

Obfuscation

Obfuscated code

#include<stdio.h> #include<string.h>
main(){char*0,1[999]="''acgo\177"|xp .
-\0R^8)NJ6%K40+A2M(*0ID57\$3G1FBL";
while(0=fgets(1+45,954,stdin)){*1=0[
strlen(0)[0-1]=0,strspn(0,1+11)];
while(*0)switch((*1&&isalnum(*0))-!*1)
{case-1:{char*I=(0+=strspn(0,1+12)
+1)-2,0=34;while(*I&3&&(0=(0-16<<1)+
*I---'-')<80);putchar(0&93?*I
&8||!(I=memchr(1 , 0 , 44)) ?'?':
I-1+47:32); break; case 1: ;}*1=
(*0&31)[1-15+(*0>61)*32];while(putchar
(45+*1%2),(*1=*1+32>1)>35); case 0:
putchar((++0 ,32));}putchar(10);}}

- Produces correct output
- Impossible to reverse engineer

Obfuscation

Compile a circuit C into one Ĉ that *preserves functionality,*and is <u>unintelligible</u> (resistant to reverse engineering)

Indistinguishability Obfuscator iO [BGI+01]

"Which one of two equivalent circuits $C_1 \equiv C_2$ is obfuscated?"

 $C_1 \equiv C_2$, meaning

- Same size $|C_1| = |C_2|$
- Same truth table $TB(C_1) = TB(C_2)$

$$\left\{\begin{array}{c} iO(C1) \\ \end{array}\right\} \approx \left\{\begin{array}{c} iO(C2) \\ \end{array}\right\}$$

Trivial if efficiency is not a concern

Goal: Find an efficient compiler iO

Before we proceed... why do we care?

- Seemingly useless definition
- We already know both circuits are equivalent. Does it matter what is the particular representation?
- Unclear if there are applications

"Theorem" (GGHRSW13,SW13...) : iO is (almost?) crypto-complete

Constructing iO: Broadly Two Approaches

- Direct Constructions
 - All based on "multilinear maps" [GGH13,CLT13,GGH15]
 - Constructed from lattices
 - Many attacks, fixes, repeat: hard to understand security

Bootstrapping based constructions

Recap: Bilinear Maps

- Cryptographic bilinear map
 - Groups G_1 and G_2 of order p with generators g_1, g_2 and a bilinear map $e: G_1 \times G_1 \to G_2$ such that

$$\forall a, b \in Z_p^*, e(g_1^a, g_1^b) = g_2^{ab}$$

- Hardness (Bilinear Diffie Hellman): Can compute degree 2 "in the exponent", degree 3 looks like random.
- Efficient Instantiation: Weil or Tate pairings over elliptic curves.
- Tremendously useful for crypto!

Multilinear Maps: Classical Notion

- Cryptographic n-multilinear map (for groups)
 - Groups $G_1, ..., G_n$ of order p with generators $g_1, ..., g_n$
 - Family of maps:

$$e_{i,k}: G_i \times G_k \to G_{i+k}$$
 for $i+k \leq n$, where

•
$$e_{i,k}(g_i^a, g_k^b) = g_{i+k}^{ab} \ \forall a, b \in Z_p$$
.

- Hardness: at least "discrete log" in each G_i is "hard".
 - And hopefully the generalization of Bilinear DH

- Applications described by Boneh and Silverberg in 2003
 - Pessimistic about existence in realm of algebraic geometry
- First candidate construction by Garg, Gentry, Halevi, 2013
 - Based on ideal lattices, ideas inspired by NTRU
- ullet Immensely useful, can be used to build $m{i}m{O}$ (and much more!).

Where are we with this?

Noisy multilinear maps:

[Garg-Gentry-Halevi13, Garg-Gentry-Halevi-Raykova-Sahai-Waters13, Coron-Lepoint-Tibouchi13, Gentry-Gurbonov-Halevi15, Coron-Lepoint-Tibouchi15,...]

[Badninarayanan-Miles-Sahai-Zhandry16, Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry16]:

IO assuming Weak MMAPs

Not broken (yet...)

Noisy multilinear maps:

[Garg-Gentry-Halevi13, Garg-Gentry-Halevi-Raykova-Sahai-Waters13, Coron-Lepoint-Tibouchi13, Gentry-Gurbonov-Halevi15, Coron-Lepoint-Tibouchi15,...]

Linearization attacks

All broken!

: [Miles-Sahai-Zhandry16, Apon-DGargM17, Cheon-Han-Lee-Ryu-Stehle15, Coron-Gentry-Halevi-Lepoint-Maji-Miles-Raykova-Sahai-Tibouchi15]

Slide Credit: Yael Kalai

[Badninarayanan-Miles-Sahai-Zhandry16, Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry16]:

IO assuming Weak MMAPs

Not broken (yet...)

Generation 1 iO (poly degree maps)

[GGHRSW13, BGKPS14, BR14, PST14, AGIS14, BMSZ16, CLT13, CLT15, GGH15, MSZ16, GMMSSZ16]

Open #1: Improve security from lattices

- What is the minimum functionality needed for iO?
- How much can we "clean up" assumptions?
- Sequence of works reduced degree from poly to constant

Generation 2 *iO* (constant degree maps)

Lin16, LV16, AS17, LT17

Generation 3 iO (maps <= 2, small heuristic component) AJLMS 19, A19, JLMS19, JLS19, AP20, GJLS20

Generation 4 iO (maps <= 2 + additional assumptions) JLS21, GP21, BDGM21, WW21, DQVWW21

JLS21: standard assumptions (SXDH, LWE, LPN, PRG in NCO)

Others: some nonstandard-ness (eg LWE w/ circularity)

Bootsrapping Based Constructions: Reduce, Reduce, Reduce

Generation 4 *iO* (maps <= 2 + additional assumptions)

JLS21, GP21,BDGM21,WW21,DQVWW21

JLS21: standard assumptions (SXDH, LWE, LPN, PRG in NCO)

Others: some nonstandard-ness (eg LWE w/ circularity)

Open #2: Post quantum iO from standard assumptions

Functional Encryption

 Functional Encodings (or succinct randomized encodings) (WW21, DQVWW21)

 Circularity assumptions on FHE (BDGM21, GP21) Most open, will focus on this

Functional Encryption Encryption with Partial Decryption Keys

 $(mpk, msk) \leftarrow Setup(1^n)$

Encrypt (mpk, x):

ct

Keygen(msk, F):

Decrypt (sk_F, ct):

Security:

Adversary possessing keys for multiple circuits F_i cannot distinguish $Enc(x_0)$ from $Enc(x_1)$ unless $F_i(x_0) \neq F_i(x_1)$

Functional Encryption [SW05,BSW11]

FE - 10 [AJ15, BV15, Lin16, LV16, AS16]

The following FE suffices for iO:

- Single key for a function with long output $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$
- |CT| is sublinear in output length m
- Supporting function class NC⁰

How to build it?

Natural Idea: Use LWE

-- Recall: LWE *only* assumption yielding FHE

Expressive
Functionality:
Supports
arbitrary circuits

Compact ciphertext, independent of circuit size

Perfect:
Encrypted
computation with
All or Nothing
Decryption

^{* :} up to minor variations

LWE - Leakage on Partial Decryption

- Using LWE, can support all polynomial sized circuits for FE
- But only for restricted security games
 - Adversary sees limited number of queries [GVW12, GKPVZ13, AR17], restricted types of queries [GVW15], combination of these [A17]
- Attacks against scheme when adversary violates security game [A17]

Causes of Attack and Ways to Overcome them?

In Most LWE Based FE Constructions

Learning With Errors → **Ciphertext**

Distinguish "noisy inner products" from uniform

In Most LWE Based FE Constructions

SIS Problem → Secret Key

Given matrix A, find "short" integer z such that $Az = 0 \mod q$

Many short vectors form a trapdoor for A Can be used to break LWE with matrix A

Decryption works

Encrypt (mpk, x):

$$c_1 = A_1, x_1$$
 $c_0 = A_1, 0$

LWE encodings of x

 $c_1 = A_1, x_1$
 $c_0 = A_1, x_1$

BGG+14 showed homomorphic evaluation algorithms eval_{ct} and eval_{pk} such that:

$$c_0 = A, 0$$

1. Compute $A_f = Eval_{pk}(A_1...A_n, f)$

1. Compute ct* = $Eval_{ct}(c_1...c_n, f)$

$$ct^* = [A|A_f], f(x)$$

BGG+14 showed homomorphic evaluation algorithms eval_{ct} and eval_{pk} such that:

Encrypt (mpk, x):

LWE encodings
of x

$$c_1 = A_1, x_1$$
 $c_n = A_n, x_n$

$$c_0 = A, 0$$

Keygen(msk, f):

- 1. Compute $A_f = Eval_{pk}(A_1...A_n, f)$
- 2. Compute short vector z such that

$$\left\{\begin{array}{c} A \mid A_f \end{array}\right\} \left[\begin{array}{c} Z \end{array}\right] = \left[\begin{array}{c} O \end{array}\right]$$

Decrypt (sk_f , ct) \rightarrow f(x)

1. Compute ct* = $Eval_{ct}(c_1...c_n, f)$

$$ct^* = \left[A | A_f \right], f(x)$$

BGG+14 showed homomorphic evaluation algorithms eval_{ct} and eval_{pk} such that:

Encrypt (mpk, x):

LWE encodings
of x

$$c_1 = A_1, x_1$$
 $c_n = A_n, x_n$

$$c_0 = A, 0$$

Keygen(msk, f):

- 1. Compute $A_f = Eval_{pk}(A_1...A_n, f)$
- 2. Compute short vector z such that

$$\left\{\begin{array}{c} A \mid A_f \end{array}\right\} \left[\begin{array}{c} Z \end{array}\right] = \left[\begin{array}{c} O \end{array}\right]$$

Decrypt (sk_f , ct) \rightarrow f(x)

1. Compute ct* = $Eval_{ct}(c_1...c_n, f)$

$$ct^* = \left[A | A_f \right], f(x)$$

Matrices in ct* and key match, can recover f(x)!

Catch: x is not hidden

GVW15 showed how to hide x in restricted security game

Encrypt (mpk, x): Use FHE to encrypt x_i denote by \hat{x}_i

$$c_1 = A_1, \hat{x}_1$$
 $c_n = A_n, \hat{x}_n$

$$c_0 = \begin{bmatrix} A, 0 \end{bmatrix}$$
 $c_{sk} = \begin{bmatrix} FHE.sk \end{bmatrix}$

Keygen(msk, f): Let $f' = FHE.Dec \circ f$

GVW15 showed how to hide x in restricted security game

Encrypt (mpk, x): Use FHE to encrypt x_i denote by \hat{x}_i

$$c_1 = A_1, \hat{x}_1$$
 $c_n = A_n, \hat{x}_n$

$$c_0 = A, 0$$
 $c_{sk} = FHE.sk$

Keygen(msk, f): Let $f' = FHE.Dec \circ f$

- 1. Compute $A_{f'} = Eval_{PK}(A_1...A_n, f')$
- 2. Compute short vector z such that

$$\left\{\begin{array}{c|c} A \mid A_{f'} \end{array}\right\} \left[\begin{array}{c} Z \end{array}\right] = \left[\begin{array}{c} O \end{array}\right]$$

Decrypt (sk_f , ct) \rightarrow f(x)

1. Compute ct* = $Eval_{ct}(c_1...c_n, f')$

$$ct^* = \left[A | A_{f'} \right], f(x)$$

OK to reveal \hat{x}_i Need work to argue that FHE.sk is hidden

Can be done in <u>restricted security game</u>, where Adv may not request any keys such that f(x) = 1

Attacks Outside Game[A17]

- Request keys for linearly dependent vectors
- Combine keys to get short vectors, hence trapdoor in certain lattice A*
- Manipulate challenge CT to get LWE sample with matrix B*
- A* and B* only match for keys where f(x)=1
- Lessons: *Inherent vulnerability* for "attribute hiding" scheme with this structure of keys

How do pairings help [GJLS20]?

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]

 $(mpk, msk) \leftarrow Setup(1^n)$

Encrypt (mpk, $x = (x_1...x_n)$):

ct

Keygen(msk, $C = (c_{11}....c_{nn})$):

Decrypt (sk_C, ct) outputs

$$\sum_{i,j} c_{ij} x_i x_j$$

No restrictions in the security game!

How do pairings help [GJLS20]?

- Compute $ct^* = [A|A_{f'}], f(x)$ as before using evaluation algorithm
- Looking more closely at structure of ct*:

$$ct^* = [A|A_f]^T s + f(x) + noise$$

- Encryptor knows (s, noise) and can provide Linear FE ciphertext for vector (s, noise)
- Key generator knows [A| A_f] and can provide Linear FE key for vector ([A| A_f]^T 1)
- Decryption recovers inner product ($[A \mid A_f]^T s + noise$, which can be subtracted from ct* to recover f(x) (upto rounding).

Using Pairing based FE to implement Quadratic (hence Linear) FE prevents the leakage created by LWE secret keys

Doing Without Pairings?

- Linear FE exists from LWE [ABDP15, ALS16] but does not suffice: same key structure
- There are other approaches [A19,AP20], but all suffer from unsimulatable key structure
 - No known attacks but do not admit proof

Challenge: Construct LWE based FE with more secure keys

Say we have secure keys...

- Pairings let us have secure keys.. are we done?
- Recall, challenge CT

$$ct^* = [A|A_f]^T s + f(x) + noise$$

- Decryption lets us get f(x) + noise
- Noise leaks too much information about x

Idea (AR17,A19,AJLMS19): flood noise to wipe out leakage

How to add flooding noise?

- Problem: Noise is too long! FE will not be compact ☺
- Idea: Use PRG use seed in encrypt, expand during decrypt
- Problem: Need PRG in degree 2 to use with pairings, but degree 2
 PRG insecure LV18,BBKK18,BHJKS19
- Can we flatten the degree of computation so public computation is high degree and private computation low degree (deg <= 2)?
 - Idea used in FE before GVW12, GVW15, AR17

Deep, public computation done publicly, shallow private computation, done using linear/quadratic Functional Encryption

Degree Flattening

Given: LWE encoding of input x (encoding may vary).

Want: to compute a "deep" (say NC_1) circuit f on x, to obtain an encoding of f(x)

Can represent deep computation f as equivalent function f' such that f' has public computation of high degree and private computation of low degree

Can build

- FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]
- FE for linear functions from LWE, DCR, DDH [ABDP15, ALS16]

Linear Functional Enc [ABDP15, ALS16]

 $(mpk, msk) \leftarrow Setup(1^n)$

Encrypt (mpk, $x = (x_1...x_n)$):

ct

Keygen(msk, $y = (y_1...y_n)$):

Decrypt (sk_v, ct) outputs

$$\sum_{i \in [n]} x_i y_i$$

No restrictions in the security game

More than n key requests

→ MSK leaked

Symmetric key FHE for Quadratic Polynomials [BV11a]

s: secret key

Encrypt (s, x_1 , x_2):

Sample u₁, u₂ randomly in ring. Sample err₁, err₂.

Compute:

$$c_1 = u_1 s + err_1 + x_1$$

$$c_2 = u_2 s + err_2 + x_2$$

Evaluate $(c_1, c_2, f = x_1 x_2)$:

Want: Use c_1 , c_2 to compute product ciphertext c_{12} that encrypts $x_1 x_2$

FHE Evaluation

We may write:

$$x_1 \approx c_1 - u_1 s$$

$$x_2 \approx c_2 - u_2 s$$

$$\therefore x_1 x_2 \approx c_1 c_2 - (c_1 u_2 + c_2 u_1) s + u_1 u_2 s^2$$

Let
$$c^{\text{mult}} = (c_1 c_2, c_1 u_2 + c_2 u_1, u_1 u_2)$$

Decryption
$$x_1x_2 \approx \langle (c_1c_2, (c_1u_2 + c_2u_1), u_1u_2); (1, -s, s^2) \rangle$$

Degree Flattening [AR17]

Recall FHE decryption equation:

$$x_1 x_2 \approx c_1 c_2 - (c_1 u_2 + c_2 u_1) s + u_1 u_2 s^2$$

What if we group the "fferently"

$$\therefore x_1 x_2 \approx c_1 c_2 - \begin{cases} \text{Known to} \\ \text{encryptor} \end{cases} + \begin{cases} \text{Known to} \\ \text{Generator} \end{cases}$$

Decryption

$$x_1x_2 \approx c_1c_2 + <(c_1s, c_2s, s^2); (-u_2, -u_1, u_1u_2) >$$

Degree Flattening [AR17]

Encryptor provides c₁,.....c_n as well as Linear FE encryption of vector

 (c_1s, c_2s,c_ns, s^2)

Key Generator provides Linear FE key for vector

$$(-u_2, -u_1, 0....0, u_1u_2)$$

Computing c_1c_2 herself, decryptor can recover :

$$x_1 x_2 \approx c_1 c_2 - u_2(c_1 s) - u_1(c_2 s) + u_1 u_2(s^2)$$

Key Insight: Quadratic terms are c_ic_j which are public Only 2n ciphertexts instead of n²

Deep
Computation
is on public
encodings

Key
Dependent
Computation
is Linear

Use to generate noise?

- Last slide: Degree reduction to linear (LWE/DDH...)
 - Adversary sees exact linear equations in secrets
 - Too much leakage!
- GJLMS19: Degree reduction to quadratic (pairings)
 - Adversary sees quadratic equations in secrets
 - May be secure (aka MQ assumption for some distribution)
 - "Weak LWE with Leakage"
- JLS21: Use LPN (!!) to resolve leakage

Open #3: Quadratic FE from LWE?

Open Problems

- Replace pairings with some weaker structure that can be built from LWE?
- New, simpler, plausible assumptions from lattices? Chart territory between LWE and multilinear map assumptions?
- Improve lattice based multilinear maps or iO?
- Build post quantum FE and base applications on this?
- Use LWE for applications of iO ? Eg. Deniable Encryption.

Thank You

Images Credit: Hans Hoffman Jackson Pollock