 W1]1,

e([A>1]1, [k]2)) and gives it to A. A then provides its target (S, 1smax) to B. B also

samples U
(2)
s ,V

(2)
s ← spank+1(a

‖
2) and computes V̂s := W + V

(2)
s and Ûs :=

W0 + sW1 + U
(2)
s for s ∈ [n], where n is the upper bound on the running time of

A.

Simulating Ciphertext. When A asks for the challenge ciphertext with respect to

messages (µ0, µ1), it generates E-normal ciphertext using A1, a2, {Ûs, V̂s}s∈[n], and

k. We note that we have n ≥ smax = maxs∈S |s| and thus the terms {Ûs, V̂s}s∈[n] will

suffice to simulate the ciphertext.

218

Simulating Keys. For the i-th key query ((L, ρ), 1ρmax) made by A, B proceeds as

follows.

• If i ≤ i? − 1, it computes SF key using k, a‖2, [B]2, and {Ûs, V̂s}s∈[n]. Here,
[B]2 is used to sample [dj]2 where dj ← span(B). We also note that we have
n ≥ ρmax = maxj∈[`] |ρ(j)| and thus the terms {Ûs, V̂s}s∈[n] will suffice to
simulate the key.

• If i > i?, it computes E-normal key using k, α, a‖2, [B]2, and {Ûs, V̂s}s∈[n]. Again,
[B]2 is used to sample [dj]2 and the terms {Ûs, V̂s}s∈[n] will suffice to simulate
the key.

• If i = i?, it computes the secret key {K0,j, K1,j, K2,j}j∈[`] as follows. The j-th
component of the key (K0,j, K1,j, K2,j) for j ≤ j? − 1 can be computed similarly
to an SF key, while the j-th component for j ≥ j? + 1 can be computed similarly
to an E-normal key. It also computes

K0,j? = [(k‖K′)L>j? + V̂ρ(j?)t]2, K1,j? = [t]2, K2,j? = [Ûρ(j?)t]2

from the challenge instance ([B]2, [t]2) of MDDHk, V̂ρ(j?), Ûρ(j?), k, and K′.

It is easy to see that B simulates Gamei?,j?,1 if t ← span(B) and Gamei?,j?,2 if

t← Zk+1
p . From this observation, Lemma C.1.9 readily follows.

Lemma C.1.10. For i? ∈ [q] and j? ∈ [`], we have |Ai?,j?,2 − Ai?,j?,3| = negl(λ)

unconditionally.

Proof. We assume ρ(j?) 6∈ S, since otherwise Gamei?,j?,2 and Gamei?,j?,3 are exactly

the same. We fix all randomness during the game other than V
(2)
ρ(j?) ← spank+1(a

‖
2).

Let b‖ be a fixed non-zero vector in Zk+1
p satisfying B>b‖ = 0. It is direct to see that

V
(2)
ρ(j?) ← spank+1(a

‖
2) and V

(2)
ρ(j?) + va

‖
2b
‖> for v ← Zp follow the same distribution.

We then further fix V
(2)
ρ(j?) and prove that if we substitute V

(2)
ρ(j?) in Gamei?,j?,2 with

V
(2)
ρ(j?) + va

‖
2b
‖>, the view of the adversary is the same as that in Gamei?,j?,3 with the

randomness other than rj? being fixed. This can be seen by the following observation:

• V
(2)
ρ(j?) is not used to generate the challenge ciphertext in both games since ρ(j?) 6∈

S. Therefore, even if we substitute the value with V
(2)
ρ(j?) + va

‖
2b
‖>, this does not

change the challenge ciphertext at all.

• We have
(V

(2)
ρ(j?) + va

‖
2b
‖>)B = V

(2)
ρ(j?)B.

Therefore, the answer for the i-th key extraction query for i 6= i? will not be
changed even if we substitute V

(2)
ρ(j?) with V

(2)
ρ(j?) + va

‖
2b
‖>. Because of the same

reason, the j-th component in the i?-th secret key with j 6= j? is unchanged by the
substitution.

219

• For the j?-th components for the i-th secret key, we have

(k‖K′)L>j? + (V̂ρ(j?) + va
‖
2b
‖>)dj? = (k‖K′)L>j? + V̂ρ(j?)dj? + rj?a

‖
2

where rj? = vb‖
>
dj? . We have b‖

>
dj? 6= 0 with probability 1 − 1/p since

dj? ← Zk+1
p . Therefore, we have rj? is distributed uniformly at random over Zp

since so is v. Here, we use the fact that v is not used elsewhere in the game. It is
readily seen that (K0,j? , K1,j? , K2,j?) is distributed as in Gamei?,j?,3.

This completes the proof of Lemma C.1.10.

Lemma C.1.11. Under the MDDHk assumption on G2, we have |Ai?,j?,3 − Ai?,j?,4| =

negl(λ) for i? ∈ [q] and j? ∈ [`].

Proof. The proof is completely analogous to that of Lemma C.1.9 except that we

compute the j?-th component of the i?-th key is computed as

K0,j? = [(k‖K′)L>j? + V̂ρ(j?)t + rj?a
‖
2]2, K1,j? = [t]2, K2,j? = [Ûρ(j?)t]2.

Lemma C.1.12. For i? ∈ [q] and j? ∈ [`], we have |Ai?,`+1,1 − Ai?,`+2| = negl(λ)

unconditionally.

Proof. Let us fix all the randomness used in the games except for that used for generating

the i?-th secret key. Let (L ∈ Z`×mp , ρ) be the span program associated to the i?-th secret

key. By the definition of Gamei?,`+1 and Gamei?,`+2, it suffices show that the following

distributions are the same:

{(0‖K′)L>j + rjδja
‖
2}j∈[`] ≈ {(αa‖2‖K′)L>j + rjδja

‖
2}j∈[`] (C.1)

where K′ ← Z(2k+1)×(m−1)
p , rj ← Zp, δj is defined to be δj = 0 if ρ(j) ∈ S and δj = 1

if ρ(j) 6∈ S for the attribute S associated to the challenge ciphertext. To see this, we

first observe that by Lemma C.1.3 and from the fact that S does not satisfy (L, ρ), the

following distributions are the same:

{(0‖k′)L>j + rjδj}j∈[`] ≈ {(1‖k′)L>j + rjδj}j∈[`]

where k′ is a row vector sampled as k′ ← Zm−1
p . By multiplying a

‖
2 from the left and

220

adding (0‖K′′)Lj for both distributions with K′′ ← Z(2k+1)×(m−1)
p , we have that the

following distributions are the same:

{(0‖a‖2k′ + K′′)L>j + rjδja
‖
2}j∈[`] ≈ {(αa‖2‖a

‖
2k
′ + K′′)L>j + rjδja

‖
2}j∈[`].

By setting K′ = a
‖
2k
′ + K′′, we can see that the left and the right distributions in

the above equation correspond to those of Eq. (C.1). This completes the proof of

Lemma C.1.12.

C.1.4 The Construction of Ingredient CP-ABE

Here, we provide an ABE scheme for RMUCP, denoted by cpABE. The construction is

essentially the same as the unbounded CP-ABE given in [Chen et al. (2018)] with the

modification that we allow unbounded multi-use of the same attribute in an MSP.

Our construction cpABE for relation RMUCP is defined below.

Setup(1λ): On input 1λ, sample

A1 ← Z3k×k
p ,B← Z(k+1)×k

p ,W,W0,W1,U0 ← Z3k×(k+1)
p ,k← Z3k

p

and output

mpk :=
(
[A>1 ,A

>
1 W,A>1 W0,A

>
1 W1,A

>
1 U0]1, e([A

>
1]1, [k]2)

)
∈ Gk×3k

1 ×(Gk×(k+1)
1)4×Gk

T

and

msk := (k,B,W,W0,W1,U0).

Enc(mpk, ((L, ρ), 1ρmax), µ): On input a monotone span program (L, ρ) such that L ∈

Z`×mp , and µ ∈ GT , pick c, cj ← span(A1) for all j ∈ [`], sample U ←

Z(m−1)×(k+1)
p and output

ct(L,ρ) :=

 C0 := [c>]1, C := e([c>]1, [k]2) · µ,{
C1,j := [Lj

(
c>U0
U

)
+ c>j W]1, C2,j := [c>j]1, C3,j := [c>j (W0 + ρ(j)W1)]1

}
j∈[`]

 ,

where Lj is the j-th row of L.
221

KeyGen(msk,mpk, (S, 1smax)): On input an attribute set S = {s1, . . . , s`} ⊂ Z, pick

d,ds ← span(B) for all s ∈ S and output

skS :=

 K0 := [k + U0d]2, K1 := [d]2,

{K2,s := [Wd + (W0 + s ·W1)ds]2, K3,s := [ds]2}s∈S

 .

Dec(mpk, ct, ((L, ρ), 1ρmax), sk(L,ρ), (S, 1smax)): Since S satisfies (L, ρ), one can com-

pute {ωj}j∈[`] such that

∑
j:ρ(j)∈S

ωjLj = (1, 0, . . . , 0).

Then, compute

K = e(C0, K0)/
∏

j:ρ(j)∈S

(
e(C1,j, K1) · e(C2,j, K2,ρ(j))

−1 · e(C3,j, K3,ρ(j))
)ωj

and retrieve the message by C/K.

Correctness. For all j such that ρ(j) ∈ S, we have

e(C1,j, K1) · e(C2,j, K2,ρ(j))
−1 · e(C3,j, K3,ρ(j))

= e([Lj
(
c>U0
U

)
+ c>j W]1, [d]2) · e([c>j]1, [Wd + (W0 + ρ(j) ·W1)dρ(j)]2)−1

·e([c>j (W0 + ρ(j) ·W1)]1, [dρ(j)]2)

= [Lj
(
c>U0d
Ud

)
]T

for all j ∈ [`]. The correctness readily follows from the following equation.

K = e(C0, K0)/
∏

j:ρ(j)∈S

[Lj
(
c>U0d
Ud

)
]
ωj
T = [c>k]T · [c>U0d]T/[

∑
j:ρ(j)∈S

ωjLj
(
c>U0d
Ud

)
]T

= [c>k]T · [c>U0d]T/[c
>U0d]T = [c>k]T .

C.1.5 Security Proof

Here, we prove selective* (please see Section 4.7.3) security of the CP-ABE scheme in

Appendix C.1.4. To prove the security, we first recall the prime-order bilinear entropy

222

expansion lemma for CP-ABE from [Chen et al. (2018)].

Lemma C.1.13 (Lemma 14 from [Chen et al. (2018)] with `1 = `2 = `3 = k,

`W = k + 1). Pick basis (A1,A2,A3) ← (Z3k×k
p)3 and define its dual (A

‖
1,A

‖
2,A

‖
3)

such that A>i Aj = I if i = j and A>i Aj = 0 otherwise. With B ← Z(k+1)×k
p and for

any polynomially bounded n ∈ N, we have
aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c>]1, {[c>s W]1, [cs]1, [c
>
s (W0 + s ·W1)]1}s∈[n]

sk : {[D]2, [WD + (W0 + s ·W1)Ds]2, [Ds]2}s∈[n]


c
≈


aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c >]1, {[cs
>(W + V

(2)
s)]1, [cs]1, [cs

>(W0 + s ·W1 + U
(2)
s)]1}s∈[n]

sk : {[D]2, [(W + V
(2)
s)D + (W0 + s ·W1 + U

(2)
s Ds]2, [Ds]2}s∈[n]


,

where W,W0,W1 ← Z3k×(k+1)
p ,V

(2)
s ,U

(2)
s ← spank+1(A

‖
2),D,Ds ← span(k+1)(B),

and c, cs ← span(A1) in the left distribution while c, cs ← span(A1,A2) in the right

distribution.

Note that in [Chen et al. (2018)], D and Ds are sampled from Z(k+1)×(k+1)
p while we

sample them from span(k+1)(B). The distributions in the lemma are still computationally

indistinguishable even with this change due to the MDDHk assumption.

We also prove the following lemma, which will be used in the core part of our

security proof.

Lemma C.1.14. For any set of integers S and span program (L ∈ Z`×mp , ρ) such that

S does not satisfy (L, ρ), we have that the following distributions are computationally

indistinguishable under the DLIN assumption.

{
ct :=

(
[c]1,

{
[Lj (

cu0
u) + cjvρ(j)]1, [cj]1

}
j∈[`]

)
, sk :=

(
[u0]2, {[vs]2}s∈S

)}
≈c

{
ct :=

(
[c]1,

{
[Lj (

cu0
u) + cjvρ(j)]1, [cj]1

}
j∈[`]

)
, sk :=

(
[u0 + α]2, {[vs]2}s∈S

)}
where c, α, u0 ← Zp, u ← Zm−1

p , cj ← Zp for j ∈ [`], and vs ← Zp for s ∈

S ∪ {ρ(j)|j ∈ [`]}.

223

Proof. We construct an attacker B against the DLIN assumption assuming the distin-

guisherA against the distributions. Given the problem instance ([x1]1, [x2]1, [x1y1]1, [x2y2]1, [Φ]2)

of the DLIN assumption, B proceeds as follows. Let us define T := S ∪ {ρ(j)|j ∈ [`]}.

B samples ṽs ← Zp for s ∈ T and implicitly sets

u0 := y1 + y2, vs :=

ṽs for s ∈ S

ṽs − x1/x2 for s ∈ T\S
.

It can be seen that these components are distributed uniformly at random over Zp as

desired. B sets sk as

sk =
(
[Φ]2, {[ṽs]2}s∈S

)
.

It is easy to see that it simulates the left distribution if [Φ]2 = [y1 + y2]2 and the right

otherwise. To compute ct, B first computes a vector
(

1
t̃

)
satisfying Lj

(
1
t̃

)
= 0 for all j

such that ρ(j) ∈ S. Such a vector exists and can be computed efficiently because S does

not satisfy (L, ρ) (See for example Proposition 1 in [Goyal et al. (2006)]). B then picks

ũ← Zm−1
p and implicitly sets

c = x1, u = ũ + cu0t̃, cj =

c̃j if ρ(j) ∈ S

Lj
(

1
t̃

)
x2y2 + c̃jx2 if ρ(j) 6∈ S

We observe that these components are distributed uniformly at random over Zp as desired.

We then check that each component in ct is efficiently computable. First, we have [c]1

and [cj]1 for j ∈ [`] are computable from [x1]1, [x2]1 and [x2y2]1. We then observe that

[Lj (cu0u) + cjvρ(j)]1 can be computed for j such that ρ(j) ∈ S since we have

Lj (cu0u) + cjvρ(j) = Lj
(
cu0

(
1
t̃

)
+ (0

ũ)
)

+ c̃j ṽρ(j) = Lj (0
ũ) + c̃j ṽρ(j),

where all components are known to B. We then observe that for j such that ρ(j) 6∈ S, it

holds

Lj (cu0u) + cjvρ(j) = Lj
(
cu0

(
1
t̃

)
+ (0

ũ)
)

+
(
−x1/x2 + ṽρ(j)

)
· cj

= Lj
(

1
t̃

)
· x1(y1 + y2) + Lj (0

ũ) + ṽρ(j) · cj − (x1/x2)cj

= Lj
(

1
t̃

)
· x1(y1 + y2) + Lj (0

ũ) + ṽρ(j) · cj − Lj
(

1
t̃

)
x1y2 − c̃j · x1

= Lj
(

1
t̃

)
x1y1 + Lj (0

ũ) + ṽρ(j) · cj − c̃j · x1.

224

Therefore, we can compute [Lj (cu0u) + cjvρ(j)]1 from [x1y1]1, [cj]1, and [x1]1. Note

that x1y2, which is problematic when simulating the term, cancels out in the above

computation. This completes the proof of the lemma.

We are now ready to state and prove the main theorem. The proof is very similar

to that of [Chen et al. (2018)], but since certain information theoretic step in [Chen

et al. (2018)] does not work in the multi-use setting, we replace it with computational

argument using Lemma C.1.14.

Theorem C.1.15. The ABE scheme for relation RCPMU (i.e., multi-use key-policy un-

bounded ABE with polynomial valued attributes) in Appendix C.1.4 satisfies selective*

security under the DLIN assumption.

Proof. To prove the theorem, we define various forms of ciphertext (of message µ for

span program (L, ρ)).

• Normal: Generated by Enc; in particular, c, cs ← span(A1).

• E-normal: Same as a normal ciphertext except that c, cs ← span(A1,A2) and we
use the substitution:

W 7→ V̂ρ(j) := W + V
(2)
ρ(j) in j-th component and

W0 + ρ(j) ·W1 7→ Ûρ(j) := W0 + ρ(j) ·W1 + U
(2)
ρ(j)

where U
(2)
s ,V

(2)
s ← spank+1(A

‖
2). Concretely, an E-normal ciphertext is of the

form

ct(L,ρ) :=

(
[c>]1, {[Lj

(
c>U0
U

)
+ c>j V̂ρ(j)]1, [c

>
j]1, [c

>
j Ûρ(j)]1}j∈[n], e([c>]1, [k]2) · µ

)
where U← Z(m−1)×(k+1)

p .

Then we pick k(2) ← span(A
‖
2) and define various forms of key (for attribute S):

• Normal: Generated by KeyGen.

• E-normal: Same as a Normal key except that we use the same substitution as in
Eq. (C.2). Concretely, an E-normal key is of the form

skS :=

(
[k + U0d]2, [d]2, {[V̂s d + Ûs ds]2 [ds]2}s∈S

)
where d,ds ← span(B).

• P-normal: Sample d,ds ← Zk+1
p in an E-normal key. Concretely, a P-normal key

is of the form

skS :=
(

[k + U0d]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S
)

where d,ds ← Zk+1
p .

225

• P-SF: Replace k with k + k(2) in a P-normal key. Concretely, a P-SF key is of the
form

skS :=
(

[k + k(2) + U0d]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S
)

where d,ds ← Zk+1
p .

• SF: Sample d,ds ← span(B) in a P-SF key. Concretely, a SF key is of the form

skS :=
(

[k + k(2) + U0d]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S
)

where d,ds ← span(B) .

Let us fix a PPT adversary A and let the number of key generation queries made by

an adversary be q. We define the following sequence of games to prove the security. We

use exactly the same sequence of games as [Chen et al. (2018)]. The proof is also similar

to [Chen et al. (2018)], except that we need to modify one particular step in their proof.

Game0: This is the real security game for semi-adaptive security where all ciphertexts

and keys are normal.

Game0′ : In this game, we change the challenge ciphertext and all keys to be E-normal

ones. We can show Game0′ ≈c Game0 by using the bilinear expansion lemma

for CP-ABE (Lemma C.1.13) in a similar manner to the proof of Lemma C.1.6.

Gamei?: In this game, the first i? − 1 secret keys given to the adversary are SF, while

rest of the secret keys are E-normal. It is easy to see that Game1 is equivalent to

Game0′ . To show Gamei? ≈c Gamei?+1, we will require another sequence of

sub-games.

Gamei?,1: Identical to Gamei? except that the i?-th key is P-normal. By a straightfor-

ward reduction to the MDDHk assumption, one can show Gamei? ≈c Gamei?,1.

Gamei?,2: Identical to Gamei? except that the i?-th key is P-SF. To show Gamei?,1 ≈c
Gamei?,2, we need some more work. We note that this is the only step that the

proof in [Chen et al. (2018)] does not work in our multi-use setting. We will

introduce another sequence of games in order to prove this.

Gamei?,3: Identical to Gamei? except that the i?-th key is SF. We can show Gamei?,2 ≈c
Gamei?,3 by a straightforward reduction to the MDDHk assumption, similarly

to the case of Gamei? ≈c Gamei?,1. Note that Gamei?,3 and Gamei?+1 are

equivalent.

226

GameFinal: This is the same as Gameq+1 except that the challenge ciphertext is a

E-normal one for a random message in GT . By a similar proof to Lemma C.1.7,

we can prove Gameq+1 ≈c GameFinal. Note that the advantage of A in this

game is 0.

From the above discussion, it suffices to show that Gamei?,1 and Gamei?,2 are indistin-

guishable to complete the proof of Theorem C.1.15. In [Chen et al. (2018)], these games

are shown to be statistically indistinguishable. However, since the statistical argument

given in [Chen et al. (2018)] does not work in the multi-use setting, we replace it with the

computational argument using the DLIN assumption. The idea of using computational

argument instead of statistical argument to make a secret key semi-functional is taken

from previous works [Lewko and Waters (2012); Attrapadung (2014, 2016)]. Note that

this is the only step where our proof doe not work for the case of adaptive security. In

order to prove the indistinguishability of Gamei?,1 and Gamei?,2, we further introduce

following sequence of games.

Gamei?,1,0 : This is the same as Gamei?,1.

Gamei?,1,1 : In this game, we change the form of the challenge ciphertext as follows.

Let us pick c, cj ← span(A1), c ← Zp, a2, a2,j ← span(A2) for j ∈ [`]. The

challenge ciphertext is computed as follows:

ct(L,ρ) :=


C0 = [c> + c · a>2]1,

C = e([c> + c · a>2]1, [k]2) · µβ
,


C1,j = [C1,j]1

C2,j = [c>j + a>2,j]1,

C3,j = [(c>j + a>2,j)Ûρ(j)]1


j∈[`]


where

C1,j = Lj

(
(c>+ca>2)U0

U

)
+ (cj + a2,j)

>V̂ρ(j).

Gamei?,1,2: In this game, the challenge ciphertext and the i?-th key are changed. Let

a
‖
2 ← span(A

‖
2). Then, i?-th secret key is sampled as follows:

skS :=

(
[k + U0d + u0(b‖

>
d)a

‖
2]2, [d]2, {[V̂sd + Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)

where b‖ is some fixed vector such that Bb‖ = 0, d,ds ← Zk+1
p , and u0, vs ← Zp

227

for s ∈ S. We also change the ciphertext component [C1,j]1 as

C1,j = Lj

(
(c>+ca>2)U0

U

)
+ a>2 a

‖
2 · Lj

(
cu0b‖

>

0

)
+(cj+a2,j)

>V̂ρ(j)+ vρ(j)a
>
2,ja

‖
2b
‖> ,

for j ∈ [`].

Gamei?,1,3: In this game, we further change how we sample a2,j and the cipher-

text component C1,j . Namely, we sample cj ← Zp and a2,j for j ∈ [`] as

a2,j ← span(A2) conditioned on a>2,ja
‖
2 = (a>2 a

‖
2)cj . Furthermore, we sample

C1,j as

C1,j = Lj

(
(c>+ca>2)U0

U

)
+(cj+a2,j)

>V̂ρ(j)+ a>2 a
‖
2 ·
(
Lj (cu0u) + cjvρ(j)

)
· b‖> ,

where u← Zm−1
p .

Gamei?,1,4: In this game, we further change the i?-th secret key to be

skS :=

(
[k + U0d + ka

‖
2 + u0(b‖

>
d)a

‖
2]2, [d]2, {[V̂sd + Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)
.

Gamei?,1,5: In this game, we revert the challenge ciphertext to be sampled as in

Gamei?,1,0 (namely, it is E-normal ciphertext) and change the i?-th secret key as

follows:

skS :=
(

[k + U0d + ka
‖
2]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S

)
,

where k ← Zp and a
‖
2 ← span(A2).

Gamei?,1,6: In this game, we change the i?-th secret key as follows:

skS :=
(

[k + U0d + ka
‖
2 + k(2)]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S

)
,

where k ← Zp and a
‖
2 ← span(A2).

Gamei?,1,7: In this game, we change the i?-th secret key to be SF key. Namely, i?-th

secret key is sampled as follows:

skS :=
(

[k + U0d + k(2)]2, [d]2, {[V̂sd + Ûsds]2 [ds]2}s∈S
)
.

228

Note that Gamei?,1,7 is equivalent to Gamei?,2. Therefore, to complete the proof, it

suffices to show the following lemmas. In the following, we denote the advantage of A

in Gamexx by Axx.

Lemma C.1.16. For i? ∈ [q], we have Ai?,1,0 = Ai?,1,1 unconditionally.

Proof. Here, we replace c ← span(A1,A2) and cj ← span(A1,A2) with c + ca2

and cj + a2,j such that c, cj ← span(A1), a2, a2,j ← span(A2). This clearly does not

change the distribution and the lemma follows.

Lemma C.1.17. For i? ∈ [q], we have Ai?,1,1 = Ai?,1,2 unconditionally.

Proof. We claim that if we replace V(2)
s and U0 with V

(2)
s +vsa

‖
2b
‖> and U0 +u0a

‖
2b
‖>

in Gamei?,1,1, the resulting distribution is the same as that of Gamei?,1,2. Since this

substitution does not change the view of the adversary, this implies the lemma. First, we

observe that A>1 (U0 + u0a
‖
2b
‖>) = AU0 and thus the distribution of mpk is the same

as that of Gamei?,1,2. As for the keys, we have

k + (U0 + u0a
‖
2b
‖>)d = k + U0d + u0(b‖

>
d)a

‖
2

and similarly,

(
V̂s + vsa

‖
2b
‖>
)
d + Ûsds = V̂sd + Ûsds + vs(b

‖>d)a
‖
2.

In the case of i-th key for i 6= i? (namely, both for E-normal and SF keys), we have

b‖
>
d = 0 because d ← span(B). Therefore, we can see that this corresponds to the

distribution of the secret key in Gamei?,1,2.

As for the ciphertext, we have

C1,j = Lj

(
(c>+ca>2)(U0+u0a

‖
2b
‖>)

U

)
+ (cj + a2,j)

>
(
V̂ρ(j) + vρ(j)a

‖
2b
‖>
)

= Lj

(
(c>+ca>2)U0

U

)
+ a>2 a

‖
2 · Lj

(
cu0b‖

>

0

)
+ (cj + a2,j)

>V̂ρ(j) + vρ(j)a
>
2,ja

‖
2b
‖>,

where we use c>a
‖
2 = 0 and c>j a

‖
2 = 0 in the second equation, which follow from

c, cj ← span(A1). Again, the distribution of the ciphertext corresponds to that of

Gamei?,1,2. This completes the proof of the lemma.

Lemma C.1.18. For i? ∈ [q], we have Ai?,1,2 = Ai?,1,3 unconditionally.

229

Proof. We first observe that even if we replace U with U+ a>2 a
‖
2 ·ub‖

> in Gamei?,1,2,

the distribution is unchanged. By rearranging the terms and substituting cj with

(a>2 a
‖
2)−1a>2,ja

‖
2 in Gamei?,1,3, we can see that C1,j in both games are actually the

same. Furthermore, since a>2,ja
‖
2 is distributed uniformly at random over Zp for ran-

dom a2,j sampled from span(A2) and a>2 a
‖
2 6= 0, the distribution of a2,j is unchanged

even if we first sample cj ← Zp and then sample it conditioned on a>2,ja
‖
2 = (a>2 a

‖
2)cj .

Therefore, these games are actually equivalent and the lemma follows.

Lemma C.1.19. For i? ∈ [q], we have |Ai?,1,3 − Ai?,1,4| = negl(λ) under the DLIN

assumption.

Proof. We assume an adversary A who distinguishes the games and construct another

adversary B who distinguishes the two distributions in Lemma C.1.14. B first samples

mpk and msk, k(2), as well as A2, A3, A‖2, A‖3, b‖ such that Bb‖ = 0. B also samples

U
(2)
s and V

(2)
s for s ∈ [n], where n is the upper bound on the running time of A. B then

gives mpk to A, who then specifies the key queries and the attribute S for the challenge

ciphertext. Let the i?-th key query made by A be (L, ρ). Then, B declares S and (L, ρ)

as its target and then is given the problem instance (sk, ct). B generates the secret keys

for A as specified by the game except for the i?-th key.

We then describe how B embeds the problem instance into the i?-th key using

sk = ([Φ]2, {[vs]2}s∈S) from the problem instance, where Φ = u0 or Φ← Zp. It samples

d,ds ← Zk+1
p for s ∈ S and computes the i?-th key as

skS :=
(

[k + U0d + Φ(b‖
>
d)a

‖
2]2, [d]2, {[V̂sd + Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)
.

It is clear that the above terms are efficiently computable from sk. Furthermore, we can

see that B simulates the i?-th key in Gamei?,1,3 if the problem instance comes from the

left distribution and Gamei?,1,4 otherwise.

We then describe howB simulates the challenge ciphertext using the problem instance

ct. B samples c, cj ← span(A1) for j ∈ [`], a2 ← span(A2) and a
‖
2 ← span(A

‖
2).

B then computes C0 = [c> + c · a>2]1 and C = e([c> + c · a>2]1, [k]2) · µβ from

[c]1. We then observe that [a2,j]1 can be sampled by first sampling a′2,j such that

a′2,j
>a
‖
2 = a>2 a

‖
2 and then compute [a2,j]1 := [(a′2,j)cj]1 from [cj]1. We therefore can

simulate C2,j = [cj + a2,j]1 using [a2,j]1. We finally observe that C1,j = [C1,j]1 can be

230

efficiently computable from [c]1 and [Lj (cu0u) + cjvρ(j)]1, and [a2,j]1.

This completes the proof of the lemma.

Lemma C.1.20. For i? ∈ [q], we have Ai?,1,4 = Ai?,1,5 unconditionally.

Proof. To prove this, we undo the changes we added from Gamei?,1,0 to Gamei?,1,3 in

the reverse order, except that k in the i?-th secret key is replaced with k + ka
‖
2. Note

that all the proofs proving the (statistical) indistinguishability of the neighbouring games

carry over even if the distinguisher is given a
‖
2.

Lemma C.1.21. For i? ∈ [q], we have Ai?,1,5 = Ai?,1,6 unconditionally.

Proof. First observe that a‖2 is used only in the i?-th key query and not used anywhere

else. Furthermore, the distribution of ka‖2 and ka‖2 + k(2) for a‖2 ← span(A(2)) and

k ← Zp are the same. By these observations, it follows that these games are actually

equivalent.

Lemma C.1.22. For i? ∈ [q], we have |Ai?,1,6 − Ai?,1,7| = negl(λ) under the DLIN

assumption.

Proof. To prove this, we undo the changes we added from Gamei?,1,0 to Gamei?,1,5 in

the reverse order, except that k in the i?-th secret key is now replaced with k + k(2).

231

REFERENCES

1. Abdalla, M., F. Bourse, A. D. Caro, and D. Pointcheval, (2015). Simple Functional
Encryption Schemes for Inner Products. In Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings. 2015. URL https:
//doi.org/10.1007/978-3-662-46447-2_33.

2. Agrawal, S., (2017). Stronger Security for Reusable Garbled Circuits, General Defini-
tions and Attacks. In Advances in Cryptology - CRYPTO 2017 - 37th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part I. 2017. URL https://doi.org/10.1007/978-3-319-63688-
7_1.

3. Agrawal, S., (2019). Indistinguishability Obfuscation Without Multilinear Maps: New
Methods for Bootstrapping and Instantiation. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I. 2019.
URL https://doi.org/10.1007/978-3-030-17653-2_7.

4. Agrawal, S. and M. Chase, (2016). A Study of Pair Encodings: Predicate Encryption
in Prime Order Groups. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. 2016. URL
https://doi.org/10.1007/978-3-662-49099-0_10.

5. Agrawal, S. and M. Chase, (2017). FAME: Fast Attribute-based Message Encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 2017. URL
https://doi.org/10.1145/3133956.3134014.

6. Agrawal, S., D. M. Freeman, and V. Vaikuntanathan, (2011). Functional Encryption
for Inner Product Predicates from Learning with Errors. In Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings. 2011. URL https://doi.org/10.1007/978-3-642-25385-
0_2.

7. Agrawal, S., S. Gorbunov, V. Vaikuntanathan, and H. Wee, (2013). Functional En-
cryption: New Perspectives and Lower Bounds. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II. 2013. URL https://doi.org/10.1007/978-3-
642-40084-1_28.

8. Agrawal, S., B. Libert, and D. Stehlé, (2016). Fully Secure Functional Encryption for
Inner Products, from Standard Assumptions. In Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part III. 2016. URL https://doi.org/10.1007/978-
3-662-53015-3_12.

233

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1145/3133956.3134014
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

9. Agrawal, S. and M. Maitra, (2018). FE and iO for Turing Machines from Minimal
Assumptions. In Theory of Cryptography - 16th International Conference, TCC 2018,
Panaji, India, November 11-14, 2018, Proceedings, Part II. 2018. URL https://
doi.org/10.1007/978-3-030-03810-6_18.

10. Agrawal, S., M. Maitra, and S. Yamada, (2019a). Attribute Based Encryption (and
more) for Nondeterministic Finite Automata from LWE. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part II. 2019a. URL https://doi.org/
10.1007/978-3-030-26951-7_26.

11. Agrawal, S., M. Maitra, and S. Yamada, (2019b). Attribute Based Encryption for De-
terministic Finite Automata from DLIN. In Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II. 2019b. URL https://doi.org/10.1007/978-3-030-36033-7_4.

12. Agrawal, S. and A. Rosen, (2017). Functional Encryption for Bounded Collusions,
Revisited. In Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. 2017. URL https:
//doi.org/10.1007/978-3-319-70500-2_7.

13. Agrawal, S. and I. P. Singh, (2017). Reusable Garbled Deterministic Finite Automata
from Learning With Errors. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland. 2017. URL https:
//doi.org/10.4230/LIPIcs.ICALP.2017.36.

14. Ananth, P., Z. Brakerski, G. Segev, and V. Vaikuntanathan, (2015a). From Selective
to Adaptive Security in Functional Encryption. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II. 2015a. URL https://doi.org/10.1007/978-3-
662-48000-7_32.

15. Ananth, P., Y. Chen, K. Chung, H. Lin, and W. Lin, (2016). Delegating RAM Com-
putations with Adaptive Soundness and Privacy. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II. 2016. URL https://doi.org/10.1007/978-3-662-
53644-5_1.

16. Ananth, P., X. Fan, and E. Shi, (2019). Towards Attribute-Based Encryption for RAMs
from LWE: Sub-linear Decryption, and More. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I. 2019.
URL https://doi.org/10.1007/978-3-030-34578-5_5.

17. Ananth, P. and A. Jain, (2015). Indistinguishability Obfuscation from Compact Func-
tional Encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. 2015.
URL https://doi.org/10.1007/978-3-662-47989-6_15.

18. Ananth, P., A. Jain, D. Khurana, and A. Sahai, (2018). Indistinguishability Obfusca-
tion Without Multilinear Maps: iO from LWE, Bilinear Maps, and Weak Pseudorandom-
ness. IACR Cryptology ePrint Archive, 2018. URL https://eprint.iacr.org/
2018/615.

234

https://doi.org/10.1007/978-3-030-03810-6_18
https://doi.org/10.1007/978-3-030-03810-6_18
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.4230/LIPIcs.ICALP.2017.36
https://doi.org/10.4230/LIPIcs.ICALP.2017.36
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-030-34578-5_5
https://doi.org/10.1007/978-3-662-47989-6_15
https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615

19. Ananth, P., A. Jain, and A. Sahai, (2015b). Achieving Compactness Generically:
Indistinguishability Obfuscation from Non-Compact Functional Encryption. IACR
Cryptology ePrint Archive, 2015b. URL http://eprint.iacr.org/2015/730.

20. Ananth, P., A. Jain, and A. Sahai, (2017). Indistinguishability Obfuscation for Turing
Machines: Constant Overhead and Amortization. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II. 2017. URL https://doi.org/10.
1007/978-3-319-63715-0_9.

21. Ananth, P. and A. Sahai, (2017). Projective Arithmetic Functional Encryption and Indis-
tinguishability Obfuscation from Degree-5 Multilinear Maps. In Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part I. 2017. URL https://doi.org/10.1007/978-3-319-56620-7_6.

22. Ananth, P. V. and A. Sahai, (2016). Functional Encryption for Turing Machines. In
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part I. 2016. URL https://doi.org/10.
1007/978-3-662-49096-9_6.

23. Apon, D., N. Döttling, S. Garg, and P. Mukherjee, (2017). Cryptanalysis of Indistin-
guishability Obfuscations of Circuits over GGH13. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland. 2017. URL https://doi.org/10.4230/LIPIcs.ICALP.2017.38.

24. Applebaum, B., Y. Ishai, and E. Kushilevitz, (2014). How to Garble Arithmetic
Circuits. SIAM J. Comput., 43(2), 905–929. 2014. URL https://doi.org/10.
1137/120875193.

25. Arora, S. and B. Barak, (2009). Computational Complexity - A Modern Approach.
Cambridge University Press, 2009. ISBN 978-0-521-42426-4. URL http://www.
cambridge.org/catalogue/catalogue.asp?isbn=9780521424264.

26. Attrapadung, N., (2014). Dual System Encryption via Doubly Selective Security:
Framework, Fully Secure Functional Encryption for Regular Languages, and More. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings. 2014. URL https://doi.org/10.1007/978-
3-642-55220-5_31.

27. Attrapadung, N., (2016). Dual System Encryption Framework in Prime-Order Groups
via Computational Pair Encodings. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II. 2016.
URL https://doi.org/10.1007/978-3-662-53890-6_20.

28. Attrapadung, N., G. Hanaoka, and S. Yamada, (2015). Conversions Among Several
Classes of Predicate Encryption and Applications to ABE with Various Compactness
Tradeoffs. In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part I. 2015. URL https:
//doi.org/10.1007/978-3-662-48797-6_24.

235

http://eprint.iacr.org/2015/730
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.4230/LIPIcs.ICALP.2017.38
https://doi.org/10.1137/120875193
https://doi.org/10.1137/120875193
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/978-3-662-48797-6_24

29. Badrinarayanan, S., D. Gupta, A. Jain, and A. Sahai, (2015). Multi-input Functional
Encryption for Unbounded Arity Functions. In Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of Cryptology and In-
formation Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceed-
ings, Part I. 2015. URL https://doi.org/10.1007/978-3-662-48797-
6_2.

30. Baltico, C. E. Z., D. Catalano, D. Fiore, and R. Gay, (2017). Practical Functional
Encryption for Quadratic Functions with Applications to Predicate Encryption. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. 2017. URL
https://doi.org/10.1007/978-3-319-63688-7_3.

31. Barak, B., O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang, (2001). On the (Im)possibility of Obfuscating Programs. In Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. 2001. URL https:
//doi.org/10.1007/3-540-44647-8_1.

32. Barrington, D. A. M. (1989). Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly Those Languages in NC1. J. Comput. Syst. Sci., 38(1), 150–164.
1989. URL https://doi.org/10.1016/0022-0000(89)90037-8.

33. Bethencourt, J., A. Sahai, and B. Waters, (2007). Ciphertext-Policy Attribute-Based
Encryption. In 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May
2007, Oakland, California, USA. 2007. URL https://doi.org/10.1109/SP.
2007.11.

34. Bitansky, N., S. Garg, H. Lin, R. Pass, and S. Telang, (2015a). Succinct Randomized
Encodings and their Applications. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015.
2015a. URL https://doi.org/10.1145/2746539.2746574.

35. Bitansky, N., R. Nishimaki, A. Passelègue, and D. Wichs, (2016). From Cryptomania
to Obfustopia Through Secret-Key Functional Encryption. In Theory of Cryptography -
14th International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II. 2016. URL https://doi.org/10.1007/978-3-
662-53644-5_15.

36. Bitansky, N., O. Paneth, and A. Rosen, (2015b). On the Cryptographic Hardness of
Finding a Nash Equilibrium. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 2015b. URL
https://doi.org/10.1109/FOCS.2015.94.

37. Bitansky, N. and V. Vaikuntanathan, (2015). Indistinguishability Obfuscation from
Functional Encryption. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 2015. URL https:
//doi.org/10.1109/FOCS.2015.20.

38. Boneh, D., C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy, (2014). Fully Key-Homomorphic Encryption,
Arithmetic Circuit ABE and Compact Garbled Circuits. In Advances in Cryptology - EU-
ROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications

236

https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/2746539.2746574
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1109/FOCS.2015.20

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings.
2014. URL https://doi.org/10.1007/978-3-642-55220-5_30.

39. Boneh, D. and M. Hamburg, (2008). Generalized Identity Based and Broadcast
Encryption Schemes. In Advances in Cryptology - ASIACRYPT 2008, 14th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings. 2008. URL
https://doi.org/10.1007/978-3-540-89255-7_28.

40. Boneh, D., A. Sahai, and B. Waters, (2011). Functional Encryption: Definitions and
Challenges. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings. 2011. URL https:
//doi.org/10.1007/978-3-642-19571-6_16.

41. Boneh, D. and B. Waters, (2007). Conjunctive, Subset, and Range Queries on Encrypted
Data. In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings. 2007. URL https:
//doi.org/10.1007/978-3-540-70936-7_29.

42. Boneh, D. and B. Waters, (2013). Constrained Pseudorandom Functions and Their
Applications. In Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II. 2013. URL https:
//doi.org/10.1007/978-3-642-42045-0_15.

43. Boyen, X. and Q. Li, (2015). Attribute-Based Encryption for Finite Automata from
LWE. In Provable Security - 9th International Conference, ProvSec 2015, Kanazawa,
Japan, November 24-26, 2015, Proceedings. 2015. URL https://doi.org/10.
1007/978-3-319-26059-4_14.

44. Boyle, E., S. Goldwasser, and I. Ivan, (2014). Functional Signatures and Pseudorandom
Functions. In Public-Key Cryptography - PKC 2014 - 17th International Conference on
Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-
28, 2014. Proceedings. 2014. URL https://doi.org/10.1007/978-3-642-
54631-0_29.

45. Brakerski, Z., C. Gentry, and V. Vaikuntanathan, (2012). (Leveled) Fully Homo-
morphic Encryption without Bootstrapping. In Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January 8-10, 2012. 2012. URL https:
//doi.org/10.1145/2090236.2090262.

46. Brakerski, Z., I. Komargodski, and G. Segev, (2016). Multi-input Functional En-
cryption in the Private-Key Setting: Stronger Security from Weaker Assumptions. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II. 2016. URL https://doi.org/10.1007/978-
3-662-49896-5_30.

47. Brakerski, Z. and V. Vaikuntanathan, (2014). Lattice-based FHE as secure as PKE.
In Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014. 2014. URL https://doi.org/10.1145/2554797.2554799.

237

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-540-89255-7_28
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-319-26059-4_14
https://doi.org/10.1007/978-3-319-26059-4_14
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1145/2554797.2554799

48. Brakerski, Z. and V. Vaikuntanathan, (2016). Circuit-ABE from LWE: Unbounded
Attributes and Semi-adaptive Security. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part III. 2016. URL https://doi.org/10.1007/978-3-
662-53015-3_13.

49. Cambridge-Analytica, (2018). Facebook-Cambridge Analytica Data Scan-
dal. URL https://en.wikipedia.org/wiki/Facebook-Cambridge_
Analytica_data_scandal.

50. Canetti, R., Y. Chen, J. Holmgren, and M. Raykova, (2016). Adaptive Succinct
Garbled RAM or: How to Delegate Your Database. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II. 2016. URL https://doi.org/10.1007/978-3-662-
53644-5_3.

51. Canetti, R. and J. Holmgren, (2016). Fully Succinct Garbled RAM. In Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cam-
bridge, MA, USA, January 14-16, 2016. 2016. URL https://doi.org/10.1145/
2840728.2840765.

52. Canetti, R., J. Holmgren, A. Jain, and V. Vaikuntanathan, (2014). Indistinguisha-
bility Obfuscation of Iterated Circuits and RAM Programs. IACR Cryptology ePrint
Archive, 2014. URL http://eprint.iacr.org/2014/769.

53. Canetti, R., H. Lin, S. Tessaro, and V. Vaikuntanathan, (2015). Obfuscation of Prob-
abilistic Circuits and Applications. In Theory of Cryptography - 12th Theory of Cryptog-
raphy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II. 2015. URL https://doi.org/10.1007/978-3-662-46497-7_19.

54. Carmer, B., A. J. Malozemoff, and M. Raykova, (2017). 5Gen-C: Multi-input Func-
tional Encryption and Program Obfuscation for Arithmetic Circuits. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 2017. URL
https://doi.org/10.1145/3133956.3133983.

55. Caro, A. D., V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano, (2013).
On the Achievability of Simulation-Based Security for Functional Encryption. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. 2013. URL https:
//doi.org/10.1007/978-3-642-40084-1_29.

56. Chen, J., R. Gay, and H. Wee, (2015a). Improved Dual System ABE in Prime-Order
Groups via Predicate Encodings. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. 2015a. URL
https://doi.org/10.1007/978-3-662-46803-6_20.

57. Chen, J., J. Gong, L. Kowalczyk, and H. Wee, (2018). Unbounded ABE via Bilinear
Entropy Expansion, Revisited. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I. 2018. URL
https://doi.org/10.1007/978-3-319-78381-9_19.

238

https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
https://doi.org/10.1007/978-3-662-53644-5_3
https://doi.org/10.1007/978-3-662-53644-5_3
https://doi.org/10.1145/2840728.2840765
https://doi.org/10.1145/2840728.2840765
http://eprint.iacr.org/2014/769
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1145/3133956.3133983
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19

58. Chen, J. and H. Wee, (2013). Fully, (Almost) Tightly Secure IBE and Dual System
Groups. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. 2013. URL
https://doi.org/10.1007/978-3-642-40084-1_25.

59. Chen, J. and H. Wee, (2014). Semi-adaptive Attribute-Based Encryption and Improved
Delegation for Boolean Formula. In Security and Cryptography for Networks - 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings.
2014. URL https://doi.org/10.1007/978-3-319-10879-7_16.

60. Chen, Y., S. S. M. Chow, K. Chung, R. W. F. Lai, W. Lin, and H. Zhou, (2015b).
Computation-Trace Indistinguishability Obfuscation and its Applications. IACR Cryptol-
ogy ePrint Archive, 2015. URL http://eprint.iacr.org/2015/406.

61. Cheon, J. H., P. Fouque, C. Lee, B. Minaud, and H. Ryu, (2016a). Cryptanalysis of
the New CLT Multilinear Map over the Integers. In Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. 2016a.
URL https://doi.org/10.1007/978-3-662-49890-3_20.

62. Cheon, J. H., K. Han, C. Lee, H. Ryu, and D. Stehlé, (2015). Cryptanalysis of the
Multilinear Map over the Integers. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. 2015. URL https:
//doi.org/10.1007/978-3-662-46800-5_1.

63. Cheon, J. H., J. Jeong, and C. Lee, (2016b). An Algorithm for NTRU Problems
and Cryptanalysis of the GGH Multilinear Map without an encoding of zero. IACR
Cryptology ePrint Archive, 2016. URL http://eprint.iacr.org/2016/139.

64. Cohen, A., J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs, (2016).
Watermarking Cryptographic Capabilities. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016. 2016. URL https://doi.org/10.1145/2897518.2897651.

65. Cook, S. A. and H. J. Hoover, (1985). A Depth-Universal Circuit. SIAM J. Comput.,
14(4), 833–839. 1985. URL https://doi.org/10.1137/0214058.

66. Coron, J., C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova,
A. Sahai, and M. Tibouchi, (2015). Zeroizing Without Low-Level Zeroes: New MMAP
Attacks and their Limitations. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I. 2015. URL https://doi.org/10.1007/978-3-662-47989-6_12.

67. Coron, J., M. S. Lee, T. Lepoint, and M. Tibouchi, (2017). Zeroizing Attacks on
Indistinguishability Obfuscation over CLT13. In Public-Key Cryptography - PKC 2017 -
20th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I. 2017. URL
https://doi.org/10.1007/978-3-662-54365-8_3.

68. Diffie, W. and M. E. Hellman, (1976). New Directions in Cryptography. IEEE Trans.
Information Theory, 22(6), 644–654. 1976. URL https://doi.org/10.1109/
TIT.1976.1055638.

239

https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-319-10879-7_16
http://eprint.iacr.org/2015/406
https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/2016/139
https://doi.org/10.1145/2897518.2897651
https://doi.org/10.1137/0214058
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

69. Doe, D. (2019). Two more leaks expose Indian citizens’ personal and medical informa-
tion. URL https://www.databreaches.net/two-more-leaks-expose-
indian-citizens-personal-and-medical-information/.

70. Escala, A., G. Herold, E. Kiltz, C. Ràfols, and J. Villar (2017). An algebraic frame-
work for diffie–hellman assumptions. Journal of cryptology, 30(1), 242–288.

71. Garg, S., C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, (2013a).
Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA. 2013a. URL https://doi.org/10.1109/
FOCS.2013.13.

72. Garg, S., C. Gentry, S. Halevi, A. Sahai, and B. Waters, (2013b). Attribute-Based
Encryption for Circuits from Multilinear Maps. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II. 2013b. URL https://doi.org/10.1007/978-3-
642-40084-1_27.

73. Garg, S., O. Pandey, and A. Srinivasan, (2016). Revisiting the Cryptographic Hardness
of Finding a Nash Equilibrium. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II. 2016. URL https://doi.org/10.1007/978-3-662-
53008-5_20.

74. Garg, S., O. Pandey, A. Srinivasan, and M. Zhandry, (2017). Breaking the Sub-
Exponential Barrier in Obfustopia. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III. 2017. URL
https://doi.org/10.1007/978-3-319-56617-7_6.

75. Garg, S. and A. Srinivasan, (2016). Single-Key to Multi-Key Functional Encryption
with Polynomial Loss. In Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II. 2016.
URL https://doi.org/10.1007/978-3-662-53644-5_16.

76. Gentry, C., S. Halevi, M. Raykova, and D. Wichs, (2014). Outsourcing Private RAM
Computation. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. 2014. URL https://doi.
org/10.1109/FOCS.2014.50.

77. Gentry, C., A. Sahai, and B. Waters, (2013). Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. 2013. URL https://doi.org/
10.1007/978-3-642-40041-4_5.

78. Goldreich, O., S. Goldwasser, and S. Micali, (1986). How to Construct Random
Functions. J. ACM, 33(4), 792–807. 1986. URL https://doi.org/10.1145/
6490.6503.

79. Goldwasser, S., S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi, and
H. Zhou, (2014). Multi-input Functional Encryption. In Advances in Cryptology - EU-
ROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications

240

https://www.databreaches.net/two-more-leaks-expose-indian-citizens-personal-and-medical-information/
https://www.databreaches.net/two-more-leaks-expose-indian-citizens-personal-and-medical-information/
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1109/FOCS.2014.50
https://doi.org/10.1109/FOCS.2014.50
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings.
2014. URL https://doi.org/10.1007/978-3-642-55220-5_32.

80. Goldwasser, S., Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich,
(2013a). How to Run Turing Machines on Encrypted Data. In Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II. 2013a. URL https://doi.org/10.
1007/978-3-642-40084-1_30.

81. Goldwasser, S., Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich,
(2013b). Reusable Garbled Circuits and Succinct Functional Encryption. In Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013.
2013b. URL https://doi.org/10.1145/2488608.2488678.

82. Gong, J., B. Waters, and H. Wee, (2019). ABE for DFA from k-Lin. In Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II. 2019. URL https:
//doi.org/10.1007/978-3-030-26951-7_25.

83. Gorbunov, S., V. Vaikuntanathan, and H. Wee, (2012). Functional Encryption with
Bounded Collusions via Multi-party Computation. In Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings. 2012. URL https://doi.org/10.1007/978-3-642-
32009-5_11.

84. Gorbunov, S., V. Vaikuntanathan, and H. Wee, (2013). Attribute-based Encryption
for Circuits. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013. 2013. URL https://doi.org/10.1145/2488608.
2488677.

85. Gorbunov, S., V. Vaikuntanathan, and H. Wee, (2015). Predicate Encryption for Cir-
cuits from LWE. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. 2015.
URL https://doi.org/10.1007/978-3-662-48000-7_25.

86. Gorbunov, S. and D. Vinayagamurthy, (2015). Riding on Asymmetry: Efficient ABE
for Branching Programs. In Advances in Cryptology - ASIACRYPT 2015 - 21st Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part I. 2015.
URL https://doi.org/10.1007/978-3-662-48797-6_23.

87. Goyal, R., V. Koppula, and B. Waters, (2016). Semi-adaptive Security and Bundling
Functionalities Made Generic and Easy. In Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings,
Part II. 2016. URL https://doi.org/10.1007/978-3-662-53644-5_14.

88. Goyal, V., O. Pandey, A. Sahai, and B. Waters, (2006). Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted Data. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006. 2006. URL https://doi.org/10.1145/
1180405.1180418.

241

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418

89. Hamlin, A., J. Holmgren, M. Weiss, and D. Wichs, (2019). On the Plausibility of Fully
Homomorphic Encryption for RAMs. In Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part I. 2019. URL https://doi.org/10.1007/978-
3-030-26948-7_21.

90. Hu, Y. and H. Jia, (2015). Cryptanalysis of GGH Map. IACR Cryptology ePrint Archive,
2015. URL http://eprint.iacr.org/2015/301.

91. Impagliazzo, R. (2011). Notes on Turing Machines. http://cseweb.ucsd.edu/
classes/sp11/cse201A-a/ln412.pdf.

92. Jafargholi, Z., A. Scafuro, and D. Wichs, (2017). Adaptively Indistinguishable Gar-
bled Circuits. In Theory of Cryptography - 15th International Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II. 2017. URL
https://doi.org/10.1007/978-3-319-70503-3_2.

93. Katz, J., A. Sahai, and B. Waters, (2008). Predicate Encryption Supporting Disjunc-
tions, Polynomial Equations, and Inner Products. In Advances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. 2008.
URL https://doi.org/10.1007/978-3-540-78967-3_9.

94. Kiayias, A., S. Papadopoulos, N. Triandopoulos, and T. Zacharias, (2013). Delegat-
able Pseudorandom Functions and Applications. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013. 2013. URL https://doi.org/10.1145/2508859.2516668.

95. Kitagawa, F., R. Nishimaki, and K. Tanaka, (2017). Indistinguishability Obfuscation
for All Circuits from Secret-Key Functional Encryption. IACR Cryptology ePrint Archive,
2017. URL http://eprint.iacr.org/2017/361.

96. Kitagawa, F., R. Nishimaki, and K. Tanaka, (2018a). Obfustopia Built on Secret-
Key Functional Encryption. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. 2018a. URL
https://doi.org/10.1007/978-3-319-78375-8_20.

97. Kitagawa, F., R. Nishimaki, and K. Tanaka, (2018b). Simple and Generic Construc-
tions of Succinct Functional Encryption. In Public-Key Cryptography - PKC 2018 -
21st IACR International Conference on Practice and Theory of Public-Key Cryptog-
raphy, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II. 2018b. URL
https://doi.org/10.1007/978-3-319-76581-5_7.

98. Kitagawa, F., R. Nishimaki, K. Tanaka, and T. Yamakawa, (2019). Adaptively Secure
and Succinct Functional Encryption: Improving Security and Efficiency, Simultaneously.
In Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III. 2019.
URL https://doi.org/10.1007/978-3-030-26954-8_17.

99. Komargodski, I. and G. Segev, (2017). From Minicrypt to Obfustopia via Private-
Key Functional Encryption. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic

242

https://doi.org/10.1007/978-3-030-26948-7_21
https://doi.org/10.1007/978-3-030-26948-7_21
http://eprint.iacr.org/2015/301
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1145/2508859.2516668
http://eprint.iacr.org/2017/361
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-76581-5_7
https://doi.org/10.1007/978-3-030-26954-8_17

Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I. 2017. URL
https://doi.org/10.1007/978-3-319-56620-7_5.

100. Koppula, V., A. B. Lewko, and B. Waters, (2015). Indistinguishability Obfuscation for
Turing Machines with Unbounded Memory. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015. 2015. URL https://doi.org/10.1145/2746539.2746614.

101. Kowalczyk, L. and A. B. Lewko, (2015). Bilinear Entropy Expansion from the Deci-
sional Linear Assumption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II. 2015. URL https://doi.org/10.1007/978-3-662-48000-7_26.

102. Kowalczyk, L. and H. Wee, (2019). Compact Adaptively Secure ABE for NC1 from
k-Lin. IACR Cryptology ePrint Archive, 2019. URL https://eprint.iacr.org/
2019/224.

103. Lewko, A. B., (2012). Tools for Simulating Features of Composite Order Bilinear
Groups in the Prime Order Setting. In Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. 2012. URL https:
//doi.org/10.1007/978-3-642-29011-4_20.

104. Lewko, A. B., T. Okamoto, A. Sahai, K. Takashima, and B. Waters, (2010). Fully
Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner
Product Encryption. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. 2010. URL https:
//doi.org/10.1007/978-3-642-13190-5_4.

105. Lewko, A. B. and B. Waters, (2010). New Techniques for Dual System Encryption
and Fully Secure HIBE with Short Ciphertexts. In Theory of Cryptography, 7th Theory
of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings. 2010. URL https://doi.org/10.1007/978-3-642-11799-
2_27.

106. Lewko, A. B. and B. Waters, (2011). Unbounded HIBE and Attribute-Based Encryption.
In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-
19, 2011. Proceedings. 2011. URL https://doi.org/10.1007/978-3-642-
20465-4_30.

107. Lewko, A. B. and B. Waters, (2012). New Proof Methods for Attribute-Based Encryp-
tion: Achieving Full Security through Selective Techniques. In Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings. 2012. URL https://doi.org/10.1007/978-
3-642-32009-5_12.

108. Li, B. and D. Micciancio, (2016). Compactness vs Collusion Resistance in Functional
Encryption. In Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part II. 2016. URL
https://doi.org/10.1007/978-3-662-53644-5_17.

243

https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1145/2746539.2746614
https://doi.org/10.1007/978-3-662-48000-7_26
https://eprint.iacr.org/2019/224
https://eprint.iacr.org/2019/224
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-662-53644-5_17

109. Lin, H., (2016). Indistinguishability Obfuscation from Constant-Degree Graded En-
coding Schemes. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. 2016. URL https:
//doi.org/10.1007/978-3-662-49890-3_2.

110. Lin, H., (2017). Indistinguishability Obfuscation from SXDH on 5-Linear Maps and
Locality-5 PRGs. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I. 2017. URL https://doi.org/10.1007/978-3-319-63688-7_20.

111. Lin, H. and C. Matt, (2018). Pseudo Flawed-Smudging Generators and Their Applica-
tion to Indistinguishability Obfuscation. IACR Cryptology ePrint Archive, 2018. URL
https://eprint.iacr.org/2018/646.

112. Lin, H., R. Pass, K. Seth, and S. Telang, (2016). Output-Compressing Randomized
Encodings and Applications. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I. 2016. URL
https://doi.org/10.1007/978-3-662-49096-9_5.

113. Lin, H. and S. Tessaro, (2017). Indistinguishability Obfuscation from Trilinear Maps
and Block-Wise Local PRGs. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I. 2017. URL https://doi.org/10.1007/978-3-
319-63688-7_21.

114. Lin, H. and V. Vaikuntanathan, (2016). Indistinguishability Obfuscation from DDH-
Like Assumptions on Constant-Degree Graded Encodings. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA. 2016. URL https://doi.org/10.
1109/FOCS.2016.11.

115. Liu, Q. and M. Zhandry, (2017). Decomposable Obfuscation: A Framework for Build-
ing Applications of Obfuscation from Polynomial Hardness. In Theory of Cryptography
- 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15,
2017, Proceedings, Part I. 2017. URL https://doi.org/10.1007/978-3-
319-70500-2_6.

116. Lu, S. and R. Ostrovsky, (2013). How to Garble RAM Programs. In Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings. 2013. URL https://doi.org/10.1007/978-3-642-38348-
9_42.

117. Miles, E., A. Sahai, and M. Zhandry, (2016). Annihilation Attacks for Multilinear
Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. 2016. URL https:
//doi.org/10.1007/978-3-662-53008-5_22.

118. Okamoto, T. and K. Takashima, (2010). Fully Secure Functional Encryption with
General Relations from the Decisional Linear Assumption. In Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August

244

https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://eprint.iacr.org/2018/646
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22

15-19, 2010. Proceedings. 2010. URL https://doi.org/10.1007/978-3-
642-14623-7_11.

119. Okamoto, T. and K. Takashima, (2012). Fully Secure Unbounded Inner-Product and
Attribute-Based Encryption. In Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings. 2012. URL https://
doi.org/10.1007/978-3-642-34961-4_22.

120. O’Neill, A. (2010). Definitional Issues in Functional Encryption. IACR Cryptology
ePrint Archive, 2010. URL http://eprint.iacr.org/2010/556.

121. Pippenger, N. and M. J. Fischer, (1979). Relations Among Complexity Measures.
J. ACM, 26(2), 361–381. 1979. URL https://doi.org/10.1145/322123.
322138.

122. PTI, (2019). Indian organisations lost 12.8 crore to data breaches. URL
https://www.thehindu.com/business/indian-organisations-
lost-128-crore-to-data-breaches/article28681416.ece.

123. Rivest, R. L., A. Shamir, and L. M. Adleman (1978). A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2), 120–126. 1978. URL
http://doi.acm.org/10.1145/359340.359342.

124. Rouselakis, Y. and B. Waters, (2013). Practical Constructions and New Proof Methods
for Large Universe Attribute-Based Encryption. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013. 2013. URL https://doi.org/10.1145/2508859.2516672.

125. Sahai, A. and B. Waters, (2005). Fuzzy Identity-Based Encryption. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings. 2005. URL https://doi.org/10.1007/11426639_27.

126. Sahai, A. and B. Waters, (2014). How to Use Indistinguishability Obfuscation: Deniable
Encryption, and More. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014. 2014. URL https://doi.org/10.1145/
2591796.2591825.

127. Sipser, M. (1996). Introduction to the Theory of Computation. SIGACT News, 27(1),
27–29. 1996. URL https://doi.org/10.1145/230514.571645.

128. Thompson, H. and S. Trilling, (2018). Cyber Security Predictions: 2019 and
Beyond. URL https://www.symantec.com/blogs/feature-stories/
cyber-security-predictions-2019-and-beyond.

129. Vishwanath, S. (2019). Seven cyber security trends that India will witness in
2019: PwC’s forecast. URL https://www.pwc.in/consulting/cyber-
security/blogs/seven-cyber-security-trends-that-india-
will-witness-in-2019.html.

130. Waters, B., (2012). Functional Encryption for Regular Languages. In Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. 2012. URL https://doi.org/10.1007/
978-3-642-32009-5_14.

245

https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
http://eprint.iacr.org/2010/556
https://doi.org/10.1145/322123.322138
https://doi.org/10.1145/322123.322138
https://www.thehindu.com/business/indian-organisations-lost-128-crore-to-data-breaches/article28681416.ece
https://www.thehindu.com/business/indian-organisations-lost-128-crore-to-data-breaches/article28681416.ece
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1145/2508859.2516672
https://doi.org/10.1007/11426639_27
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/230514.571645
https://www.symantec.com/blogs/feature-stories/cyber-security-predictions-2019-and-beyond
https://www.symantec.com/blogs/feature-stories/cyber-security-predictions-2019-and-beyond
https://www.pwc.in/consulting/cyber-security/blogs/seven-cyber-security-trends-that-india-will-witness-in-2019.html
https://www.pwc.in/consulting/cyber-security/blogs/seven-cyber-security-trends-that-india-will-witness-in-2019.html
https://www.pwc.in/consulting/cyber-security/blogs/seven-cyber-security-trends-that-india-will-witness-in-2019.html
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-32009-5_14

131. Wee, H. (2015). Dual System Encryption via Predicate Encodings. IACR Cryptology
ePrint Archive, 2015. URL http://eprint.iacr.org/2015/273.

246

http://eprint.iacr.org/2015/273

LIST OF PAPERS BASED ON THESIS

1. Shweta Agrawal and Monosij Maitra. “FE and iO for Turing Machines from
Minimal Assumptions.” In Theory of Cryptography Conference, pp. 473-512.
Springer, Cham, (2018).

2. Shweta Agrawal and Monosij Maitra and Shota Yamada. "Attribute Based En-
cryption (and more) for Nondeterministic Finite Automata from LWE." In Annual
International Cryptology Conference, pp. 765-797, Springer, Cham, (2019).

3. Shweta Agrawal and Monosij Maitra and Shota Yamada. "Attribute Based Encryp-
tion for Deterministic Finite Automata from DLIN." In Theory of Cryptography
Conference, pp. 91-117, Springer, Cham, (2019).

247

Resume

Personal Details:

Name: Monosij Maitra

Date of Birth: 19-Apr-1988

e-Mail Address: monosij.maitra@gmail.com, monosij@cse.iitm.ac.in

Permanent Address: 15B, P. Naskar Lane, Picnic Garden

Kolkata- 700039, INDIA.

Education:

PhD. (2015 - present): Indian Institute of technology Madras, Chennai, India.

M.E. (2012 - 2014): Indian Institute of Engineering Science and Technology

Shibpur, Howrah, India.

B.Tech. (2007 - 2011): Future Institute of Engineering and Management,

Kolkata, India.

248

Doctoral Committee

Chair Person: Prof. P. Sreenivasa Kumar - CSE Department

Guide: Dr. Shweta Agrawal - CSE Department

Members:

1. Dr. Meghana Nasre - CSE Department

2. Dr. Jayalal Sarma - CSE Department

3. Prof. Andrew Thangaraj - Department of Electrical Engineering

249

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	NOTATION
	Introduction
	Motivation
	Overview of the thesis
	Organization

	Functional Encryption and Indistinguishability Obfuscation for Turing Machines from Minimal Assumptions
	Introduction
	Our Contributions
	Additional Prior Work
	Our Techniques
	Organization
	Preliminaries
	Definitions: Turing Machines
	Definitions: FE for Circuits
	Definitions: FE for Turing Machines
	Constrained Pseudorandom Functions

	Construction: Single-Input FE for Turing Machines
	Construction of Single-Input TMFE
	Correctness and Efficiency of Single-Input TMFE
	Proof of Security for Single-Input TMFE
	Constructing the cPRF.

	Construction: Multi-Input FE for Turing Machines
	Construction of Multi-Input TMFE
	Correctness and Efficiency of Multi-Input TMFE
	Proof of Security for Multi-Input TMFE

	Indistinguishability Obfuscation for Turing Machines
	Construction
	Proof of Security

	Attribute Based Encryption and its Generalizations for Nondeterministic Finite Automata from Lattices
	Introduction
	Our Contributions
	Our Techniques
	Organization
	Preliminaries
	Definitions: Non Deterministic Finite Automata
	Definitions: Secret-key Attribute Based Encryption for NFA
	Definitions: Attribute Based Encryption and Functional Encryption for circuits

	Attribute-based Encryption for NFA
	NFA as NC circuit
	Construction: SKABE for Bounded Size NFA
	Correctness of NfaABE
	Proof of Security for NfaABE
	Extensions

	Attribute based Encryption for NFA with Unbounded Size Machines and Inputs
	Construction of uNfaABE
	Correctness of uNfaABE
	Proof of Security for uNfaABE

	FE for DFA implies iO
	Preliminaries on DFA and Branching Programs
	SKFE for DFA implies iO

	Attribute based Encryption for Deterministic Finite Automata from Standard Static Assumptions
	Introduction
	Our Contributions
	Our Techniques.
	Related Work.
	Concurrent Work.
	Organization
	Preliminaries
	Definitions: Monotone Span Programs
	Definitions: Deterministic Finite Automata
	Definitions: Attribute-Based Encryption
	Embedding Lemma for ABE

	Attribute-based Encryption for DFA
	Construction: ABE for DFA
	Construction of DfaABE
	Construction of DfaABE>

	Mapping DFA Computation to Monotone Span Programs
	Encoding DFA to Monotone Span Programs
	Encoding DFA Input Strings to Monotone Span Programs

	Putting it all together: ABE for DFA

	Conclusions
	Appendices for Chapter 2
	Missing Details in Proof of Theorem 2.7.1
	Missing Details in Proof of Theorem 2.8.1
	Constrained PRF for our Function Family
	Constructing DI Secure Functional Encryption
	Constructing Decomposable Functional Encryption for Circuits
	Decomposable Functional Encryption for Circuits: Instantiations

	Appendices for Chapter 3
	Definitions: Predicate and Functional Encryption
	Predicate and Bounded Key Functional Encryption for Circuits
	Predicate Encryption and Bounded Key Functional Encryption for NFA
	Symmetric Key Functional Encryption

	Construction: Predicate and Bounded Key Functional Encryption for NFA
	Definitions: Reusable Garbled Nondeterministic Finite Automata
	Construction: Reusable Garbled NFA

	Appendices for Chapter 4
	Instantiating the Ingredients
	Preliminaries
	The Construction of Ingredient KP-ABE
	Security Proof
	The Construction of Ingredient CP-ABE
	Security Proof

