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Cryptography
The Art of Secret Keeping

Cryptography guarantees_that breaking a cryptosystem is at least
as hard as solving some| difficulf mathematical problem.

Instance x of hard’ Reduction B

Problem X ‘ ?
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Cryptosystem I ‘ !
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Breakon N

Solution to x




The Cryptographic Adversary

e Adversary in cryptography normally modeled by a classical
computer.

* Typical guarantee is that unless the adversary can solve hard
problem, attack takes more than age of universe (in CPU
cycles)

* Robust to type of computer (mobile/laptop/supercomputer)

* What if the attacker is quantum?




Quantum Computers

[ Fundamentally New Paradigm of Computing! J

 Computers that use laws of quantum rather than classical
physics

Allow transformation of memory to quantum superposition
of all possible classical states

May allow exponential speedups

* Most current cryptography relies on hardness of factoring,
discrete log: broken if quantum computers are realized

Quantum =

Computing




Is this threat real?

In short: YES!

Google claims it has finally reached quantum

* National Institute of supremacy

By
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(NIST), initiated a process
to solicit, evaluate, and
standardize one or more
guantum-resistant public-
key crypto algorithms

* Significant global research
effort




Post Quantum Cryptography?

 Base hardness on mathematical problems for which
guantum computers offer no advantage

* Most promising: problems in high dimensional lattices.




Cryptography from Lattices

: quantum computers do not seem to
break lattice based constructions (so far)

* Quantum algorithms do not effectively use geometry of problem

* Need way to solve non-commutative version of HSP

. : breaking cryptosystem implies ability to
solve hard problems in the worst case

* Efficient operations,

 Enables




Cryptography from Lattices

* Redo old cryptography:

* build post-quantum versions of existing functionalities

e Build new functionalities
* not realizable before
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Encrypted Computation
Personalised Medicine

“The dream for tomorrow’s
medicine is to understand the
links between DNA and disease
— and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic
data and medical records secure

while still enabling the massive, long haired, skinny Kid 1 married 25 years ago.

I need a DNA sample to make sure it’s still you.”

cloud-based analyses needed to
make meaningful associations.”

Check Hayden, E. (2015). Nature, 519, 400-401.

[ Can Cryptography solve this? J
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Step 1. Give your public
key to sender.

Step 2: Sender uses your public
key to encrypt the plaintext,

plaintext ciphertext
encryption

Step 3: Sender gives
the ciphertext to you.

Step 4: Use your private key (and
passphrase) to decrypt the ciphertext.

ciphertext plaintext
decryption




PKE does not suffice!

* Secret keys correspond to users
* Encrypt for each user?

* All or nothing access

 Genomic data (for instance) is too sensitive
to share

* May be willing to participate in study which
reveals output (result of study) without
revealing input (personal data)
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More Expressive Encryption

Functional Encryption!

Secret Keys Ciphertexts
for functions F for inputs x

CH
oL
AH
BH
FH
AH
CH
BH
oL &

F ={[({C-D)+4]-B} -{[@ C)+B].D}

Decryption recovers F(x)

F : Age distribution of people with lung cancer
X : particular user’s disease profile




Encryption with Partial Decryption Keys

Encrypt (x): Decrypt ( sk, ct ):

y = F(x)

Keygen(F):
Security:

Adversary possessing keys for multiple

circuits F; cannot distinguish Enc(xy) from

Enc(x;) unless Fi(xg) £ Fi(xq)

Functional Encryption [swos,ssw11]
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Personalized Medicine?

Encrypt
input = genomic data of users

Keygen
input: some medical research algo

Decrypt ( skg ct):

y = F(x)

Security: No one’s personal genomic data
is leaked!

Functional Encryption [swos,ssw11]

15



Spam Detection on Encrypted Email

Say we have a program P to detect spam on
unencrypted email.

'r—'Q\

Key for P

‘ Email Gateway ‘

Encrypted Forward if
email not spam

)
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Attribute based Encryption
[SWO05, GPSWO6]




Attribute based Encryption
[SWO05, GPSWO6]

Filel
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i SK {“Role:”, “Dept:”
“Affiliation:”, “D0J:"}

Secret keys correspond
to users’ attributes

File 3




Attribute based Encryption
[SWO05, GPSWO6]

Encrypted with same PK

but different “policies” CJ File 1

A
4

2
- [==)
8&4@ i SK {“Role:”, “Dept:”

“Affiliation:”, “DOJ:"}

o0 Secret keys correspond
to users’ attributes

AN
A 4




Attribute based Encryption
[SWO5, GPSWO06]

Encrypted with same PK
but different “policies”

“Role:
Professor”
“Dept: CS”
“Affiliation:
[ITM”

“D0J: 01/01/95”




Attribute based Encryption
[SWO5, GPSWO06]

Encrypted with same PK
but different “policies”

“Role: Student”
“Dept: EE”
“Affiliation:
ITM”

“DOJ: 14/07/15”




Attribute based Encryption
[SWO5, GPSWO06]

Encrypted with same PK
but different “policies”

“Role: Admin”
“Dept: Acad”
“Affiliation:
TM”

“D0OJ: 28/02/14”




Attribute based Encryption
[SWO05, GPSWO6]




Fully Homomorphic Encryption

[GO9, BV11, BGV12, GSW13...]

ENCRypT | Client’s

Encrypted
Data

Cloud
Evaluation

Qutput of
Computatlon DECRYPT computation
of CBent’s on encrypted
data

-
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Expressive Compact ciphertext, Encryption and
Functionality: independent of function evaluation
Supports arbitrary circuit size commute!
circuits Enc(f(x)) =* f(Enc(x))
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Deniable FHE [agm21]

L,

«m @. pk
B cty, cty, ..., Cty

@ ct* = Eval(ZiL,, cty, ..., Cty)

Bob, for whom
did you vote?
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Deniable FHE [agm21]

. cty = Enc(p: Enc(p
ﬁ ipk, Enc (Pkr'boi 1), bo, '}y ~ ¢ (DK, Enc(pk,I by; 1), by, 7},

“Fake” Distribution “Honest” Distribution

M
@

Bob, for whom
did you vote?




Lattices




What is a lattice?
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Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} CR":

n
L= b;-Z={Bx:x€Z"}
i=1 °
The same lattice has many bases e

n «

EZZC;-Z ? : R
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Minimum Distance and Successive Minima

@ Minimum distance

A1 = min X — o
= min k-l : .
— min_|x| 2L
xE L, X0 /7\
A1 p

T\

[ ]
- Ll L) - .
@ Successive minima (i =1,...,n) °
(]

Ai = min{r : dim span(B(r) N L) > i} .




Minimum Distance and Successive Minima

@ Minimum distance

A= i - e 7
1 ymin [x =y R
— min_|x| :
x€L x40 Ve
@ Successive minima (i =1,...,n) ’ \J .
Ai = min{r : dim span(B(r)N L) > i} . o °

@ Examples
o Zm: >\1:)\2:---:>\n:1
e Always: A\ < < ... <\,




Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Z¥) of
length (at most) ||Bx|| < Aq




Approximate Shortest Vector Problem

Definition (Shortest Vector Problem, SVP.,)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € ZK) of
length (at most) ||Bx|| < A1




Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||[Bx — t|| < u from the target




Approximate Closest Vector Problem

Definition (Closest Vector Problem, CVP,)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||Bx — t|| < ~u from the target

N EEE T S



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi,...,Bx, of length (at most) max; || Bx;|| < A,




Approximate Shortest Independent
Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP. )

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < v,




Random Lattices in Cryptography

e Cryptography typically uses (random) lattices A
such that

o A C Z9 is an integer lattice
o gZ9 C A is periodic modulo a small integer g.

@ Cryptographic functions based on g-ary lattices
involve only arithmetic modulo q.

0 Definition (g-ary lattice)
N is a g-ary lattice if gZ" C N C Z"

Examples (for any A € Z7*9)
@ N\g(A) ={x|xmod g € ATZZ} WA
° /\qL(A):{x|Ax:0mod q} C 2°







One Way Functions

f:D - R, One Way




Ajtai’'s One Way Function

m

(C—_— )

@ Parameters: m,n,q € Z
o Key: A e Zg*"
o Input: x € {0,1}™

@ Output: fa(x) = Ax mod q

Theorem (A'96)

For m > nlgq, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.




Regev’s One Way Function

o AcZIM™¥ scli, ecE™ P
® ga(s ) =As mod ¢




Regev’s One Way Function

o AcZy*F seZiectm P
® ga(s;e) = As+emod g T
@ Learning with Errors: Given A y
and ga(s,e), recover s. M

Theorem (R'05)

The function ga(s,e) is hard to M A +|el—=>|b

invert on the average, assuming
SIVP is hard to approximate in the .

worst-case.




Short Integer Solution Problem

let A€ ngm, q = poly(n),m = Q(nlog q)

Given matrix A, find “short” (low norm) vector x such that

Ax =0 mod q € Zg

f

\

n mod q

44




Learning With Errors Problem

Distinguish “noisy inner products” from uniform

Fix uniform s eZq”

b b
al,b1=<a1,s>+e1 al?bl
b b
a,, b,=<a,,s>+e, a’y , b’
| VS :
I |
| ;
b b
a,, b, =<a,,s>+e, an, b,

3 uniforme 7., e,~ de7,




Recap:Lattice Based One Way Functions

Public Key A € Zg*™, q = poly(n), m = Q(nlogq)

Based on SIS Based on LWE

fa(x) = Axmod q € Zj ga(s,e) = s'A +e'modq € Lq
® \ery short e, injective
® OWEF if LWE is hard [Reg05...]

® Short x, surjective
® CRHF if SIS is hard
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Public Key Encryption (regevos)

» Recall A (e) = u mod g hard to invert

4 moog

« Secret: e, Public: A, u { A }[e]
% Encrypt (A, u) :

» Pick random vector s

» Co=A!s + noise

» C;=U'S+noise + msg

Small only
if eis small

% Decrypt (e) :

» el Cg—C, = msg + noise 47



Public Key Encryption (regevos)

¢ Recall A (e) =u mod g hard to invert

% Secret: e, Public: A, u { A }e = {U} mod ¢

+ By SIS problem, hard to find short e

+ By LWE problem, ciphertext appears random
+ Cy=Als + noise, looks like random
% Cy=U's+noise + msg, looks like random + msg

+ Hence hides message “msg”

48



For Signatures, need
Lattice Trapdoors




Trapdoor Functions

Generate (f,T)

f:D - R, One Way




Inverting functions for Crypto

® Given u = f,(x) = Ax modq
® Sample

X o= fi' ()

with prob o« exp(—Il x’ I?/0?)

Latter distribution need

(
( lattice trapdoors!

nodq
® |

Preimage Sampleable Trapdoor Functions!

Generate (x, y) in two equivalent ways

OR

Same Distribution (Discrete Gaussian, Uniform) ! |



Lattice Trapdoors: Geometric View




Parallelopipeds




Parallelopipeds




What’s my
closest lattice
point?

Good Basis




Declared
closest point

Good Basis

o o o
T o
o o .V o o o
O
o o o \ o o o
o o o o o o




Bad Basis




Declared
closest point

Bad Basis

Closer Lattice
point

Output center of parallelopipid containing T

Not So Accurate...




Basis quality and Hardness

SVP, CVP, SIS (...) hard given arbitrary
(bad) basis

Some hard lattice problems are easy
given a good basis

Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!




Lattice Trapdoors

Recall u = fj(x) = Axmodg
Wan't a - J‘,:,,\.' ‘-_::.....,.; ”‘ 3

X' o= fi'(u) E

with prob 0 d exp(_" x' "2/02) FOE

A ={x:Ax = 0mod q} € Zg'

Short basis for A lets us sample from f5 *(u)

with correct distribution!
60



Digital Signatures

| private key

Everybody knows Alice’s
Only Alice knows the corresponding private key

Goal: Alice sends a “digitally sighed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed




Digital Signatures from Lattices

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about secret key:

+
4+
+
*t oy
-{-’#-+++

+
+

+
+ "+ + *

> Verify(A, i, z): check that Az = H(u) and z is sufficiently short.

» Security: forging a signature for a new message p* requires finding
short z* s.t. Az* = H(u*). This is SIS: hard!

FYNEEE. W S M. fNUY e e

‘ ¢ ! i&"‘_ \;‘

<

' §

e \
A\

Wz

Vo o

i

4

1



summary

* Post Quantum Crypto: Applications
* Basics of Lattices

* Hard Problems on Lattices

* Public Key Encryption

* Lattice Trapdoors

* Digital Signatures

[ Thank You

J Images Credit: Hans Hoffman

Slides Credit: Daniele
Micciancio, Chris Peikert
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