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Abstract—The Learning with Errors (LWE) problem has been
extensively studied in cryptography due to its strong hardness
guarantees, efficiency and expressiveness in constructing ad-
vanced cryptographic primitives. In this work, we show that
using polar codes in conjunction with LWE-based encryption
yields several advantages. To begin, we demonstrate the obvious
improvements in the efficiency or rate of information transmis-
sion in the LWE-based scheme by leveraging polar coding (with
no change in the cryptographic security guarantee). Next, we
integrate wiretap polar coding with LWE-based encryption to
ensure provable semantic security over a wiretap channel in
addition to cryptographic security based on the hardness of LWE.
To the best of our knowledge this is the first wiretap code to have
cryptographic security guarantees as well. Finally, we study the
security of the private key used in LWE-based encryption with
wiretap polar coding, and propose a key refresh method using
random bits used in wiretap coding. Under a known-plaintext
attack, we show that non-vanishing information-theoretic secrecy
can be achieved for the key. We believe our approach is at least as
interesting as our final results: our work combines cryptography
and coding theory in a novel “non blackbox-way” which may be
relevant to other scenarios as well.

I. INTRODUCTION

The study of the problem of secure communication, pi-
oneered by Shannon, has received significant attention over
the last several decades. Broadly speaking, the two main
approaches to this problem are information-theoretic secrecy
and cryptography. In the former, there are no assumptions
made on the computational power of the adversary, but one
must assume that the channel between the legitimate user
and adversary suffers more noise than that between the two
legitimate users [1]. In the latter, there are no assumptions
made on the channel or number of links wiretapped by the
adversary, but the adversary is assumed to be computationally
bounded.

In this work, we study the possibility of achieving the
best of both worlds. In particular, we propose a hybrid
scheme which combines the benefits of wiretap polar codes
[2] [3] with lattice based cryptography [4]. In more detail, our
construction achieves information-theoretic security in wiretap
channels with an advantage for the legitimate receiver over the
wiretapper and computational security based on the learning
with errors (LWE) problem when both the eavesdropper and
the legitimate receiver have noiseless channels. The choice
of LWE based encryption as the underlying cryptographic

scheme is natural in hindsight, due to the structure of the
LWE problem. The LWE assumption roughly states that noisy
inner products over a finite field are indistinguishable from
elements chosen uniformly at random to a computationally
bounded adversary. Here, the noise is chosen from a Gaussian-
like distribution which composes well with the noise of the
wiretap channel. This enables us to analyze the codeword
received by the adversary from both an information-theoretic
and cryptographic point of view. For more details, we refer
the reader to the main body of the paper.

The remainder of the paper is organized as follows. In Sec-
tion II, we recap the existing wiretap polar coding scheme and
encryption scheme using LWE. In Section III, we introduce
LWE-based encryption with polar coding and demonstrate
its advantages. In Section IV, we integrate wiretap polar
coding with LWE-based encryption and provide a scheme
that gives computational security over a noiseless channel and
information theoretic guarantees over a wiretap channel. In
Section V, we analyze the security of the key of our scheme
under passive known-plaintext attacks in wiretap channels.
We also provide a modified scheme which gives improved
information-theoretic guarantees for the security of the key.
Section VI includes possible extensions to our work.

II. PRELIMINARIES

In this section we briefly introduce ideas in polar coding
used for achieving secrecy capacity in wiretap channels and
basic ideas of symmetric key cryptography using Learning
With Errors problem. We follow standard notation to let Fq ,
where q is prime, denote the finite field with q elements, while
Xn (and other similar notation) denote length-n vectors.

A. Wiretap channel and security metrics

The wiretap model, shown in Fig. 1, involves two channels
W1 : X → Y and W2 : X → Z [1]. For the purpose of this

Alice
Mk

Encoder
Xn

W1
Bob
Y n

W2
Eve
Zn

Random vector
Rm

Fig. 1: Wiretap Channel Model



work, we assume that the input and output alphabet of W1

and W2 are Fq , i.e., X,Y, Z ∈ Fq . A message Mk ∈ F kq is
encoded by Alice to a codeword Xn, typically using a random
vector Rm ∈ Fmq . The legitimate receiver Bob receives Y n

through W1 and decodes it to an estimate M̂k. Eve receives
Zn through W2. The goal is to design a coding scheme that
ensures probability of decoding error is negligibly small for
Bob, i.e., Pr{M̂k 6= Mk) → 0 (reliability), and negligibly
small leak of information to Eve, i.e., I(Mk;Zn)→ 0 (strong
secrecy).

In [5], the idea of semantic secrecy was extended to the
wiretap setting. Formally, semantic secrecy is measured in
terms of the metric termed advantage, denoted Adv(Mk;Zn),
which measures the improvement obtained in estimation of
any function of Mk by the use of Zn maximized over all
distributions of Mk [5], [6]. As shown in [5], semantic secrecy
and strong secrecy are related as follows:

Adv(Mk;Zn) ≤
√
2 ln 2max

P
Mk

I(Mk;Zn). (1)

From (1), it is clear that schemes that achieve strong secrecy
will also achieve semantic secrecy. By s-bit semantic secrecy,
we mean that Adv(Mk;Zn) ≤ 2−s. So, the number of bits of
semantic secrecy can be computed as

s ≈ −1

2
log2

(
2 ln 2max

P
Mk

I(Mk;Zn)

)
. (2)

B. Wiretap polar coding

For a channel W (y|x) with q-ary input x ∈ Fq and output
y ∈ Y , the Bhattacharya parameter is defined as [7]

Z(W ) =
1

q(q − 1)

∑
x,x′∈Fq,x 6=x′

∑
y∈Y

√
W (y|x)W (y|x′).

The channel W has capacity, denoted C(W ), close to log2 q
bits per channel use if Z(W ) ≈ 0, and capacity close to 0 if
Z(W ) ≈ 1.

For the purposes of polar coding, we assume that W1

and W2 are q-ary symmetric channels. Let n = 2b be a
power of 2. As shown in [8], [9], n instances of W1 and
W2 can be transformed into n q-ary input channels W

(i)
1

and W
(i)
2 , 1 ≤ i ≤ n, which are polarized as either good

or bad channels depending on their Bhattacharya parameters
Z(W

(i)
1 ) and Z(W

(i)
2 ). For achieving strong secrecy on the

wiretap channel [2], the following definitions of good and bad
polarized channels are made using a security function denoted
αn and a parameter β ∈ [0, 1/2]:

I(αn,W2) = {i : C(W (i)
2 ) < αn} (αn-poor for Eve) (3)

G(W1) = {i : Z(W (i)
1 ) < 2−n

β

/n} (good for Bob) (4)

B(W1) = {i : Z(W (i)
1 ) ≥ 2−n

β

/n} (bad for Bob) (5)

Let IM = I(αn,W2) ∩ G(W1) denote the symbol channels
that are both αn-poor for Eve and good for Bob. Let IR =
[n]\I(αn,W2) denote the channel indices which are not poor
for Eve. We assume that k = |IM | and m = |IR|.

The wiretap polar encoder creates a vector V n =
[V1, V2, . . . , Vn] as follows: (1) message symbols are assigned
to indices in IM , i.e., VIM = Mk, (2) random symbols are
assigned to indices in IR, i.e., VIR = Rm, (3) zeros or any
other frozen symbols are assigned to the remaining indices
in V n. The codeword is generated Xn = V nGn, where Gn
denotes the polar code generator matrix [8], [9]. The entire
wiretap polar encoding process described above is denoted
Xn =WPn(M

k‖Rm).
1) Security: From [2], we have I(Mk;Zn) ≤
|I(αn,W2)|αn. By choosing the security function αn,
we bound the mutual information leaked to Eve for any
input distribution of messages, and compute semantic secrecy
through (2).

2) Reliability and chaining: Since B(W1) ∩ IR 6= φ in
general, a chaining construction [3] over multiple blocks is
needed to ensure reliability. Pick a subset of message indices
IE ⊂ IM such that |IE |= |B(W1) ∩ IR|. Random symbols
placed in IE in the j-th block are used in B(W1)∩IR in the
(j + 1)-th block for j = 1, 2, . . .. In the first block, random
secret symbols known to both Alice and Bob are used in
B(W1) ∩ IR.

C. Symmetric key encryption scheme based on LWE

Let q be a prime number, and l, n be such that q = poly(l)
and n > l log q. Let Dq,α denote the discrete Gaussian1 distri-
bution on the integers from −(q/2−1) to q/2−1 with standard
deviation αq, i.e. E ∼ Dq,α has PMF Pr(E = i) ∝ e−i

2/2αq

for integer i, −(q − 1)/2 ≤ i ≤ (q − 1)/2. The parameter α
is chosen as 1/poly(l) and satisfies αq > 2

√
l.

The LWE problem is to find Sl ∈ F lq given Un = (SlA+

En) mod q, where A ∈ F
(l×n)
q is uniformly random and

En ∈ Fnq chosen i.i.d according to Dq,α. With parameters
chosen as above, it has been shown [10] that solving LWE is at
least as hard as solving a shortest vector problem (GAPSVP) in
O(n/α) in the worst case. We will use the decisional version
of the LWE problem [10], [11] which states that distinguishing
an LWE sample from an uniformly random vector is as hard
as the search version for a computationally bounded adversary.

Below, we recap a symmetric key encryption scheme based
on LWE [4]. Here, Sl plays the role of the shared secret key.
Encryption: n message bits Mn ∈ {0, 1}n are encrypted as

Y n =
(q + 1)

2
Mn + SlA+ E mod q. (6)

Send (A, Y ).
Decryption: Using Sl, A and Y n, compute

Y n − SlA =
(q + 1)

2
Mn + E mod q. (7)

If −q/4 ≤ (Yi−SlA) ≤ q/4, decrypt as M̂i = 0, else M̂i = 1,
1 ≤ i ≤ n.

1A Gaussian distribution discretized over a lattice, so that non-lattice points
have weight zero, and lattice points have weight proportional to a Gaussian.
Please see [10] for a formal definition.



Since the distribution of SlA+E is close to uniform, distri-
bution of Y is also close to uniform. This is the basis for the
security of Mn in encryptions based on LWE. The probability
of decoding error is upper bounded by the probability that
E ≥ q/4 or E ≤ −q/4, which can be calculated using the
distribution of E.

III. POLAR CODED LWE

In this section, we will introduce polar coded secret key en-
cryption using LWE. This has similarities to other encryption
schemes in [4], [12].

A. LWE channel

The channel induced during the LWE encryption/decryption
(see (7)), which we will call the LWE channel, can be
described as

Y = (X + E) mod q, (8)

where X ∈ {0, 1, . . . , q − 1} is the transmitted symbol, E ∼
Dq,α is discrete Gaussian and Y is the output symbol. We
will denote the LWE channel as W1 and its transition matrix
as W1(y|x). Since the channel is mod q addition, it is clear
that the rows of W1(y|x) are permutations of the PMF of E.
Therefore, W1 is symmetric.

Any error-correcting code that is effective over W1 can
be combined with LWE encryption to improve the overall
transmission rate. We consider polar codes here because they
have been shown to achieve capacity over symmetric channels
and have proved to be effective over wiretap channels as well.

B. Polarization of LWE channel

We will consider n instances of the LWE channel W1,
where n = 2b is a power of 2. After the polarization
transform, we obtain n symbol channels W

(i)
1 . A symbol

channel is classified as good, if its Bhattacharya parameter
Z(W

(i)
1 ) satisfies Z(W (i)

1 ) ≤ 2−n
β

/n (for a parameter β),
and classified as bad otherwise. From [7, Theorem 4, Prop 4],
we have

Z(W (2i)) = Z(W (i))2, (9)

Z(W (2i−1)) ≤ min{q Z(W (i)),

2Z(W (i)) + (q − 1)Z(W (i))2}. (10)

Using these relations recursively, we can evaluate upper
bounds on Z(W (i)

1 ) for each i. Using these upper bounds, the
symbol channels are classified as good. Though working with
upper bounds reduces rate, this appears to be the best-known
procedure currently for q-ary channels.

We denote the good and bad channels as G(W1) and B(W1),
respectively. Further, let k = |G(W1)| be the number of good
channels.

C. Polar-coded encryption and decryption

Generate parameters and matrices as per LWE encryption
in Section II-C. Let Gn denote the generator matrix for the
polar code [8].
Encryption: To encrypt a message Mk ∈ F kq , we generate a
vector Un by mapping the message Mk to the good channel
indices G(W1) and setting the bad channel indices B(W1) to
frozen symbols known to both Alice and Bob. Compute

Y n = UnGn + SlA+ En mod q.

Send (A, Y n).
Decryption: Using Sl, A and Y n, compute

Y n − SlA = UnGn + En mod q.

Run the successive cancellation decoding algorithm of the
polar code [8] to decode Mk.
Security: Assume there exists an algorithm which can distin-
guish UnGn+SlA+En mod q from an uniformly random
vector from Fnq . Then, from [10, Lemma 4.2], there exists an
efficient algorithm to find Mk and Sl by solving the search
LWE problem in a lattice, which is the union of lattices defined
by the rows of matrices A and Gn. So, breaking polar-coded
LWE is at least as hard as solving an LWE problem.
Reliablity: Probability of block error of the q-ary polar code is
upper bounded by 2−n

β

[7], which is small for suitably large
values of n.

D. Transmission rate vs decoding error probability

A gain in transmission rate or decoding error probability is
to be expected when any error-correction code is introduced.
We will compare uncoded LWE and polar-coded LWE for
varying values of qα, the standard deviation of the error E.
Uncoded: The rate of transmission of LWE (Section II-C)
without any coding is seen to be 1 bit per channel use for
all values of qα. The decoding error probability varies with
qα, and is upper bounded as nPr(E /∈ [−q/4, q/4]).
Polar-coded: For polar-coded LWE, the rate is |G(W1)|

n log2 q
bits per channel use and the the decoding error probability is
upper bounded by 2−n

β

. Hence, multiple rates and decoding
error probabilities are possible by varying the parameter β at
the same value of qα.

Fig. 2 shows a plot of the upper bound on decoding error
probability versus rate of transmission for n = 8192 and q =
127 with different values of qα. We observe that variation of
β provides useful tradeoffs between decoding error probability
and rate of transmission. At qα = 4, more than two times the
rate of uncoded transmission is possible at the same decoding
error probability.

IV. WIRETAP-CODED LWE-BASED ENCRYPTION

In this section, we consider the use of LWE-based en-
cryption over the wiretap channel model as shown in Fig.
1. The main channel W1 is the LWE channel from Section
III. The wiretapper’s channel W2 is assumed to be weaker
with respect to W1 (for instance, W2 could be degraded with



1 1.2 1.4 1.6 1.8 2 2.2 2.4
10−16

10−12

10−8

10−4

100

xuncoded, 4

xuncoded, 6

xuncoded, 7

Po
la

r,
7

Po
la

r,
6

Po
la

r,
4

Rate (bits/channel use)

B
lo

ck
er

ro
r

ra
te

Fig. 2: Decoding error vs rate, n = 8192, q = 127, β varied
from 0.2 to 0.49. The value of qα is shown next to plot.

respect to W1), so that a wiretap polar code (see Section II-B)
can be constructed with positive rate. Our goal is to design a
coding/encryption scheme with quantifiable semantic secrecy
when W2 is a weaker wiretapper’s channel, while retaining
LWE-based cryptographic security always.
Encryption: Construct the wiretap polar code as in Section
II-B. Select parameters, vectors and matrices as per LWE
encryption in Section II-C. Compute

Y n =WPn(M
k‖Rm) + SlA+ En mod q. (11)

Send (A, Y n). Use suitable block chaining for polar wiretap
coding as described in Section II-B.
Decryption: Decode Mk from Y n − SlA using the wiretap
polar code.

The LWE-based security is clear from the construction.
However, it is interesting to consider the security of Mk over
a wiretap channel.

A. Semantic secrecy over wiretap channel

In this subsection, we will assume that W2 has a q-ary
output alphabet, is symmetric and degraded with respect to
W1. Based on this assumption, we quantify the semantic
secrecy for a fixed value of security function αn. An important
remark here is that, for secrecy over wiretap channel, we do
not require the secret key Sl and will assume that it is known
to the eavesdropper.

The computation of semantic secrecy is simple if W2 is
degraded with respect to a q-ary erasure channel with erasure
probability ε, denoted Wε, which has the transition matrix
Pr(y = u|x = u) = 1 − ε, Pr(y = e|x = u) = ε for
u ∈ {0, 1, . . . , q−1}. The following lemma is easy to establish
and we skip the short proof.
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Fig. 3: Semantic secrecy for wiretap polar code.

Lemma 1. A symmetric q-ary channel W is degraded with
respect to the q-ary erasure channel Wε(W ) with erasure
probability ε(W ) = qwmin, where wmin is the minimum
element in any row of the transition matrix W (y|x).

Using Lemma 1, we have

|I(W2, αn)|≤ |I(Wε(W2), αn)|. (12)

The RHS above can be computed using the following rela-
tionships that apply to the symbol channels of a q-ary erasure
channel, denoted W (i)

ε , when q is prime [8], [9].

Z(W (2j−1)
ε ) = 2Z(W (j)

ε )− Z(W (j)
ε )2, (13)

Z(W (2j)
ε ) = Z(W (j)

ε )2, (14)

C(W (i)
ε ) = 1− Z(W (i)

ε ), (15)

where C(W
(i)
ε ) is the capacity of the i-th symbol channel.

It is shown in [2, Propostion 16] that the information leaked
to the eavesdropper is upper bounded by the sum of the bit
channel capacities of the αn poor channels of Eve. Using this
result and (12), we can compute the following bound:

I(Mk;Zn) ≤ αn|I(Wε(W2), αn)|. (16)

Now, we can use (1) and (2) to calculate the number of bits of
semantic secrecy. Fig. 3 shows the computed semantic secrecy
versus ε(W2) for n = 4096 and n = 2048 with q = 113. For
each ε, the value of αn was chosen so that there are 500 good
symbol channels for n = 4096 and 300 good symbol channels
for n = 2048.

B. Worst-case ε(W2) for a fixed W1 and secrecy capacity

Since ε(W2) quantifies the information leaked to the eaves-
dropper, it is interesting to characterize the least ε(W2) (leaks
the most information) over all W2 that are degraded with
respect to W1 (denoted W2 � W1) and achieve a secrecy
capacity of Cs = C(W1)− C(W2). The worst-case ε(W2) is



actually a function of W1 alone and can be written down as
follows:

ε∗(W1) = min
W2�W1

C(W2)=C(W1)−Cs

ε(W2)

The distribution of the error E determines W1. While the
choice of discrete Gaussian is justified in certain cryptographic
reductions, the choice remains unclear in the wiretap scenario.
One possible method to choose W1 and the distribution of E
is to maximize the worst-case ε(W2). In other words, choose
W1 as W1 = argmax ε∗(W1).

As of now, this problem remains as future work.

V. SECURITY OF KEY AND KEY REFRESH

In this section, we consider a passive, known-plaintext
attack, where the attacker knows Mk and is interested in
learning the secret private key Sl. Note that the attacker
receives the exact ciphertext with no noise (i.e., there is no
wiretap channel). By learning Sl, an attacker breaks all sub-
sequent encryptions. So, a known-plaintext attack on the key
is important to study. In [13], information-theoretic security
of the secret key in a class of randomized encryption schemes
was shown to reduce with the number of transmissions.

One of the advantages of wiretap polar coding is that it
allows for refresh of key with information-theoretic guarantees
on the security of the key. The encryption step in wiretap-
coded LWE with key refresh is as follows. Assume the length
of the secret l = m < |IM |+|IR|, and the length of the
message k = |IM |+|IR|−l.
Encryption: Pick I ′M ⊆ IM such that |I ′M |= k. The message
Mk is assigned to symbol channel indices in I ′M . Pick I ′R =
(IM \ I ′M )∪IR. The random vector Rm is assigned to symbol
channel indices in I ′R. Zeros or frozen symbols are assigned
to remaining symbol channel indices. Compute

Y n =WPn(M
k‖Rm) + SlA+ En mod q. (17)

Send (Y n, A). Set Sl = Rm for the next block.
The decryption process is obvious here, except for require-

ment of the chaining construction to decode random bits in
bad indices for Bob, which has been skipped to keep the
description simple.

In the theorem which follows, we present a non-vanishing
lower bound on the equivocation of the key to a known-
plaintext attacker. Let Sli denote the LWE secret key in the
i-th round, and let Sl1:µ = Sl1, S

l
2, . . . , S

l
µ be the collection of

secret keys over µ rounds. Let Mk
1:µ, Rm1:µ, A1:µ, En1:µ and

Y n1:µ be similar collections of message bits, random vectors,
matrices, error vectors and received symbols over µ rounds.

Theorem 1.

H(Sli |Mk
1:µ, A1:µ, Y

n
1:µ) = c > 0,

where

c = H(Rm1 |Mk
1:2, A1:2, Y

n
1:2) +H(En1 |Mk

1 , R
m
1 , A1, Y

n
1 )

− lim
η→0+

(
H(η) + η log(qmµ+l − 1)

)
.

Proof. The proof uses ideas from [13] along with the use of
the properties of wiretap polar coding. We skip the details of
the proof for want of space.

Theorem 1 is to be contrasted with the results in [13], where
the security of the key is shown to go to zero for a class
of randomized encryption schemes. In this case, the nonzero
equivocation is because of the refresh of the key.

VI. CONCLUSION

In this paper, we combined polar codes with LWE-based
encryption methods to design encryption schemes that offer
both semantic secrecy in wiretap channel and computational
security in noiseless channel. We have also calculated the se-
mantic secrecy metric of the designed wiretap-LWE encryption
scheme assuming degradation with respect to a suitable erasure
channel. Then, we derived information-theoretic guarantees of
the key under passive known plaintext attacks and suggested
a key refresh method using random bits of wiretap polar en-
coding to give nonvanishing information-theoretic guarantees
for the key.
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[9] E. Şaşoğlu, “Polarization and polar codes,” Foundations and Trends in
Communications and Information Theory, vol. 8, no. 4, pp. 259–381,
2012. [Online]. Available: http://dx.doi.org/10.1561/0100000041

[10] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 34:1–34:40, Sep. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1568318.1568324

[11] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” Cryptology ePrint Archive, Report 2011/501, 2011,
https://eprint.iacr.org/2011/501.

[12] H. Gilbert, M. J. B. Robshaw, and Y. Seurin, How to
Encrypt with the LPN Problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 679–690. [Online]. Available:
https://doi.org/10.1007/978-3-540-70583-3 55

[13] F. Oggier and M. J. Mihaljevic, “An information-theoretic security eval-
uation of a class of randomized encryption schemes,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 2, pp. 158–168, 2014.


