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Abstract
We provide a single-key functional encryption scheme for Deterministic Finite Automata (DFA).
The secret key of our scheme is associated with a DFA M , and a ciphertext is associated with an
input x of arbitrary length. The decryptor learnsM(x) and nothing else. The ciphertext and key
sizes achieved by our scheme are optimal – the size of the public parameters is independent of
the size of the machine or data being encrypted, the secret key size depends only on the machine
size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the entire
input x is hidden (as against x being public and a single bit b being hidden). Our single key FE
scheme can be compiled with symmetric key encryption as in [18] to yield reusable garbled DFAs
for arbitrary size inputs, that achieves machine and input privacy along with reusability under a
strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which has
short public parameters that are independent of the size of the machine or the data being en-
crypted, short function keys, and input-specific decryption time. However, the ciphertext of our
construction is large and depends on the worst case running time of the Turing machine (but not
its description size). These provide the first FE schemes that support unbounded length inputs,
allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.
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1 Introduction

Functional encryption permits controlled disclosure of encrypted data, enabling the evaluator
to learn some authorised function of encrypted data in the clear. In functional encryption
(FE), a secret key corresponds to a function f and ciphertexts correspond to strings from
the domain of f . Given a function SKf and a ciphertext CTx, the decryptor learns f(x) and
nothing else. Functional encryption has found diverse applications, such as spam filtering on
encrypted data [18], online dating [20], delegation of computation [24] and many others.

The function embedded within the secret key in FE is typically represented as a circuit.
While circuits are a powerful model of computation, the circuit representation has significant
drawbacks in practical scenarios. Consider the application of spam filtering on encrypted
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emails, where the email gateway may be given a key to test the incoming email for spam.
Representing the computation as a circuit forces emails to be of a fixed length – a requirement
which is ill-fitting and wasteful. Another significant drawback of the circuit model is that it
incurs worst case running time on every input.

In practice, most spam filters as well as malware and intrusion detection systems are
implemented using pattern matching operations represented as deterministic finite automata
(DFA) [28, 21, 6, 14]. Note that in all these applications, the size of the input is highly variable
and instance specific, and restricting it to be of fixed length is cumbersome. Therefore a
functional encryption scheme for DFAs which supports dynamic data length would be the
“right fit” in such situations. However, although functional encryption for circuits has been
constructed based on the hardness of Learning With Errors (LWE) in the single key setting,
it is unclear how to leverage these techniques to support the arbitrary data length required
by DFAs.

1.1 Our Results.
In this work, we provide a single-key functional encryption scheme for Deterministic Finite
Automata (DFA). The secret key of our scheme is associated with a DFA M , and a ciphertext
is associated with an input x of arbitrary length. The decryptor learns M(x) and nothing
else. The ciphertext and key sizes achieved by our scheme are optimal1 – the public key
size is independent of the machine and input size, the secret key size depends only on the
machine size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the
entire input x is hidden (as against x being public and a single bit b being hidden). Our
single key FE scheme can be compiled with symmetric key encryption as in [18] to yield
reusable garbled DFAs for arbitrary size inputs, that achieves machine and input privacy
along with reusability under a strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which
has short public parameters that are independent of the size of the machine or the data being
encrypted, short function keys, and input-specific decryption time. However, the ciphertext
of our construction is large and depends on the worst case running time of the Turing machine
(but not its description size). These provide the first FE schemes that support unbounded
length inputs, allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.

1.2 Related Work.
Functional encryption for DFAs has received some attention already. Closest to our work is
the “Attribute Based Encryption” scheme for DFAs constructed by Waters [29]. In [29], the
encrypt algorithm takes as input a pair (x, b) where x may be of arbitrary size, and b is a
bit. The key corresponds to a DFA machine M so that given a key for M and a ciphertext
for (x, b), the decryptor learns the bit b if and only if M accepts x. Note that in contrast to
our work, the vector x is not hidden by the construction, neither is the machine M ; only the
bit b is hidden. On the other hand, the construction [29] can support polynomially many
keys, whereas ours can only support a single key. Attrapadung [5] extended the work of

1 upto logarithmic factors.
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Waters [29] to achieve adaptive rather than selective security. Another work that constructs
Attribute Based Encryption for DFAs is by Boyen and Li [8]. However, in their construction,
the input size to the DFA must be bounded in advance; avoiding this restriction is the main
motivation for our work.

There are other known functional encryption systems that support unbounded size inputs,
even supporting Turing machines, achieving input specific runtime and dynamic data length
[17, 2, 7, 23, 12, 13]. However, the mildest assumption required by this line of work is the
existence of indistinguishability obfuscation.

From standard assumptions, single key functional encryption has been constructed for
all polynomial sized circuits [27, 18]. A natural approach to construct reusable garbled
DFA/TM then, is to convert the machine to a circuit and leverage the constructions of
[27, 18]. However, instantiating this compiler with the reusable garbled circuits construction
[18] leads to a construction that cannot support dynamic data lengths, which is the main
focus of this work. On the other hand, using the construction by Sahai and Seyalioglu [27]
leads to a DFA/TM FE construction with large public key and ciphertext size, since the
construction by [27] suffers from public key and ciphertext size that depend on the circuit
size. Please see Appendix A for more details.

1.3 Our Techniques.
To begin, we describe our single key FE scheme for DFA. Next, we describe how this
construction may be generalized to Turing machines.

1.3.1 Single Key FE for DFA.
We briefly recall how a DFA works. A DFA machine M is represented by the tuple
(Q,Σ, T, qst, F ) where Q is a finite set of states, Σ is a finite alphabet, T : Σ×Q→ Q is the
transition function, qst is the start state, F ⊆ Q is the set of accepting states. Upon input
w ∈ Σk for some arbitrary polynomial k, the machine M accepts w if and only if there exists
a sequence of states q1, . . . , qk so that q1 = qst, T (wi, qi) = qi+1 for i ∈ [k − 1], and qk ∈ F .

To mimic the DFA computation, a natural starting point is to imagine a function key
that stores the transition table of a DFA, receives as input the current (symbol, state) pair
and produces as output an encryption of the next state of the computation. In more detail,
say the encryptor provides encryptions of each input symbol xi, for i ∈ [|x|], in addition to
an encryption for the first (fixed) state qst. Now, the function key could accept 2 inputs
(x1, qst), lookup the transition table and produce an encryption of the next state q2. Suppose
this encryption can only be paired with the encryption of x2 and none other, then we could
provide (x2, q2) as input to the function in the next step, thus propagating the computation.

We tie together encryptions of symbol with encryptions of state via the notion of
decomposable functional encryption. Intuitively, decomposability requires that the public
key PK and the ciphertext CTy of a functional encryption scheme be decomposable into
components PKj and CTj for j ∈ [|y|], where CTj depends on a single deterministic bit yj and
the public key component PKj . All components CTj are tied together by common randomness
used for their creation, although each CTj may use additional independent randomness.
Aside from the message dependent components, a ciphertext can contain components that are
independent of the message and depend only on the common randomness. The main advantage
offered by decomposable functional encryption is that given the common randomness, each
ciphertext component CTj can be constructed independently of the rest. These components
can then be joined together to create a complete ciphertext which can then be decrypted
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successfully. Additionally, only components that were constructed using the same randomness
can be “joined”, thereby preventing mix and match attacks where an adversary tries to treat
mismatched symbol state pairs such (x3, q2) as a single legitimate input.

Now, suppose we have a decomposable functional encryption scheme for circuits. Then, we
may proceed with the aforementioned strategy and divide the ciphertext into two components
– the first encoding the current symbol, and the second encoding the current state. We may
use the function key to generate the second component, using the same common randomness
that was used to generate the first component.

To take this approach forward we must find a suitable decomposable functional encryption
scheme for circuits – fortunately most functional encryption schemes in the literature are
decomposable. In particular, we show that the the succinct single key FE by Goldwasser et
al. [18] is decomposable. This scheme appears suitable for our purposes as the ciphertext
and public key in this scheme are independent of circuit size.

However, note that the ciphertext of [18] suffers from output-size dependence, i.e. it
grows linearly with the output length of the circuit. This implies that the function key may
not produce an output that is proportional to the length of the ciphertext. To obtain a
(single key) construction from LWE, we resolve this issue by repurposing a classic trick from
Yao’s garbled circuit construction, so that the output length of the circuit can be made
independent of the ciphertext size, at the cost of blowing up the ciphertext size somewhat.
More concretely, instead of having the circuit output a new ciphertext, the encryptor provides
symmetric key encryptions of CktFE [18] ciphertext components, encrypting all possible
bit values (nesting CktFE ciphertext inside SKE ciphertext), and the function key outputs
the SKE keys to unlock the correct CktFE ciphertext components, corresponding to the bit
values chosen by the key. This allows us to select the next state with a circuit output length
independent of the ciphertext size. For more details, we refer the reader to Section 4. This
provides input privacy and reusability but not machine privacy. We achieve machine privacy
following ideas of [18] – see Appendix E for details.

1.3.2 Single key FE for Turing Machines.
To extend the above construction to support Turing Machines, we must address two challenges:
a) head movements should not reveal anything about the input and b) we need to write to
the tape. Below we describe how to handle each challenge in turn.

To overcome the first challenge, a natural approach is to use oblivious TMs, which fix
the head movement of a TM to be independent of the input. Moreover, there exist efficient
transformations that convert any Turing machine M that takes time T to decide an input
to an oblivious one that takes time T log T to decide the same input [25]. It remains to
address the challenge of handling tape writes. Since the head movements of the TM are
now fixed, the only thing that the transition function must specify is the next state, and
the symbol that must be written to the current tape cell. We leverage decomposability and
have the encryptor provide a ciphertext component encoding state, and another component
encoding current work tape symbol for every step in the computation. Indeed, this forces
our ciphertext to depend (linearly) on worst-case runtime of the Turing machine. All the
ciphertext components for a given time step are tied together with common randomness as
before. To ensure that the decryptor only learns the ciphertext components corresponding to
the particular state and tape symbol that occur during computation, the encryptor encrypts
all CktFE ciphertexts with symmetric key encryption SKE. As in the case of DFA, the
function key selects the appropriate SKE keys to reveal the CktFE ciphertext encoding next
state and symbol to be read.
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The careful reader may have noticed that the above description glosses over an important
detail: the cell that is written into at step i may be next accessed at any step j > i, so
the CktFE ciphertext at step i must encode SKE keys for some unknown future step j.
Fortunately, the machinery of oblivious TMs comes to our aid again. Since in an oblivious
TM, there exists a function t that computes the step that particular cell will be accessed next,
in step i, in addition to selecting the state for step i+ 1 as we did in DFAs, the function key
will also select the tape symbol to be read in step t(i). At any step j, the appropriate SKE
keys for the state were provided in step j− 1 and for tape symbol were provided at step i < j

where t(i) = j. Hence, the decryptor at step j has the SKE keys to unlock the CktFE CT
components for both state and tape symbol, which lets her proceed with the computation.
For more details, please see Appendix D.

1.4 Organization of the paper.
In Appendix A, we discuss additional related work. In Section 2, we define the preliminaries
we require for our constructions. In Section 3, we define the notion of decomposable functional
encryption. In Section 4, we provide our construction for single key FE for DFAs. We show
how to compile this with symmetric key encryption to achieve reusable garbled DFAs in
Appendix E. In Appendix D, we provide our construction for single key functional encryption
for Turing machines.

2 Definitions : FE for Deterministic Finite Automata

In this section we provide some notation and preliminaries that we require. In Appendix B,
we provide notation and additional definitions.

Functional encryption for deterministic finite automata (DFA) is defined analogously to
functional encryption for circuits, except that the public parameters may not depend on the
input length, which is unknown a priori. In this section, we will define single key functional
encryption for DFAs.

A DFA machine M is represented by the tuple (Q,Σ, T, qst, F ) where Q is a finite set of
states, Σ is a finite alphabet, T : Σ×Q→ Q is the transition function (stored as a table),
qst is the start state, F ⊆ Q is the set of accepting states. Upon input w ∈ Σk for some
arbitrary polynomial k (not known to the setup algorithm), the machine M accepts the input
if and only if there exists a sequence of states q1, . . . , qk so that q1 = qst, T (wi, qi) = qi+1 for
i ∈ [k − 1], and qk ∈ F . We say M(w) = 1 iff M accepts w and 0 otherwise.

2.1 Definition
Let Mκ : Qκ × Σκ → Qκ be a DFA family. A functional encryption scheme DfaFE for
M consists of four algorithms DfaFE = (DfaFE.Setup,DfaFE.KeyGen, DfaFE.Enc,DfaFE.Dec)
defined as follows.

DfaFE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK).
DfaFE.KeyGen(MSK,M) is a p.p.t. algorithm that takes as input the master secret key
MSK and a DFA machine M and outputs a corresponding secret key SKM .
DfaFE.Enc(PK,w) is a p.p.t. algorithm that takes as input the master public key PK and
an input message w and outputs a ciphertext CTw.
DfaFE.Dec(SKM,CTw) is a deterministic algorithm that takes as input the secret key
SKM and a ciphertext CTw and outputs M(w).
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I Definition 1 (Correctness). A functional encryption scheme DfaFE is correct if for all
M ∈M and all w ∈ Σ∗,

Pr
[ (PK,MSK)← DfaFE.Setup(1κ);

DfaFE.Dec
(

DfaFE.KeyGen(MSK,M),DfaFE.Enc(PK,w)
)
6= M(w)

]
= negl(κ)

where the probability is taken over the coins of DfaFE.Setup, DfaFE.KeyGen,
and DfaFE.Enc.

2.2 Security
In this section, we define simulation based security for single key FE for DFAs. The definition
is analogous to that for circuits, as provided in Appendix B.1.1.

I Definition 2 (FULL-SIM- Security for DFA-FE.). Let FM be a functional encryption scheme
for a DFA familyM. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim,
consider the following two experiments:

Expreal
DfaFE,A(1κ): Expideal

DfaFE,Sim(1κ):

1: (PK,MSK)← DfaFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← DfaFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM )
5: CT← DfaFE.Enc(PK,x)
6: Output (st,CT)

1: (PK,MSK)← DfaFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← DfaFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM )
5: C̃T← Sim(PK, skM ,M,M(x), 1|x|)
6: Output (st, C̃T)

The DFA functional encryption scheme FM is then said to be single query FULL-SIM
secure if there exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2),
the following two distributions are computationally indistinguishable:{

Expreal
DfaFE,A(1κ)

}
κ∈N

c
≈
{

Expideal
DfaFE,Sim(1κ)

}
κ∈N

3 Decomposable Functional Encryption for Circuits

In this section, we define the notion of decomposable functional encryption (DFE). Decompos-
able functional encryption is analogous to the notion of decomposable randomized encodings
[3]. Intuitively, decomposability requires that the public key PK and the ciphertext CTx of a
functional encryption scheme be decomposable into components PKi and CTi for i ∈ [|x|],
where CTi depends on a single deterministic bit xi and the public key component PKi. In
addition, the ciphertext may contain components that are independent of the message and
depend only on the randomness.

We assume that given the security parameter, the following spaces are fixed: P containing
public key components, R1, R2 containing randomness used for encryption and C containing
the encoding of a single message bit. The length of the message |x| can be any polynomial.
Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable if there
exists a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈ P for
i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.
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2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption. Apart
from the common randomness r, each CTi may additionally make use of independent
randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs
of size k, it is also decomposable into components corresponding to any partition of the
interval [k]. Thus, we may decompose the public key and ciphertext into any i ≤ k

components of length ki each, such that
∑
ki = k. We will sometimes use Ē(y) to denote

the tuple of function values obtained by applying E to each component of a vector, i.e.
Ē(PK,y, r) ,

(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k.

4 Single-Key Succinct FE for DFAs from LWE

In this section, we will construct a single key (public key) functional encryption scheme for
deterministic finite automata (DFA). Our construction makes use a decomposable single key
FE scheme for circuits, CktFE. In Appendix C.1, we show that:

I Lemma 3. The single key, succinct functional encryption scheme for circuits by Goldwasser
et al. [18], based on LWE (Appendix B.4) is decomposable.

Conceptually, we decompose the input into two components of size `1 and `2 each, where
the second component is further decomposed bit by bit. We will use the first component
to encrypt the current input symbol in the DFA computation and keys to select the next
state in the computation, and the second component to encrypt the current state in the DFA
computation. While the input symbol encoded in the first component can be treated as a
unit of size `1, it will be helpful for us to represent the encoded input of size `2 bit by bit.

Thus, we have,

CktFE.PK = (PK1,PK2,PKindpt) and CktFE.CT = (CT1,CT2,CTindpt)

Now, let CktFE.Enc(PK,x‖y) = (CT1,CT2,CTindpt)

=
(
Ē(PK1,x, r, r̂1), Ē(PK2,y, r, r̂2), Ē(PKindpt, r, r̂3)

)
We decompose Ē(PK2,y, r, r̂2) =

(
E(PK2,1, y1, r, r̂2,1), . . . , E(PK2,`2 , y`2 , r, r̂2,`2)

)
Recall that E : P × {0, 1} × R1 × R2 → C and Ē(x) denotes the tuple of function values
obtained by applying E to each coordinate. Then,

Let |x| = `1, |y| = `2, PK1 ∈ P`1 , PK2 ∈ P`2 ,

j ∈ N, PKindpt ∈ Pj , r ∈ R1, r̂1 ∈ R`12 , r̂2 ∈ R`22 , r̂3 ∈ Rj2
In what follows, we abuse notation slightly and omit mention of the independent, fresh
randomness from R2 needed for each invocation for E . For convenience, we club the message
independent component CTindpt with CT1 and let

c = (CT1,CTindpt) and d = CT2 = (CT2,1, . . . ,CT2,`2)

LetMκ : Qκ × Σκ → Qκ be a DFA family. For notational convenience, we will drop the
subscript κ here on. Let Q = |Q|, the size of the state space of the DFA family. Then, the
single key functional encryption scheme for DFAs is constructed as follows.
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DfaFE.Setup(1κ): Upon input the security parameter 1κ, do:
1. Choose a symmetric key encryption scheme SKE with key space K.
2. Define a circuit family as follows. Let F : X → Y where X = (Σ×K2 logQ×{0, 1})×Q

and Y = KlogQ. We set

`1 = bΣc+ bK2 logQc+ 1, `2 = bQc = logQ

where b·c denotes size in bits. Let ` = `1 + `2.
3. Invoke CktFE.Setup(1κ, 1`) to obtain PK =

(
PK1, (PK2,1, . . . ,PK2,logQ),PKindpt

)
and

MSK.
4. Output (PK,MSK).

DfaFE.Enc(PK,w): Let |w| = k. Note that k is arbitrary, and unknown to DfaFE.Setup.
Do the following:

1. Sample randomness ri←R1 for i ∈ [k].
2. Sample SKE keys as follows. We define

Ki+1 =
(

(K0
(i+1,1),K

1
(i+1,1)), . . . , (K0

(i+1,logQ),K
1
(i+1,logQ))

)
where Kb

i+1,j ← K for i ∈ [k − 1], j ∈ [logQ], b ∈ {0, 1}.
3. Define message yi = (wi,Ki+1, 0) for i ∈ [k − 1] and yk = (wk,⊥, 1).
4. For i ∈ [k], we define:

ci,1 = Ē(PK1,yi, ri), ci,2 = Ē(PKindpt, ri), ci = (ci,1, ci,2)

5. Let d1 = Ē (PK2, qst, r1). Here qst denotes the start state of the DFA. Further, let

dbi,j = E (PK2,j , b, ri) ∀ i ∈ [2, k], j ∈ [logQ], b ∈ {0, 1}.
di,q , (dqji,j) ∀j ∈ [logQ] where qj is the jth bit of q.

6. For i ∈ [2, k], j ∈ [logQ], b ∈ {0, 1} encrypt each dbi,j using the corresponding key Kb
i,j

as:
d̂bi,j = SKE.Enc(Kb

i,j ,dbi,j)

7. Choose bi,j ← {0, 1} randomly for i ∈ [2, k], j ∈ [logQ] and define:

D̂i,j =
(

d̂bi,ji,j , d̂
b̄i,j
i,j

)
, D̂i = (D̂i,j), D̂1 = d1

8. Output CTw = {ci, D̂i} for i ∈ [k].

DfaFE.KeyGen(MSK,M): Let M denote a DFA machine and T denote its transition matrix.
Let Ti denote the ith row of T , with format

(
(σ, q) → q′

)
indicating that the machine

enters state q′ upon input symbol σ and input state q. Let SKM = CktFE.Keygen(MSK, f)
where f is defined below in Figure 1.

DfaFE.Dec(SKf ,CTw): Interpret CTw = (ci, D̂i)i∈[k] and let d1,q1 = D̂1.
Initialize i = 1. While i ≤ k, do the following:

Let CT′i = (ci,di,qi). Recall that di,qi = (dqi,ji,j ) for j ∈ [logQ]. If i = k, let
b← CktFE.Dec(SKf ,CT′k). Output b and exit.
Else let (Ki+1,1, . . . ,Ki+1,logQ) = CktFE.Dec(SKf ,CT′i).



Shweta Agrawal and Ishaan Preet Singh XX:9

Function f
(
(σ,K, flag), q

)
1. Lookup table T for (σ, q). Say that (σ, q)→ q′. If no entry is found, output ⊥ and exit.
2. If flag = 1, check if q′ is an accepting state. If yes, output 1, else output 0 and exit.

3. If flag = 0, parse K as {(K0
j ,K

1
j )} for j ∈ [logQ], b ∈ {0, 1}. Choose the logQ keys K

q′j
j

(for j ∈ [logQ]), corresponding to the bits of q′ and output these.

Figure 1 Function to provide keys for next state in DFA computation.

For j ∈ [logQ], try to decrypt each value in D̂i+1,j using obtained key Ki+1,j . Exactly
one of the two ciphertexts per bit position will be decrypted, say d̂bji+1,j . Set

di+1,qi+1 =
(

SKE.Dec(Ki+1,j , d̂
bj
i+1,j)

)
∀j ∈ [logQ]

Increment i.

4.1 Correctness.
In this section, we establish correctness of the above construction. Before we proceed with
the formal argument, we provide some intuition. Note that in the encryption, the first
component ci encrypts message yi, which contains the ith input symbol, along with the
set of all 2 logQ symmetric keys used to construct SKE encryptions of the (i + 1)th state.
In the second component, the element dbi,j in tuple ( dbi,j ) for j ∈ [logQ] and b ∈ {0, 1},
contains an encryption of bit b, corresponding to the event that the jth bit of ith state is
b. The set D̂i contains 2 logQ SKE encryptions of dbi,j under keys Kb

i,j , shuffled for each
position j. Decryption at step i− 1 provides the level i symmetric keys Kbj

i,j to unlock the
dbji,j for the correct next state of the computation q′, i.e. bj = q′i,j . Thus, the decryptor
recovers exactly the components dbji,j which may be combined to create the ciphertext di,qi .
Put together with ci we get an encryption of (wi,Ki+1, qi) which may again be decrypted
with the function key to obtain the appropriate keys to decrypt the correct di+1,qi+1 .

Formally, let k denote the length of input w and let q1, . . . , qk denote the states visited by
the DFA during computation. We have by correctness of decomposable functional encryption
that:

∀i ∈ [k − 1], CktFE.Enc
(

PK, (wi,Ki+1, 0, qi)
)

= (ci,di,qi) where

ck =
(
Ē
(
PK1, (wi,Ki+1, 0), ri,

)
, Ē
(
PKindpt, ri

))
, di,qi =

(
E(PK2,j , qi,j , ri)

)
j∈[logQ]

s.t. CktFE.Dec
(
SKf , (ci,di,qi)

)
= Kqi+1 , (Kb1

i+1,1, . . . ,K
blogQ
i+1,logQ) where bj = qi+1,j .

Now, both elements of D̂i+1,j are attempted for decryption by Kbj
i+1,j , of which only the

element encoding the correct bit qi+1,j is recovered. Formally, we have:

D̂i+1,j =
(

d̂0
i+1,j , d̂1

i+1,j
)

and

SKE.Dec
(
K
bj
i+1,j , d̂bi+1,j

)
= ⊥ if bj 6= b, and dqi+1,j

i+1,j otherwise.

By putting together all the components, we get by decomposability:

di+1,qi+1 =
(

dqi+1,j
i+1,j

)
∀ j ∈ [logQ]
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Also, since each component of di+1,qi+1 uses the same common randomness ri+1 as is used
by ci+1, we have that CTi+1 = (ci+1,di+1,qi+1), hence we may repeat while i < k. Finally
for i = k,

CktFE.Enc
(

PK, (wk,⊥, 1, qk)
)

= (ci,dk,qk)
so that CktFE.Dec

(
SKf , (ck,dk,qk)

)
= 1 iff qk is an accepting state, 0 otherwise.

Efficiency. We note that the public key size of our scheme is the public key size of
CktFE [18] with message length ` = O(logQ+ log |Σ|+ logQ · log |K| which is polynomial
in the security parameter κ. The ciphertext size is O(|w| · logQ) and the secret key size is
O(|M |) (ignoring polynomials in the security parameter).

4.2 Proof of Security

We proceed to show that our construction is secure. Formally,

I Theorem 4. Assume that the underlying CktFE scheme satisfies FULL-SIM security ac-
cording to definition 7. Then the construction for DfaFE achieves FULL-SIM security as
defined in definition 2.

Proof. We proceed to construct a simulator DfaFE.Sim as required by Definition 2. The
simulator receives (PK, SKM ,M,M(w), 1|w|) and does the following:

1. Assign the bit b = M(w), and construct the circuit f corresponding to M as defined in
Figure 1 in the description of DfaFE.KeyGen.

2. Let CktFE.SKf = SKM and invoke CktFE.Sim
(

PK, f,CktFE.SKf , b
)
to receive C̃Tk where

we may express C̃Tk = (c̃k, d̃k,qk) and d̃k,qk = (d̃k,j) for j ∈ [logQ].
3. For (i = k, i ≥ 1, i−−), do:

a. If i = 1, set Sim.D̂1 = d̃1,q1 and exit.
b. Sample key K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and let

Sim.d̂i,j = SKE.Enc(K∗i,j , d̃i,j) ∀j ∈ [logQ],

c. Sample b̃i,j ← {0, 1} and assign Sim.d̂b̃i,ji,j = Sim.d̂i,j .
d. Choose another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and compute

Sim.d̂¯̃bij
i,j = SKE.Enc(K̃i,j , 0|d̃i,j |) ∀ j ∈ [logQ]

e. Let Sim.D̂i,j =
(
Sim.d̂b̃i,ji,j , Sim.d̂¯̃bi,j

i,j

)
and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ].

f. Let (c̃i−1, d̃i−1,qi−1) = CktFE.Sim(PK, f,SKf ,K∗i ).

4. Output the ciphertext as CTw = (c̃1, c̃2, . . . , c̃k, Sim.D̂1, . . . ,Sim.D̂k).

4.2.1 Analysis of Simulator.

Correctness of the simulator DfaFE.Sim can be easily established using correctness of the
simulator CktFE.Sim and the semantic security of SKE. Let us say that the DFA M visits
states q1, . . . , qk while computing on input w where |w| = k.
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1. We have by correctness of CktFE.Sim according to definition 7 that:{
CTk ← CktFE.Enc

(
PK, (wk,⊥, 1, qk)

) c
≈ C̃Tk ← CktFE.Sim

(
PK, fM , SKf , b

)}
By decomposability, CTk = (ck,dk,qk) where dk,qk = (dbjk,j) for j ∈ [logQ] and bj = qk,j

defined as the jth bit of state qk. Similarly, C̃Tk = (c̃k, d̃k,qk) where d̃k,qk may be
decomposed as (d̃k,j) for j ∈ [logQ]. Let i = k.

2. We now establish that (d̂bji,j
c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

a. We have that in algorithm DfaFE.Enc,

Ki =
(

(K0
(i,1),K

1
(i,1)), . . . , (K0

(i,logQ),K
1
(i,logQ))

)
where Kb

i,j ← K for j ∈ [logQ]. We also have, for j ∈ [logQ], b ∈ {0, 1}:

d̂bi,j = SKE.Enc(Kb
i,j ,dbi,j) (4.1)

b. In simulator DfaFE.Sim:

K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and

Sim.d̂i,j = SKE.Enc(K∗i,j , d̃i,j) ∀j ∈ [logQ],

Hence, since dbji,j
c
≈ d̃i,j and the symmetric keys are picked using the same distribution

in each case, we have that (d̂bji,j
c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

3. We now establish that (d̂b̄ji,j
c
≈ Sim.d̂¯̃bj

i,j) where j ∈ [logQ].

a. Construction of d̂b̄ji,j is described in Equation 4.1.
b. For the latter, DfaFE.Sim samples b̃j and sets Sim.d̂b̃ji,j = Sim.d̂i,j . Next, it samples

another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and computes

Sim.d̂¯̃bj
i,j = SKE.Enc(K̃i,j , 0|d̃i,j |) ∀ j ∈ [logQ]

By semantic security of SKE, we have that (d̂b̄ji,j
c
≈ Sim.d̂¯̃bj

i,j).

4. Next, we show that D̂i
c
≈ Sim.D̂i. For i = 1, we have by definitions of D̂1 and Sim.D̂1,

that the above holds. For i > 1, in DfaFE.Enc, we have bi,j ← {0, 1} and

D̂i,j =
(

d̂bi,ji,j , d̂
b̄i,j
i,j

)
In DfaFE.Sim, we have b̃i,j ← {0, 1} and

Sim.D̂i,j =
(
Sim.d̂b̃i,ji,j , Sim.d̂¯̃bi,j

i,j

)
Since D̂i = (D̂i,j) and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ], we have that D̂i

c
≈ Sim.D̂i.

5. Let i = i− 1. Now, we have by correctness of CktFE.Sim according to Definition 7,{
CTi ← CktFE.Enc

(
PK, (wi,Ki+1, 0, qi)

) c
≈ C̃Ti ← CktFE.Sim

(
PK, fM , SKf ,K∗i+1

)}
By decomposability, CTi = (ci,di,qi) where di,qi = (dqi,ji,j ) for j ∈ [logQ]. Also, C̃Ti =
(c̃i, d̃i,qi) where d̃i,qi = (d̃i,j) for j ∈ [logQ]. If i > 1, go to step 2. For i = 1, we have by
definitions of D̂1 and Sim.D̂1, that (c1, D̂1) c

≈ (c̃1,Sim.D̂1).
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6. Now, a straightforward hybrid argument yield that:{
(c1, D̂1), (c2, D̂2), . . . , (ck, D̂k)

}
c
≈
{

(c̃1, Sim.D̂1), (c̃2, Sim.D̂2), . . . , (c̃k,Sim.D̂k)
}

as desired.
J

Reusable Garbled DFA. In Appendix E we show how to compile the above construction
with symmetric key encryption to obtain the first construction of reusable garbled DFAs
from standard assumptions.

5 Single Key Functional Encryption for Turing Machines

In Appendix D, we provide the construction of single key functional encryption for Turing
machines. Our construction has short public parameters that are independent of the size of
the machine or the data being encrypted, short function keys, and input-specific decryption
time. However, the ciphertext of our construction is large and depends on the worst case
running time of the Turing machine (but not its description size).

While the large ciphertext size of our TMFE construction restricts its utility for practical
applications, we emphasize that the parameters obtained by our TMFE construction are not
implied by previous work to the best of our knowledge (please see Appendix A for a detailed
discussion about previous work). To improve the ciphertext size of our construction, while
allowing succinct keys, dynamic data length and input specific run time is an interesting
open problem.
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APPENDICES

A Related work

The following alternate method can be used to obtain a single key functional encryption
scheme for Turing machines based on the hardness of public key encryption: replace the
garbled circuit in the construction of [27] by a garbled TM (see [16] and follow-ups). In more
detail, let the length of Turing machines in the given family be bounded by some polynomial
`M . The public key for the TMFE scheme consists of 2 · `M public keys PKi,b for i ∈ [`M ],
b ∈ {0, 1}. The encryptor, given w of arbitrary length constructs a garbling of the universal
TM, and additionally provides garbled labels for w in the clear and public key encryptions
of the labels of all possible bits of the TM M . Specifically, the encryptor provides public key
encryptions of labels of both bits b ∈ {0, 1} corresponding to each position i ∈ [`M ] under
public key PKi,b. The master secret key for a machine M is the secret keys SKi,Mi

where

http://eprint.iacr.org/
http://eprint.iacr.org/
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
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Mi is the ith bit of M . The decryptor uses the secret keys to recover the garbled labels for
M and runs the garbled TM on the garbled labels corresponding to w and M to recover
M(w). Since the size of a garbled TM depends on the worst case run time τ of the TM, this
results in a scheme with ciphertext size O(κ, τ, |M |), public and secret key size O(κ, |M |)
and hardness based on the existence of public key encryption.

We note that our construction of TMFE (Appendix D) compiles CktFE to TMFE, and by
instantiating the underlying CktFE scheme with the PKE based CktFE construction of [27],
we obtain the same parameters as above, i.e. ciphertext size O(κ, τ, |M |), public and secret
key size O(κ, |M |) and hardness based on the existence of public key encryption. However, by
instantiating the CktFE scheme with a succinct FE scheme [18] we can shave off the machine
size dependence on the public key and the ciphertext, resulting in shorter public key and
ciphertext for TMs and optimal parameters for computation models such as DFAs. Note that
for the case of DFAs, the public key and ciphertext size of the aforementioned construction
depend on |M |, which our construction of DfaFE (Section 4) avoids. C.2. Additionally, even
for the case of TMs, there are several applications where the machine size is very large and
the runtime must be bounded: for instance, the machine may correspond to an automatic
theorem prover [15] or a SAT solver of large size, and one may desire to obtain the best
solution possible within a bounded amount of time.

We emphasize that converting the TM to a circuit and using the reusable garbled circuits
construction [18] does not support dynamic data lengths, which is the main focus of this
work.

Finally, we note that a sublcass of FE, namely, “attribute based encryption” for circuits,
supporting unbounded length attributes has been constructed recently [11]. However, even in
[11], the key generator and encryptor must agree on an input length ` and all inputs chosen
by the encryptor must be of the same length ` in order to work with a given key for a circuit
with input size `. This is in contrast to our work where the input size for each message may
be chosen dynamically.

B Preliminaries

Notation. We begin by defining the notation that we will use throughout the paper. We
use bold letters to denote vectors and the notation [a, b] to denote the set of integers from
(and including) a to b. Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to
denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0,
and we use poly(n) to denote a polynomial function of n. We say an event occurs with
overwhelming probability if its probability is 1 − negl(n). The function log x is the base 2
logarithm of x.

B.1 Functional Encryption for Circuits
Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ is a finite set.
Let F =

{
Fκ
}
κ∈N denote an ensemble where each Fκ is a finite collection of circuits, and

each circuit f ∈ Fκ takes as input a string x ∈ Xκ and outputs f(x) ∈ Yκ.
A functional encryption scheme CktFE for F consists of four algorithms

CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

CktFE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK). Sometimes,
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the CktFE.Setup algorithm may also accept as input a parameter 1`, denoting the length
of the input. In this case, the input lives in domain X `.
CktFE.Keygen(MSK, f) is a p.p.t. algorithm that takes as input the master secret key
MSK and a circuit f ∈ Fκ and outputs a corresponding secret key SKf .
CktFE.Enc(PK,x) is a p.p.t. algorithm that takes as input the master public key PK and
an input message x ∈ Xκ and outputs a ciphertext CT.
CktFE.Dec(SKf ,CTx) is a deterministic algorithm that takes as input the secret key SKf
and a ciphertext CTx and outputs f(x).

I Definition 5 (Correctness). A functional encryption scheme CktFE is correct if for all
f ∈ Fκ and all x ∈ Xκ,

Pr
[ (PK,MSK)← CktFE.Setup(1κ);

CktFE.Dec
(

CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)
)
6= f(x)

]
= negl(κ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and CktFE.Enc.

I Definition 6 ( Compactness [1]). A functional encryption scheme for circuits is said to
be compact if for any input message x, the running time of the encryption algorithm is
polynomial in the security parameter and the size of x. In particular, it does not depend on
the circuit description size or the output length of any function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE, allows the
run time of the encryption algorithm to depend on the output length of the functions.
Equivalently, a semi-compact FE scheme is simply a compact FE scheme when we restrict
our attention to functions with single-bit outputs.

B.1.1 Simulation Security for Single Key Circuit FE.
In this section, we define simulation based security for single key Functional Encryption as
in [18, Defn 2.13].

I Definition 7 (FULL-SIM Security). Let CktFE be a functional encryption scheme for a
circuit family F . For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim,
consider the following two experiments:

Expreal
CktFE,A(1κ): Expideal

CktFE,Sim(1κ):

1: (PK,MSK)← CktFE.Setup(1κ)
2: (f, st1) ←A1(PK)
3: skf ← CktFE.Keygen(MSK, f)
4: (x, st) ←A2(st1,PK, skf )
5: CT← CktFE.Enc(PK,x)
6: Output (st,CT)

1: (PK,MSK)← CktFE.Setup(1κ)
2: (f, st1) ←A1(PK)
3: skf ← CktFE.Keygen(MSK, f)
4: (x, st) ←A2(st1,PK, skf )
5: C̃T← Sim(PK, skf , f, f(x), 1|x|)
6: Output (st, C̃T)

The functional encryption scheme CktFE is then said to be single query FULL-SIM secure
if there exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the
following two distributions are computationally indistinguishable:{

Expreal
CktFE,A(1κ)

}
κ∈N

c
≈
{

Expideal
CktFE,Sim(1κ)

}
κ∈N
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B.2 Turing Machines
We recall the definition of a Turing machine (TM). A TM M is represented by the tuple
(Q,Γ, β,Σ, δ, qst, F ) where Q is a finite set of states, Γ is a finite alphabet, β ∈ Γ is the blank
symbol, Σ ⊆ Γ \ {β} is the set of input symbols, qst is the start state, F = {qacc, qrej} where
qacc ∈ Q is the accept state, qrej ∈ Q is the reject state and δ : Q \ F × Γ→ Q× Γ× {L,R}
is the transition function (stored as a table). Upon input w = (w1, . . . , wk) ∈ Σk for some
arbitrary polynomial k, the machineM accepts the input if and only if given a tape initialised
with the input w and the head at w1, following the TM’s transition function leads to qacc.
We say M(w) = 1 iff M accepts w and 0 otherwise. We also denote the runtime (i.e. number
of steps the head takes) by runtime(M,w).

B.2.1 Oblivious Turing Machines
Our construction makes use of oblivious Turing machines.

I Definition 8 (Oblivious Turing Machine [22]). An Oblivious Turing Machine (OTM) is a
Turing Machine for which there exists a function t such that, at every timestep i the machine
head is at cell t(i) regardless of the input.

Moreover there exist efficient transformations that convert any Turing machine M that takes
time T to decide an input to an oblivious one that takes time T log T to decide the same
input [25]. Here, we describe a simple transformation that incurs a quadratic blowup in
running time.

Given a TM M , a simple OTM construction adds an additional marker for the head
location. Now, to simulate step i in the TM, the OTM, scans from cell 1 to cell i, ensuring
that it reads the current head location. Now, it moves back from cell i to 1, writing the correct
symbol for the next step, while also updating the state. Once back at cell 1, simulation
of step i is complete, and the OTM moves to a state simulate qi+1 and if qi+1 is not an
accepting or rejecting state, it moves to simulating step i + 1. Since in step i, we would
need to scan at most i cells (as that is the farthermost the head could have moved), an O(t)
computation, now takes O(t2). Also, if we are willing to reveal the runtime of the given
input on the Turing Machine, then we can stop simulating after the last timestep t. A more
efficient transformation due to Pippenger-Fischer[25] reduces the time required to O(t log t).

We note that a slightly different definition of OTMs [4] requires that the head movements
are the same for all inputs of the same size, which would imply that the OTM runs in worst
case time. However, if we are willing to reveal the running time of a machine on a given
input, then the OTM can be made to halt once the input has been decided. In particular, if
runtime(M1(w1) = runtime(M2(w2), then the head movements of the OTM corresponding
to M1 and the OTM corresponding to M2 are exactly the same.

B.3 Functional Encryption for Turing Machines
In this section, we will define functional encryption for Turing Machines (TM). The definition
of Turing machines and oblivious Turing machines is recalled in Appendix B.2. We denote
the runtime of Turing machine M on input w by time(M,w).

Let {Mκ} be a family of Turing machines with running time upper-bounded by a
polynomial. A functional encryption scheme TMFE for a Turing machine familyM consists
of four algorithms TMFE = (TMFE.Setup,TMFE.KeyGen, TMFE.Enc,TMFE.Dec) defined as
follows.
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TMFE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK).
TMFE.KeyGen(MSK,M) is a p.p.t. algorithm that takes as input the master secret key
MSK and a TM M and outputs a corresponding secret key SKM .
TMFE.Enc(PK,w) is a p.p.t. algorithm that takes as input the master public key PK,
and an input message w, outputs a ciphertext CTw.
TMFE.Dec(SKM,CTw) is a deterministic algorithm that takes as input the secret key
SKM and a ciphertext CTw and outputs a bit b.

I Definition 9 (Correctness). A functional encryption scheme TMFE is correct if for all
M ∈M and all w ∈ Σ∗,

Pr
[ (PK,MSK)← TMFE.Setup(1κ);

TMFE.Dec
(

TMFE.KeyGen(MSK,M),TMFE.Enc(PK,w)
)
6= M(w)

]
= negl(κ)

where the probability is taken over the coins of TMFE.Setup, TMFE.KeyGen,
?and TMFE.Enc.

B.3.1 Efficiency.

The efficiency property of a public-key FE scheme for Turing machines [2] says that the
algorithm TMFE.Setup on input 1κ should run in time polynomial in κ, TMFE.KeyGen on
input the Turing machine M and the master key MSK should run in time polynomial in
(κ, |M |), TMFE.Enc on input a message w and the public key should run in time polynomial
in (κ, |w|). Finally, TMFE.Dec on input a functional key of M and an encryption of w should
run in time polynomial in (κ, |M |, |w|, time(M,w)).

Our relaxation. We will achieve a relaxed version of efficiency which includes all the
above conditions except ciphertext succinctness. We permit the size of the ciphertext to
depend polynomially on (κ, τ) where τ is the maximum number of time steps the Turing
machine may run on the input. Formally, for the family of Turing machinesM, let T (n) be
the polynomial upper bound on the running time for inputs of size n. Then τ = T (|w|). To
emphasize this dependence, we pass τ as an additional parameter to the encryption algorithm
in the remainder of the paper.

B.3.2 Simulation Based Security for Single Key TM-FE.

In this section, we define simulation based security for single key FE for TMs. The definition
is analogous to the definition of FE for circuits (Appendix B.1.1), except that the simulator
additionally takes as input the worst case running time τ defined above and the actual
running time of M on x, i.e. time(M,x) which is revealed by the decryption operation.

I Definition 10 (FULL-SIM- Security for TM-FE.). Let FM be a functional encryption scheme
for a TM familyM. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim,
consider the following two experiments:
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Expreal
TMFE,A(1κ): Expideal

TMFE,Sim(1κ):

1: (PK,MSK)← TMFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← TMFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM )
5: CT← TMFE.Enc(PK,x, τ)
6: Output (st,CT)

1: (PK,MSK)← TMFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← TMFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM )
5: C̃T← Sim(PK, skM ,M,M(x), 1|x|, τ, time(M,x))
6: Output (st, C̃T)

The TM functional encryption scheme is said to be single query FULL-SIM secure if there
exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the following
two distributions are computationally indistinguishable:{

Expreal
TMFE,A(1κ)

}
κ∈N

c
≈
{

Expideal
TMFE,Sim(1κ)

}
κ∈N

B.4 Learning With Errors Assumption
The security of the single key FE for circuits construction of [18] is based on the hardness
of the Learning With Errors (LWE) problem, introduced by Regev [26]. Solving the LWE
problem on average is known to be at least as hard as solving approximate versions of certain
standard lattice problems in the worst case [26, 10]. The best known algorithms for these
problems for an approximation factor of 2nε on n dimensional lattices run in time 2Õ(n1−ε)

for any constant 0 < ε < 1. See [18] for a detailed discussion.
The LWE assumption is stated below.

I Definition 11. (Learning With Errors) Let q, α,m be functions of a parameter n. For a
secret s ∈ Znq , the distribution Aq,α,s over Znq × Zq is obtained by sampling a ← Znq and
an e ← DZ,αq, and returning (a, 〈a, s〉 + e) ∈ Zn+1

q . The Learning With Errors problem
LWEq,α,m is defined as follows: For s← Znq , distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,α,s)m.

Here, U denotes the uniform distribution. The Learning With Errors assumption states
that no p.p.t. algorithm A can distinguish between D0(s) and D1(s) with non-negligible
advantage (over the random coins of A and the randomness of the samples).

Intuitively, subexponential hardness of LWE assumes that achieving an approximation factor
of 2nε in the underlying lattice problem is hard for a polynomial time algorithm.

C Decomposable Functional Encryption for Circuits

In this section, we establish that the succinct single key FE for circuits by Goldwasser et
al. [18] and the non-succinct functional encryption scheme by Sahai and Seyalioglu [27] are
both decomposable.

C.1 Decomposable Functional Encryption for Circuits from LWE
I Lemma 12. The single key, succinct functional encryption scheme for circuits by Gold-
wasser et al. [18] is decomposable.
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Proof. For completeness, we recall the details of the GKPVZ scheme. Since decomposability
depends only on the structure of the public key and the ciphertext, we omit the details of
key generation and decryption. We refer the interested reader to [18] for more details.

The GKPVZ scheme uses as building blocks the following primitives:

A fully homomorphic encryption scheme. We denote the length of ciphertexts produced
by this scheme, both by encryption and by evaluation, as λ. We instantiate the fully
homomorphic scheme by the construction of Brakerski, Gentry and Vaikuntanathan [9],
and refer to this as FHE.
A single key attribute based encryption scheme for circuits 2. We instantiate the ABE
scheme by the construction of Gorbunov, Vaikuntanathan and Wee [19] and refer to it
as ABE. The ABE scheme of Gorbunov et al. builds upon a primitive which they call
“two-one-recoding” and which they instantiate from the LWE assumption. We will denote
this construction by TOR.
A garbled circuit. We instantiate the garbled circuit by Yao’s classic construction [30]
and refer to it as Yao.

FE.Setup(1κ, 1`): Upon input the security parameter κ and the length of the input `, do
the following.
1. Define `1 = |HPK|+ ` · λ, where HPK denotes the FHE public key, and λ denotes the

length of an FHE ciphertext. Now, run the ABE.Setup(1κ, 1`1) algorithm λ times and
obtain: (

FMPKj ,FMSKj
)
← ABE.Setup(1κ, 1`1) ∀ j ∈ [λ]

2. By the construction of [19, Sec 6.1], we additionally have for each j ∈ [λ]:

FMPKj =
(
{TOR.pkj,k,b}k∈[`1], b∈{0,1},TOR.pkj,out

)
3. Partition the interval [`1] into `+ 1 contiguous, disjoint intervals: the first interval S0

of size |HPK| and ` intervals S1, . . . , S` of size λ each. Formally,
a. Define S0 = [1, |HPK| ].
b. Initialize k1 = |HPK|, k2 = k1 + λ and i = 1. Then, while i < `,

Define Si = [k1 + 1, k2].
Update k1 as k1 = k2. Increment i.

4. Next, for each j ∈ [λ], partition the 2 · `1 TOR public keys according to the above sets:

∀ i ∈ [0, `], T̃OR.pkj,i ←
{

TOR.pkj,k,b
}
k∈Si, b∈{0,1}

Further, we define:

∀ i ∈ [0, `], T̃OR.pki ←
{

T̃OR.pkj,i
}
j∈[λ] and T̃OR.pkout ← {TOR.pkj,out}j∈[λ]

5. Thus, we may write for i ∈ [1, `]:

PKi = T̃OR.pki, PKindpt =
(
T̃OR.pk0, T̃OR.pkout

)
2 Although technically the GKPVZ scheme uses a two-outcome ABE scheme which is slightly different

from a single outcome ABE scheme, we will ignore this technicality for ease of notation here. None of
the arguments are affected by this minor omission as the two-outcome ABE scheme essentially uses two
single outcome ABE scheme ciphertexts.
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FE.Enc(PK,x): Upon input, the public key and the input vector x where |x| = `, do the
following:
1. Generate a fresh key pair (HPK,HSK) ← FHE.KeyGen(1κ) for the FHE scheme. En-

crypt each bit xi as φi = FHE.Enc(HPK, xi). Let φ = (φ1, . . . , φ`).
2. Run Yao’s garbled circuit algorithm to produce a garbled circuit for the FHE decryption

algorithm. Note that the number of input wires for this circuit is λ. Let the labels of
the garbled circuit be denoted by Lj = (Lj,0, Lj,1) for j ∈ [λ]. Let the garbled circuit
itself be denoted by Γ.

3. For j ∈ [λ], let
ψj ← ABEj .Enc(FMPKj ,Lj , attrj)

Here, the message is Lj and the public attribute is attrj = attr = (HPK, φ). Note that
|attr| = `1 = |HPK|+ ` · λ, since φ = (φ1, . . . , φ`) and each |φi| = λ. We analyze the
structure of ψj below.
a. By the description of the ABE scheme, ψj = (ψj,1, . . . , ψj,`1 , τj) where:

ψj,k ← TOR.Encode
(
TOR.pkj,k,attrk(s)

)
, ∀ k ∈ [`1]

τj ← TOR.E
(
TOR.Encode(TOR.pkj,out, s),Lj

)
Here s← S, where S is a set defined in the ABE construction 3.

b. For j ∈ [λ], partition the ciphertexts {ψj,k}k∈[`1] according to the sets S0, . . . , S`
as:

ψ̃j,i = {ψj,k}k∈Si for j ∈ [λ], i ∈ [0, `]

Further, we define:

ψ̃i = (ψj,i) for j ∈ [λ], i ∈ [0, `] and τ = (τ1, . . . , τλ)

4. For i ∈ [`], we define CTi = (φi, ψ̃i), CTindpt = (ψ̃0, τ ,Γ)
Thus, we have established that the public key and the ciphertext of the GKPVZ scheme have
the structure of a decomposable FE scheme. Next, we discuss the instantiations of common
and independent randomness required by decomposable FE in GKPVZ.

Common and Independent Randomness in GKPVZ. In the GKPVZ scheme, the
role of common randomness is played by the FHE public key HPK, and the input s ∈ S
to TOR.Encode. The remaining randomness used in the GKPVZ encryption, such as the
randomness chosen by FHE.Enc and TOR.Encode is independent randomness that may be
chosen independently by each invocation of E .

Hence, we have established that the GKPVZ scheme [18] is decomposable. J

C.2 Decomposable Functional Encryption for Circuits from PKE
In this section, we show that the single key non-succinct functional encryption scheme by
Sahai and Seyalioglu [27] is decomposable.

We recall the construction here. Let F : X → {0, 1} be the function family and let N
be the bit size of a function f ∈ F . Additionally, let n be the bit size of x ∈ X . We will

3 The precise choice of S is not important for us, it suffices to observe that S is chosen as a function of
the security parameter independent of anything else. For readers familiar with the [19] construction, S
is the set Znq from which the LWE secret s is sampled.
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make use of PKE, which is a standard IND-CPA public key encryption scheme. Let U be the
universal circuit so that U(x, f) = f(x).

CktFE.Setup(1κ): Sample 2N PKE keys (PKi,b, SKi,b) ← PKE.Setup(1κ) where i ∈ [N ],
b ∈ {0, 1}. Output public key PK = {PKi,b} and the master key MSK = {SKi,b} for
i ∈ [N ], b ∈ {0, 1}.

CktFE.Enc(PK,x): Upon input the public key and input x, do the following:

1. Construct a Yao’s garbled circuit Γ for U , and let {Li,b}i∈[n],b∈{0,1} be the labels cor-
responding to the first input and {L′i,b}i∈[n+1,n+N ],b∈{0,1} be the labels corresponding
to the second input.

2. Let L̂i,b = PKE.Enc(L′i,b,PKi,b).
3. Sample bi ← {0, 1} for i ∈ [n+ 1, n+N ]
4. Output CTx =

(
Γ, {{Li,xi}i∈[n]}, {L̂i,bi , L̂i,b̄i}i∈[n+1,n+N ],bi∈{0,1}

)
CktFE.KeyGen(MSK, f): Let f1.....fN be the bits corresponding to f . Output as SKf the

secret keys corresponding to the bits of f , namely SKi,fi for i ∈ [N ].

CktFE.Dec(SKf ,CT): Given the secret keys SKi,fi , try to decrypt both (L̂i,bi , L̂i,b̄i) for
i ∈ [n+ 1, n+N ]. Exactly one will decrypt to yield the label Li,fi . Evaluate the garbled
circuit using labels (L1,x1 , . . . , Ln,xn , L

′
1,f1

, . . . , L′N,fN for x and f to get the output bit
corresponding to f(x).

Decomposability follows trivially : we may view the garbled circuit Γ and the encrypted
labels {L̂i,bi , L̂i,b̄i}i∈[n+1,n+N ],bi∈{0,1}

)
as CTindpt, and the labels Li,xi corresponding to xi

as the input dependent ciphertext components CTi for i ∈ [n]. We note that the input
dependent part of the ciphertext is succinct.

D Single Key Functional Encryption for Turing Machines

In this section, we will construct a single key (public key) functional encryption scheme
for TMs. We decompose the input into three components of size `1, `2 and `3 each, where
the second and third components are further decomposed bit by bit. We will use the first
component to encrypt the symmetric keys for selecting the next state and the tape symbol
to be written at the current location, the second component is for the current state in the
TM computation, and the third component is for the current tape symbol to be read.

D.1 Construction
LetMκ be a TM family. Let Q be the size of the state space of the TM family and Γ be the
size of the alphabet. Then, we define:

TMFE.Setup(1κ) : Upon input the security parameter 1κ, do the following:

1. Choose a symmetric key encryption scheme SKE with key space K.
2. Define a circuit family as follows. Let F : X → Y where X = (K2 logQ×K2 log Γ)×Q×Γ

and Y = (KlogQ ×Klog Γ). We set

`1 = bK2 logQc+ bK2 log Γc, `2 = bQc, `3 = bΓc

where b·c denotes size in bits. Let ` = `1 + `2 + `3.
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3. Invoke CktFE.Setup(1κ, 1`) to obtain

PK =
(
PK1, (PK2,1, . . . ,PK2,logQ), (PK3,1, . . . ,PK3,log Γ),PKindpt

)
, MSK

4. Output (PK,MSK).

TMFE.Enc(PK,w, τ): Upon input the public key PK, the message w of arbitrary length k
and a bound τ on the runtime of the Turing machine, do the following.

1. Sample the required common randomness and SKE keys:

a. Sample “common” randomness ri←R1 for i ∈ [τ ].
b. Sample SKE keys as follows. We define

Ki+1 =
(

(K0
(i+1,1),K

1
(i+1,1)), . . . , (K0

(i+1,logQ),K
1
(i+1,logQ))

)
K′i+1 =

(
(K
′0
(i+1,1),K

′1
(i+1,1)), . . . , (K

′0
(i+1,log Γ),K

′1
(i+1,log Γ))

)
where Kb

i+1,j ← SKE.KeyGen(1κ) for i ∈ [τ − 1], b ∈ {0, 1}, j ∈ [logQ] and
K
′b
i+1,j ← SKE.KeyGen(1κ) for i ∈ [τ − 1], b ∈ {0, 1}, j ∈ [log Γ].

c. Let t : [τ ]→ [τ ] be the function 4 where t(i) gives the time step in which the symbol
being written in step i will be next read by an oblivious TM. Also let t′ : [τ ]→ {0, 1}
be a function such that t′(i) is 0 if the symbol being read in timestep i is being read
for the first time. Let T = {i : i ∈ [k + 1, τ ], t′(i) = 0}

d. Define message yi = (Ki+1,K′t(i)) for i ∈ [τ ].

2. Compute CktFE ciphertexts τ steps:

a. For i ∈ [τ ], we define:

ci,1 = Ē(PK1,yi, ri), ci,2 = Ē(PKindpt, ri), ci = (ci,1, ci,2)

Thus ci is the CktFE ciphertext component in the ith step that encodes that encodes
the SKE secret keys required to “select” the next state and tape symbol to be written.

b. Let d1 = Ē (PK2, qst, r1). Here qst denotes the start state of the TM. Further, let

dbi,j = E (PK2,j , b, ri) ∀ i ∈ [1, τ ], j ∈ [logQ], b ∈ {0, 1}.
di,j ,

(
d0
i,j ,d1

i,j

)
di,q , (dqji,j) ∀j ∈ [logQ] where qj is the jth bit of q.

Thus, di,j is the CktFE ciphertext component that encodes both possibilities for
the jth bit of the state obtained in the ith step. di,q denotes the CktFE ciphertext
component obtained by “selecting” the bits corresponding to state q at step i.

4 implied by an oblivious TM which runs for τ steps
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c. Let ei = Ē (PK3,wi, ri) for i ∈ [1, k] and ei = Ē (PK3, β, ri) where β is the blank
symbol, for all i ∈ T . Further, let

ebi,j = E (PK3,j , b, ri) ∀ i ∈ [1, τ ] j ∈ [log Γ], b ∈ {0, 1}.
ei,j ,

(
e0
i,j , e1

i,j

)
ei,γ , (eγji,j) ∀j ∈ [log Γ] where γj is the jth bit of γ.

Thus, ei,j is the CktFE ciphertext component that encodes both possibilities for
the jth bit of the tape symbol read in the ith step. ei,γ denotes the CktFE cipher-
text component obtained by “selecting” the bits corresponding to symbol γ at step i.

3. Compute SKE encryptions of CktFE ciphertexts:

a. For i ∈ [1, τ ], j ∈ [logQ], b ∈ {0, 1} encrypt each dbi,j using the corresponding SKE
key Kb

i,j as:
d̂bi,j = SKE.Enc(Kb

i,j ,dbi,j)

b. Similarly, for i ∈ [1, τ ], j ∈ [log Γ], b ∈ {0, 1} encrypt each ebi,j using the corres-
ponding SKE key K ′bi,j as:

êbi,j = SKE.Enc(K
′b
i,j , ebi,j)

4. Shuffle SKE encryptions in every position:

a. Choose bi,j ← {0, 1} randomly for i ∈ [1, τ ], j ∈ [logQ] and define:

D̂i,j =
(

d̂bi,ji,j , d̂
b̄i,j
i,j

)
, D̂i = (D̂i,j)

b. Choose bi,j ← {0, 1} randomly for i ∈ [1, τ ], j ∈ [log Γ] and define:

Êi,j =
(

êbi,ji,j , ê
b̄i,j
i,j

)
, Êi = (Êi,j)

5. Output the ciphertext:

CTw =
(
{ci, D̂i, Êi} ∀ i ∈ [τ ], d1, {ei} ∀ i ∈ [1, k] ∪ T

)
TMFE.KeyGen(MSK,M): Let M denote a TM machine. Transform M into an oblivious
Turing machine MO by applying the Pippenger-Fischer transformation[25] and T denote
MO’s transition matrix. Let Ti denote the ith row of T , with format

(
(γ, q)→ (γ′, q′)

)
indicating that the machine enters state q′ upon input symbol γ and input state q, and
writes γ′ to it’s current position. Let SKM = CktFE.Keygen(MSK, f) where f is defined
in Figure 2.

TMFE.Dec(SKM ,CTw): Parse ciphertext CTw =
(

ci, D̂i, Êi)i∈[1,τ ],d1, (ei)i∈[1,k]∪T
)
For

i ∈ [1, k] ∪ T , let d1,q1 = d1 and ei,γi = ei.
Initialize i = 1. While computation does not output 0 or 1, do the following:

Let CTi = (ci,di,qi , ei,γi). Recall that di,qi = (dqi,ji,j ) for j ∈ [logQ] and ei,γi = (dγi,ji,j )
for j ∈ [log Γ].
Let

(
(Ki+1,1, . . . ,Ki+1,logQ), (K ′t(i),1, . . . ,K ′t(i),log Γ)

)
= CktFE.Dec(SKf ,CTi).
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Function f
(
K,K′, q, γ

)
1. Lookup the transition table T for (q, γ). Say that (q, σ)→ (q′, γ′). If no entry is

found, output ⊥ and exit.
2. Check if q′ is qacc or qrej . If the former, output 1, else output 0.
3. If q′ is not an accepting state, parse K as {(K0

j ,K
1
j )} for j ∈ [logQ], b ∈ {0, 1},

and K′ as {(K
′0
j ,K

′
j

1)} for j ∈ [log Γ], b ∈ {0, 1}. Choose the logQ keys K
q′j
j (for

j ∈ [logQ]), corresponding to the bits of q′. Similarly, choose the log Γ keys K′
γ′j
j

(for j ∈ [log Γ]), corresponding to the bits of γ′ and output both these sets.

Figure 2 Function to provide keys for next state in TM computation.

For j ∈ [logQ], try to decrypt each value in D̂i+1,j using obtained key Ki+1,j . Exactly
one of the two ciphertexts per bit position will be decrypted, say d̂bji+1,j . Set

di+1,qi+1 =
(

SKE.Dec(Ki+1,j , d̂
bj
i+1,j)

)
∀j ∈ [logQ]

Analogously, for j ∈ [log Γ], try to decrypt each value in Êt(i),j using obtained key
K ′t(i),j . Exactly one of the two ciphertexts per bit position will be decrypted, say
êbjt(i),j . Set

et(i),γt(i) =
(

SKE.Dec(K ′t(i),j , ê
bj
t(i),j)

)
∀j ∈ [log Γ]

Increment i.

D.1.1 Correctness and Efficiency.
Correctness. Note that in the encryption, the first component ci encrypts message yi,
which contains the set of all 2 logQ symmetric keys used to construct SKE encryptions
of the (i + 1)th state and the 2 log Γ keys used to construct SKE encryptions of the t(i)th
input symbol. In the second component, the element dbi,j in tuple ( dbi,j ) for j ∈ [logQ]
and b ∈ {0, 1}, contains an encryption of bit b, corresponding to the event that the jth
bit of ith state is b. The set D̂i contains 2 logQ SKE encryptions of dbi,j under keys Kb

i,j ,
shuffled for each position j. Êi is constructed similarly but for the symbol that is to be
written at that step. Decryption at step i − 1 provides the level i symmetric keys Kbj

i,j

to unlock the dbji,j for the correct next state of the computation q′, i.e. bj = q′i,j and the
analogous keys for the symbol to be read at time t(i). Thus, the decryptor recovers exactly
the components dbji,j which may be combined to create the ciphertext di,qi . Along with
this, before a symbol at time i is read, the corresponding ei has been created, since the
keys for step i were generated at time j < i s.t. t(j) = i. Put together with ci this yields
an encryption of (Ki+1,K′t(i), qi, γi) which may now be decrypted with the function key to
obtain the appropriate symmetric key encryption keys to decrypt the correct di+1,qi+1 and
et(i),γt(i) , thus propagating the computation.

Next, we provide the formal argument that the FE scheme provided in Section D is
correct.

Formally, let k denote the length of input w, let q1, . . . , qτ denote the states visited by
the TM during computation (we assume that there are τ steps but the same arguments work
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for any number of steps ≤ τ). We have by correctness of decomposable functional encryption
that:

∀i ∈ [τ ], CktFE.Enc
(

PK, (Ki+1,K′t(i), qi, γi)
)

= (ci,di,qi , ei,γi) where

ci =
(
Ē
(
PK1,yi, ri

)
, Ē
(
PKindpt, ri

))
, di,qi =

(
E(PK2,j , qi,j , ri)

)
j∈[logQ]

ei,γi =
(
E(PK3,j , γi,j , ri)

)
j∈[log Γ]

We have that, CktFE.Dec
(
(ci,di,qi , ei,γi), SKf

)
= (Kqi+1 ,K′t(i)) s.t.

Kqi+1 , (Kb1
i+1,1, . . . ,K

blogQ
i+1,logQ) where bj = qi+1,j .

K′t(i) , (K ′b1t(i),1, . . . ,K ′
blog Γ
t(i),log Γ) where bj = γt(i),j .

Now, we use the obtained keys to perform SKE decryption on D̂i+1 and recover the
CktFE ciphertexts corresponding to state qi+1. For j ∈ [logQ], both elements of D̂i+1,j are
attempted for decryption by Kbj

i+1,j , of which only the element encoding the correct bit qi+1,j
is recovered. Formally, we have:

D̂i+1,j =
(

d̂0
i+1,j , d̂1

i+1,j
)

and

SKE.Dec
(
K
bj
i+1,j , d̂bi+1,j

)
= ⊥ if bj 6= b, and dqi+1,j

i+1,j otherwise.

By putting together all the components, we get by decomposability:

di+1,qi+1 =
(

dqi+1,j
i+1,j

)
∀ j ∈ [logQ]

Using the same argument we get that that for (i+ 1) /∈ T

ei+1,γi+1 =
(

eγi+1,j
i+1,j

)
∀ j ∈ [log Γ]

while for (i+ 1) ∈ T, ei+1,γi+1 is provided directly in the ciphertext, without SKE encryption.
Now, since each component of di+1,qi+1 and ei+1,qi+1 uses the same common randomness ri+1
as is used by ci+1, we have that CTi+1 = (ci+1,di+1,qi+1 , ei+1,γi+1), hence we may repeat
while i ≤ τ . Here, we have used the fact that when we arrive at timestep i, either i ∈ T or
∃j < i s.t. t(j) = i which follows from the construction of t. Finally for i = τ ,

CktFE.Enc
(

PK, (cτ , qτ , γτ )
)

= (cτ ,dτ,qτ , eτ,qτ )
CktFE.Dec

(
(cτ ,dτ,qτ , eτ,qτ ), SKf

)
= 1 iff qτ+1 is an accepting state, 0 otherwise.

Efficiency.
We note that our public key is short, i.e. polynomial in κ, since this is a CktFE public

key meant to encode a fixed length message comprising SKE keys, state and tape symbol,
and is independent of the size of the message w being encrypted or the machine size M
in TMFE. Our function key for a TM M is a CktFE function key for the circuit defined
in Figure 2, whose size is proportional to the size of M . Decryption of CTw and SKM
takes time proportional to runtime(M(w)), since we invoke CktFE.Dec for each step of
the TM computation. We note that the trivial approach of converting the TM M into a
circuit and invoking CktFE to compute M(w) directly would force the circuit to have size
proportional to the worst case running time of M . Thus our decryption time is of the order
runtime(M(w)) ·Time(CktFE.Dec), where CktFE.Dec takes time polynomial in (κ, `, |M |) (we
refer the reader to the description of TMFE.Setup(1κ) in Section D.1 to check that ` = poly(κ)
). This results in total decryption time polynomial in (κ, |M |, runtime(M,w)).
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We now analyze the ciphertext size. Recall that τ is the worst case running time of the
TM on a given input (see Appendix B.2 for the formal definition). Since we rely on succinct
CktFE [18], we have TMFE ciphertext size poly(κ, τ).
Machine Privacy. As in the case of DFA (Appendix E), our construction for Turing
machines may be compiled with symmetric key encryption to achieve machine privacy.

D.2 Proof of Security
We proceed to show that our construction is secure. The proof of security is similar to the
DFA case (Section 4.2), in that the CktFE simulator is invoked repeatedly to produce the
CktFE ciphertexts. The CktFE ciphertexts are then encrypted using SKE to produce the
TMFE ciphertext. However, there are two primary differences from the DFA case. First,
the CktFE ciphertext now contains 3 components which encode the SKE secret keys (in
component CT1), the state (in component CT2) and the work tape symbol (in component
CT3). The TMFE ciphertext contains CT1 as well as SKE encryptions of CT2 and CT3, and
the correct SKE keys are “selected” by the CktFE decrypt operation as we step through the
computation. Second and more importantly, even though the computation ends at step
runtime(M,w), we must simulate ciphertexts until time step τ , i.e. the worst case run time
of the TM. After runtime(M,w) steps, the computation halts, and no longer produces any
output. Thus, it is unclear how to invoke the CktFE simulator to produce ciphertexts for
time steps i ∈ [runtime(M,w) + 1, . . . , τ ], although the TMFE simulator must produce τ
ciphertexts.

The first difference can be handled by extending our techniques for supporting state
and leveraging the fact that for an oblivious TM, the encryptor knows the time step at
which a symbol will be next accessed. The second difference requires more care. It can be
partly resolved by noticing that if computation ends, and no more SKE keys are output
by CktFE.Dec, then we may replace the SKE encryptions of CktFE.CT by encryptions of ~0.
These ciphertexts will be indistinguishable from the real world by semantic security of SKE.

The above argument holds for the SKE encryptions D̂i of the second CktFE ciphertext
component di, since it encodes state and CktFE decryption at step i only reveals SKE keys
for step i+ 1. However, this does not apply to the case of Êi, i.e. the SKE encryptions of
the tape symbol ei since CktFE decryption at step i reveals SKE keys K′ corresponding to
step t(i) > i. Thus, it is possible that the decryptor receives SKE keys to decrypt some Êt(i)
where t(i) > runtime(M,w), but not does not receive SKE keys to decrypt D̂t(i). Thus, the
decryptor can see an incomplete part of a CktFE ciphertext for time steps after runtime(M,w).
We handle this issue by noticing that an incomplete ciphertext does not offer the adversary
any advantage – formally, the CktFE simulator can be augmented to be invoked without
an M(w) value and it outputs incomplete ciphertexts. This is formalized in the following
definition.

D.2.1 Augmented Security Definition for Circuit FE
We define AUG-SIM security, where a simulator may additionally be invoked without an
M(x) value to obtain a ciphertext component.

I Definition 13 (AUG-SIM- Security). Let CktFE be a decomposable5 functional encryption
scheme for a circuit family F . Say that a ciphertext CT = (CT1, . . . ,CTn) as defined in

5 This property is not required but allows for ease of exposition and suffices for our case.
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Section C. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim, and k > 0,
consider the following two experiments:

Expreal
CktFE,A(1κ): Expideal

CktFE,Sim(1κ):

1: (PK,MSK)← CktFE.Setup(1κ)
2: (f, st1) ←A1(PK)
3: skf ← CktFE.Keygen(MSK, f)
4: (x′, st) ←A2(st1,PK, skf )
5: CT′ ← CktFE.Enc(PK,x′)
6: (x, st) ←A2(st1,PK, skf )
7: CT← CktFE.Enc(PK,x)
8: Output (st,CT, (CT′1, . . . ,CT′n−k))

1: (PK,MSK)← CktFE.Setup(1κ)
2: (f, st1) ←A1(PK)
3: skf ← CktFE.Keygen(MSK, f)
4: (x′, st) ←A2(st1,PK, skf )
5: (C̃T′1, . . . , C̃T′n−k)← Sim(PK, skf , f, 1|x

′|)
6: (x, st) ←A2(st1,PK, skf )
7: C̃T← Sim(PK, skf , f, f(x), 1|x|)
8: Output (st,CT, (C̃T′1, . . . , C̃T′n−k))

The functional encryption scheme CktFE is then said to be single query AUG-SIM secure if
there exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the
following two distributions are computationally indistinguishable:{

Expreal
CktFE,A(1κ)

}
κ∈N

c
≈
{

Expideal
CktFE,Sim(1κ)

}
κ∈N

We note that the simulators of [18] and [27] can be modified to satisfy the above augmented
notion of security. Intuitively, the simulator, given input (PK, skf , f, f(x), 1|x|) is now required
to output a fraction of the ciphertext CTx. For concreteness, let us assume it must output
the last n − k components of the ciphertext. Now, this partial ciphertext will never be
decryptable by any function key, so the simulator may simply generate these components as
C̃T′i ← E (PKi, 0, r, r̂i) for i ∈ [k + 1, n], where E is the encoding function used to generate a
single ciphertext component, as defined in Section 3. Note that in the real world, we would
correspondingly have CT′i ← E (PKi, xi, r, r̂i).

In more detail, consider the ciphertext of [18]. As seen in Appendix C, E outputs an
FHE ciphertext, an ABE ciphertext and a garbled circuit. To simulate a partial ciphertext,
the simulator may generate n− k FHE encryptions of 0, and use these as the attributes for
the ABE scheme as described above. The garbled circuit and its labels are generated as
before, the labels of the garbled circuit form the messages in the ABE ciphertext as before.
Function keys are generated as before – recall these are ABE keys that select one of two
labels embedded in each ABE CT depending on whether some predicate evaluates to true.
Now consider an adversary who receives these n− k components and the function key. He
may decrypt the given ABE ciphertexts with the matching ABE predicate keys to obtain a
subset of the labels of the garbled circuit. By semantic security of FHE and by security of
garbled circuits, he cannot learn anything about the message x from these.

For [27], a ciphertext for input x corresponds to a fresh garbled circuit, PKE encryptions
of both labels for the N wires corresponding to f and the n labels corresponding to x
provided in the clear. A partial ciphertext in this case will correspond to revealing some
subset of the n labels in the clear. The simulator can simply reveal labels corresponding to
input 0 – by security of garbled circuits, the adversary cannot distinguish this view from the
real world.

Formally, let us denote the incomplete ciphertext in either scheme as CTPART. Then, given
a distinguisher A who can distinguish between the real output

(
PK, C,SKC ,CTPART(x)

)
and the simulated output

(
PK, C,SKC ,CTPART(0)

)
, we construct a distinguisher B who

distinguishes between complete ciphertexts CT(x0) and CT(x1) where C(x0) = C(x1), thus



Shweta Agrawal and Ishaan Preet Singh XX:29

violating FULL-SIM security of CktFE. B is constructed as follows: it chooses two messages
x0 and x1 such that C(x0) = C(x1) and they differ only in (fixed) n− k positions – for these
positions x0 may be arbitrary and x1 is 0. B submits these as “challenge” messages. He
obtains PK, upon which he outputs C such that C(x0) = C(x1). He receives SKC as well
as CT(xb) for a random bit b. B strips off the ciphertext components corresponding to the
k positions which match and sends

(
PK, C,SKC ,CTPART(xb)

)
to A. B outputs whatever A

outputs. It is clear that B has the same advantage as A.

D.2.2 Proof
I Theorem 14. Assume that the underlying CktFE scheme satisfies augmented FULL-SIM
security according to definition 13. Then the construction for TMFE achieves FULL-SIM
security as defined in definition 10.

Proof. We proceed to construct a simulator TMFE.Sim as required by Definition 10. When
we invoke the augmented CktFE simulator to produce incomplete ciphertexts, we denote it by
CktFE.Simp. The simulator TMFE.Sim receives (PK, SKM ,M,M(w), 1|w|, τ, runtime(M,x))
and does the following:

1. Assign the bit b = M(w), let s = runtime(M,x), and construct the circuit f corresponding
to M as defined in Figure 2 in the description of TMFE.KeyGen. Let CktFE.SKf = SKM.

2. Let CktFE.Simp be the Simulator defined in Definition 13 for k = log Γ.
3. For (i = τ, i > s, i−−), do:

a. Choose 2 logQ keys K̃bij
i,1 , . . . K̃

bij
i,logQ ← K2 logQ and compute

Sim.d̂biji,j = SKE.Enc(0|d̃i,j |, K̃bij
i,j ) ∀ j ∈ [logQ], bij ∈ {0, 1}

b. Let Sim.D̂i,j =
(
Sim.d̂b̃i,ji,j , Sim.d̂¯̃bi,j

i,j

)
and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ].

c. Let (c̃i, ẽi,γi) = CktFE.Simp(PK, f,SKf )
d. Sample key K′∗i = (K ′∗i,1, . . . ,K ′∗i,log Γ)← Klog Γ and let

Sim.êi,j = SKE.Enc(ẽi,j ,K ′∗i,j) ∀j ∈ [log Γ],

e. Sample b̃i,j ← {0, 1} and assign Sim.êb̃i,ji,j = Sim.êi,j
f. Choose another log Γ keys K̃ ′i,1, . . . K̃ ′i,log Γ ← Klog Γ and compute

Sim.ê¯̃biji,j = SKE.Enc(0|ẽi,j |, K̃ ′i,j) ∀ j ∈ [log Γ]

g. Let Sim.Êi,j =
(
Sim.êb̃i,ji,j , Sim.ê¯̃bi,ji,j

)
and Sim.Êi =

(
Sim.Êi,j

)
for j ∈ [log Γ].

4. Invoke CktFE.Sim
(

PK, f,CktFE.SKf , b
)
to receive C̃Ts where we may express C̃Ts =

(c̃s, d̃s,qs , ẽs,γs), d̃s,qs = (d̃s,j) for j ∈ [logQ] and ẽs,γs = (ẽs,j) for j ∈ [log Γ].
5. For (i = s, i ≥ 1, i−−), do:

a. If i = 1, set Sim.D̂1 = d̃1,q1 and exit.
b. Sample key K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and let

Sim.d̂i,j = SKE.Enc(d̃i,j ,K∗i,j) ∀j ∈ [logQ],

c. Sample b̃i,j ← {0, 1} and assign Sim.d̂b̃i,ji,j = Sim.d̂i,j .
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d. Choose another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and compute

Sim.d̂¯̃bij
i,j = SKE.Enc(0|d̃i,j |, K̃i,j) ∀ j ∈ [logQ]

e. Let Sim.D̂i,j =
(
Sim.d̂b̃i,ji,j , Sim.d̂¯̃bi,j

i,j

)
and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ].

f. Sample key K′∗i = (K ′∗i,1, . . . ,K ′∗i,log Γ)← Klog Γ and let

Sim.êi,j = SKE.Enc(ẽi,j ,K ′∗i,j) ∀j ∈ [log Γ],

g. Sample b̃i,j ← {0, 1} and assign Sim.êb̃i,ji,j = Sim.êi,j
h. Choose another log Γ keys K̃ ′i,1, . . . K̃ ′i,log Γ ← Klog Γ and compute

Sim.ê¯̃biji,j = SKE.Enc(0|ẽi,j |, K̃ ′i,j) ∀ j ∈ [log Γ]

i. Let Sim.Êi,j =
(
Sim.êb̃i,ji,j , Sim.ê¯̃bi,ji,j

)
and Sim.Êi =

(
Sim.Êi,j

)
for j ∈ [log Γ].

j. Let (c̃i−1, d̃i−1,qi−1 , ẽi−1,γi−1) = CktFE.Sim(PK, f,SKf ,K∗i ,K′∗t(i−1)).

6. Output the simulated ciphertext as C̃Tw =
(

({c̃i, Sim.D̂i,Sim.Êi} for i ∈ [τ ]), d̃1, {ẽi}

for i ∈ [1, k] ∪ T
)
.

D.2.2.1 Analysis of Simulator.

Correctness of the simulator TMFE.Sim can be easily established using correctness of the
simulator CktFE.Simp and the semantic security of SKE.

I Theorem 15. Given that di,qi
c
≈ d̃i,qi and D̂i and Sim.D̂i are constructed according to

TMFE.Enc and TMFE.Sim respectively, then D̂i
c
≈ Sim.D̂i.

The above theorem holds similarly for ei and Êi as well. The proof is as follows.

1. We now establish that (d̂bji,j
c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

a. We have that in algorithm TMFE.Enc,

Ki =
(

(K0
(i,1),K

1
(i,1)), . . . , (K0

(i,logQ),K
1
(i,logQ))

)
where Kb

i,j ← K for j ∈ [logQ]. We also have, for j ∈ [logQ], b ∈ {0, 1}:

d̂bi,j = SKE.Enc(Kb
i,j ,dbi,j) (D.1)

b. In simulator TMFE.Sim:

K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and

Sim.d̂i,j = SKE.Enc(K∗i,j , d̃i,j) ∀j ∈ [logQ],

Hence, since dbji,j
c
≈ d̃i,j and the symmetric keys are picked using the same distribution

in each case, we have that (d̂bji,j
c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

2. We now establish that (d̂b̄ji,j
c
≈ Sim.d̂¯̃bj

i,j) where j ∈ [logQ].

a. Construction of d̂b̄ji,j is described in Equation D.1.
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b. For the latter, TMFE.Sim samples b̃j and sets Sim.d̂b̃ji,j = Sim.d̂i,j . Next, it samples
another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and computes

Sim.d̂¯̃bj
i,j = SKE.Enc(K̃i,j , 0|d̃i,j |) ∀ j ∈ [logQ]

By semantic security of SKE, we have that (d̂b̄ji,j
c
≈ Sim.d̂¯̃bj

i,j).

3. Next, we show that D̂i
c
≈ Sim.D̂i. For i = 1, we have by definitions of D̂1 and Sim.D̂1,

that the above holds. For i > 1, in TMFE.Enc, we have bi,j ← {0, 1} and

D̂i,j =
(

d̂bi,ji,j , d̂
b̄i,j
i,j

)
In TMFE.Sim, we have b̃i,j ← {0, 1} and

Sim.D̂i,j =
(
Sim.d̂b̃i,ji,j , Sim.d̂¯̃bi,j

i,j

)
Since D̂i = (D̂i,j) and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ], we have that D̂i

c
≈ Sim.D̂i.

Let us say that the TM M visits states q1, . . . , qs while computing on input w where
|w| = k.

1. For s < i ≤ τ
a. We have by correctness of CktFE.Simp, that:{

(ci, ei,γi)← CktFE.Enc
(
PK, (Ki+1,K′t(i), qi, γi)

)
c
≈ (c̃i, ẽi,γi)← CktFE.Simp

(
PK, fM ,SKf

)}
b. By Theorem 15 we get that Êi

c
≈ Sim.Êi and by semantic security of SKE, we get

that D̂i
c
≈ Sim.D̂i. Hence, (ci, D̂i, Êi)

c
≈ (c̃i, Sim.D̂i,Sim.Êi).

2. We have by correctness of CktFE.Sim according to definition 7 that:{
(cs,ds,qs , es,γs)← CktFE.Enc

(
PK, (Ks+1,K′t(s), qs, γs)

)
c
≈ (c̃s, d̃s,qs , ẽs,γs)← CktFE.Sim

(
PK, fM ,SKf , b

)}
By decomposability, CT′s = (cs,ds,qs ,ds,qs) where ds,qs = (dbjs,j) for j ∈ [logQ] and bj =
qs,j , and similarly es,γs = (ebjs,j) for j ∈ [log Γ] and bj = γs,j Similarly, the last two terms
of C̃T′s = (c̃s, d̃s,qs , ẽs,γs) can be decomposed into (d̃s,j) and (ẽs,j). Let i = s. Theorem 15
gives us that D̂i

c
≈ Sim.D̂i and Êi

c
≈ Sim.Êi and hence (ci, D̂i, Êi)

c
≈ (c̃i, Sim.D̂i, Sim.Êi).

3. Let i = i− 1. Now, we have by correctness of CktFE.Sim according to Definition 7,{
(ci,di,qi , ei,γi)← CktFE.Enc

(
PK, (Ki+1,K′t(i), qi, γi)

)
c
≈ (c̃i, d̃i,qi , ẽi,γi)← CktFE.Sim

(
PK, fM , SKf , (K∗i+1,K′∗t(i))

)}
CT′i = (ci,di,qi ,di,qi) where di,qi = (dbji,j) for j ∈ [logQ] and bj = qi,j , and similarly
ei,γi = (ebji,j) for j ∈ [log Γ] and bj = γi,j Similarly, the last two terms of C̃T′i =
(c̃i, d̃i,qi , ẽi,γi) can be decomposed into (d̃i,j) and (ẽi,j).

4. Hence, from Theorem 15, (ci, D̂i, Êi)
c
≈ (c̃i, Sim.D̂i, Sim.Êi).
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5. If i ≥ 1, go to step 3.
6. Now, a straightforward hybrid argument yield that:{

(c1, D̂1, Ê1), (c2, D̂2, Ê2), . . . , (cτ , D̂τ , D̂τ )
}

c
≈
{

(c̃1, Sim.D̂1,Sim.Ê1), (c̃2, Sim.D̂2, Sim.Ê2), . . . , (c̃τ , Sim.D̂τ ,Sim.Êτ )
}

Further using the fact that d1
c
≈ d̃1 and ei

c
≈ ẽi, we prove

(
({ci, D̂i, Êi} for i ∈ [τ ]),

d1, {ei} for i ∈ [1, k]∪T
)

c
≈
(

({c̃i, Sim.D̂i, Sim.Êi} for i ∈ [τ ]), d̃1, {ẽi} for i ∈ [1, k]∪T
)

as desired.
J

E Reusable Garbled DFAs

In this section, we will define garbled DFAs and notions of input and function privacy,
adapting corresponding definitions from [18]. We further show how to construct garbled
DFAs (with unbounded inputs) that can be used to evaluate multiple inputs (of possibly
varying size).

I Definition 16. (Garbled DFA scheme) A garbling scheme for a family of DFAs M =
{Mκ}κ∈N with Mκ a family of DFAs Σκ × Qκ → Qκ, is a tuple of p.p.t. algorithms
GbDfa = (GbDfa.Garble,GbDfa.Enc,GbDfa.Eval) such that

GbDfa.Garble(1κ,M) takes as input the security parameter κ and a DFA M ∈ Mκ and
outputs the garbled DFA MG and a secret key gsk.
GbDfa.Enc(gsk,w) takes as input the vector w ∈ Σ∗, the secret key gsk and outputs an
encoding c.
GbDfa.Eval(MG, c) takes as input a garbled DFA MG, an encoding c and outputs 1 iff M
accepts w, 0 otherwise.

I Definition 17. (Correctness). For all sufficiently large security parameters κ, for all DFAs
M ∈Mκ and all w ∈ Σ∗, we have:

Pr
[

(MG, gsk)← GbDfa.Garble(1κ,M);
c← GbDfa.Enc(gsk,w); b← GbDfa.Eval : M(w) = b

]
= 1− negl(κ)

I Definition 18. (Efficiency) There exist universal polynomials p1 = p1(κ) and p2 = p2(κ, ·)
such that for all security parameters κ, for all DFAs M ∈Mκ, for all w ∈ Σ∗,

Pr
[

(MG, gsk)← GbDfa.Garble(1κ,M) :
|gsk| ≤ p1(κ) and runtime (GbDfa.Enc(gsk,w)) ≤ p2(κ, |w|)

]
= 1.

I Definition 19. (Input and machine privacy with reusability) Let GbDfa be a garbling
scheme for a family of DFAsM = {Mκ}κ∈N. For a pair of p.p.t. algorithms A = (A1, A2)
and a p.p.t. simulator S = (S1, S2), consider the following two experiments:

Expreal
GbDfa,A(1κ): Expideal

GbDfa,A,S(1κ):

1: (M, stA)← A1(1κ)
2: (gsk,MG)← GbDfa.Garble(1κ,M)
3: α← A

GbDfa.Enc(gsk,·)
2 (M,MG, stA)

4: Output α

1: (M, stA)← A1(1κ)
2: (M̃G, stS)← S1(1κ, 1|M|)
3: α← A

O(·,M)[[sts]]
2 (M, M̃G, stA)

4: Output α
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Here, O(·,M)[[sts]] is an oracle that on input w from A2, runs S2 with inputs M(w), 1|w|,
and the latest state of S; it returns the output of S2 (storing the new simulator state for the
next invocation).

A garbling scheme GbDfa is input and machine private with reusability if there exists a
p.p.t. simulator S such that for all pairs of p.p.t. adversaries A = (A1, A2), the following
two distributions are computationally indistinguishable:{

Expreal
GbDfa,A(1κ)

}
κ∈N

c
≈
{

Expideal
GbDfa,A,S(1κ)

}
κ∈N

E.1 Construction
Our DfaFE scheme provides input privacy and reusability but not machine privacy. To
achieve a reusable, garbled DFA, we need to hide the DFA machine as well. [18] combats this
problem for circuits by using a semantically secure symmetric encryption scheme to encrypt
the circuit C. The resultant encryption, say Ĉ, is embedded into a universal circuit UE that
takes as input a pair (x, SKS), where x is the original input to C, and SKS the symmetric
secret key. It then proceeds to decrypt Ĉ using SKS and computes C(x). The underlying FE
scheme for circuits is used to encrypt the pair (x, SKS) and the functional key is generated
for the circuit UE .

In the case of functional encryption for DFAs however, this approach does not work
directly. To see this, suppose we encrypt the machine M using symmetric key encryption.
Then it is unclear how to construct a DFA that runs the symmetric key decryption circuit.

However, the blueprint from [18] does work for our specific construction. This is because
our DFA functional key is a circuit functional key for an appropriately defined circuit (refer
Figure 1). Thus, our particular DFA functional key is indeed amenable to the hiding technique
of [18]. We proceed to provide the detailed construction.

We use a semantically secure symmetric key encryption scheme
SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec). The reusable garbled DFA scheme is defined as
follows.

GbDfa.Garble(1κ,M): Upon input the security parameter and a machineM , do the following:

1. Choose a symmetric key encryption scheme SKE with key space K.
2. Generate a secret key SKS ← SKE.KeyGen(1κ).
3. Define a circuit family as follows. Let F : X → Y where X = (K × Σ × K2 logQ ×
{0, 1})×Q and Y = KlogQ. We set

`1 = bKc+ bΣc+ bK2 logQc+ 1, `2 = bQc

where b·c denotes size in bits. Let ` = `1 + `2.
4. Invoke CktFE.Setup(1κ, 1`) to obtain PK = (PK1,PK2,1, . . . ,PK2,logQ,PKindpt) and

MSK.
5. Let fM be the circuit defined in Figure 1 corresponding to machine M .
6. Let E = SKE.Enc(SKS, fM ). Instead of running CktFE.Keygen on fM , we run it on a

universal circuit UE defined in Figure 3.
7. Let MG = CktFE.KeyGen(UE,MSK) be the garbled DFA and gsk = (PK, SKS) be the

secret key.
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Universal Circuit UE

UE takes as input a secret key SKS and a string w:
Compute fM = SKE.Dec(SKS, E).
Run fM on w.

Figure 3 Universal Circuit.

GbDfa.Enc(gsk,w): Upon input a secret key gsk and a vector
w, do the following: Parse gsk as (PK, SKS). Let |w| = k. Output c = DfaFE.Enc(PK,w′)
where w′ =

(
(SKS, w1), . . . , (SKS, wk)

)
GbDfa.Eval(MG, c): Compute and output DfaFE.Dec(MG, c).

E.2 Correctness and Efficiency
Correctness is immediate from correctness of DfaFE and CktFE. To see this, note that the
only changes in the above construction from the construction in Section 4 are:

1. Replacing the circuit fM defined in figure 1 to UE defined in figure 3 in the description
of DfaFE.KeyGen.

2. Replacing the message w = (w1, . . . , wk) with w′ =
(
(SKS, w

′
1), . . . , (SKS, w

′
k)
)
in the

description of DfaFE.enc.
Thus, it suffices to establish that the pair (UE ,w′) produces exactly the same value as the
pair (fM ,w). The remainder of correctness follows directly from Section 4.1. Let

∀i ∈ [k − 1], CktFE.Enc
(

PK,
(
(SKS, wi),Ki+1, 0, qi

) )
= (ci,di)

CktFE.Dec(MG, (ci,di)) = UE(SKS, wi,Ki+1, 0, qi)
)
by correctness of CktFE

= C(wi,Ki+1, 0, qi)
)
by definition of UE

= fM (wi,Ki+1, 0, qi) for i < k,

= fM (wk,⊥, 1, qk) for i = k.

Thus we have that at every step the DFA computation results in the same value regardless
of whether the pair (UE ,w′) or (fM ,w) is used. Since the remainder of the computation
proceeds as the construction in Section 4, we have the correctness of GbDfa.Eval from the
correctness of DfaFE.Dec.

We now establish efficiency. We have that |gsk| equals |SKS| + |DfaFE.PK| where the
DfaFE public key is a CktFE public key for circuits of input length |SKS|+ log(|K2 logQ|) +
log(|Σ|) + log(|Q|). The length of the CktFE public key is polynomial in the input length of
the circuit. Hence |gsk| = O(poly(κ)).

Next, consider the running time of the GbDfa.Enc algorithm. This algorithm, upon input
of size k, invokes the CktFE.Enc algorithm k times, with polynomial sized messages. Hence,
its runtime is O(κ, k).

E.3 Security
We now establish that the scheme GbDfa constructed is secure according to Definition 19.
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I Theorem 20. Assume that the DfaFE construction described in Section 4 is FULL-SIM
secure according to definition 2. Then the reusable garbled DFA construction provided in
Section E.1 achieves input and machine privacy with reusability as defined in definition 19.

Proof. We proceed to construct a simulator to satisfy the definition 19.

E.3.1 Simulator Construction.
We construct a simulator S = (S1, S2) as follows.

S1(1κ, 1|M |): Upon input the security parameter and the machine size, S1 does:

1. Generate (SKE.SKS,DfaFE.MSK) and DfaFE.PK as in GbDfa.Garble.
2. Compute Ẽ = SKE.Enc(SKS, 0|M |)
3. Output M̃G = CktFE.Enc(UẼ ,MSK), where UẼ is as defined in Figure 3 but for Ẽ.
4. Set state stS = (SKS, UẼ ,DfaFE.PK, M̃G). Note that DfaFE.PK = CktFE.PK for the

family of circuits as defined in Section 4.

The simulator S2 receives (stS ,M(w), 1|w|) and does the following:

1. Assign the bit b = M(w).
2. Let CktFE.SKUẼ

= M̃G and invoke CktFE.Sim
(

CktFE.PK, UẼ ,CktFE.SKUẼ , b
)
to receive

C̃Tk where we may express C̃Tk = (c̃k, d̃k,qk) and d̃k,qk = (d̃k,j) for j ∈ [logQ].
3. For (i = k, i ≥ 1, i−−), do:

a. If i = 1, set S2.D̂1 = d̃1,q1 and exit.
b. Sample key K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and let

S2.d̂i,j = SKE.Enc(d̃i,j ,K∗i,j) ∀j ∈ [logQ],

c. Sample b̃i,j ← {0, 1} and assign S2.d̂
b̃i,j
i,j = S2.d̂i,j .

d. Choose another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and compute

S2.d̂
¯̃bij
i,j = SKE.Enc(0|d̃i,j |, K̃i,j) ∀ j ∈ [logQ]

e. Let S2.D̂i,j =
(
S2.d̂

b̃i,j
i,j , S2.d̂

¯̃bi,j
i,j

)
and S2.D̂i =

(
S2.D̂i,j

)
for j ∈ [logQ].

f. Let (c̃i−1, d̃i−1,qi−1) = CktFE.Sim
(

CktFE.PK, UẼ ,CktFE.SKUẼ ,K
∗
i ).

4. Output the encoding as c(w) = (c̃1, c̃2, . . . , c̃k, S2.D̂1, . . . , S2.D̂k).

E.3.2 Analysis of Simulator.
We now establish that the simulator described above is correct.

We need to show that:{
(M, stA,MG, {wi, c(wi)}ti=0)← Expreal

GbDfa,A(1κ)
}
κ∈N

c
≈{

(M, stA, M̃G, {wi, c̃(wi)}ti=0)← Expideal
GbDfa,A,S(1κ)

}
κ∈N

The proof is analogous to [18, Sec 4]. Indistinguishability is established via a sequence
of games where the first game is the ideal distribution and the final game is the real
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distribution. We show that successive games are indistinguishable, which implies that the
above distributions are indistinguishable.

Hybrid 0: The ideal hybrid of Definition 19 with simulator S. In this case, the output
distribution is:(

M, stA, M̃G,
{

wi, S2(stS ,M(w), 1|w|)
}t
i=0

)
Hybrid 1: The same as Hybrid 0, but Ẽ is replaced with E = SKE.Enc(SKS, C). The

output distribution is(
M, stA,MG,

{
wi, S2(stS ,M(w), 1|w| )

}t
i=0

)
Hybrid 2: The real distribution using the GbDfa construction. The output distribution

is (
M, stA,MG, {wi, c(wi)}ti=0

)
Hybrid 0 and Hybrid 1 are computationally indistinguishable because of the semantic

security of SKE.Enc. We will prove that Hybrid 1 and Hybrid 2 are computationally
indistinguishable by using the FULL-SIM security of DfaFE.

Assume we have a p.p.t. adversary A = (A1, A2) and p.p.t. distinguisher D that can
distinguish between Hybrid 1 and Hybrid 2. We construct AFE = (AFE

1 , AFE
2 ) and DFE which

breaks a modified version of the security of DfaFE in Definition 7. We will let an adversary
query for multiple ciphertexts (i.e. repeat steps 4-5 as many times as it wants) and also give
the simulator the circuit corresponding to M instead of the machine (in step 5 instead of M ,
a circuit as defined in Figure 1 is given to the simulator). Under this definition S2 is a valid
simulator for DfaFE (it’s proof of security will be exactly as for DfaFE.Sim). An adversary
that can break this definition can break the original definition with a polynomially smaller
advantage.

On input PK, adversary AFE will do the following:

1. Run A1 on input 1κ and get M and the corresponding circuit of function f defined in
Figure 1 from stA.

2. Generate SKS ← SKE.KeyGen(1κ) and encrypt E ← SKE.Enc(SKS,M).
3. Let UE be the circuit defined in Figure 3.
4. Output function UE and stFE

A = (SKS, UE , stA)
On input (SKUE , stFE

A ), adversary AFE
2 does:

1. Set MG = SKUE
2. Run A2 with input (UE ,MG, stA) by responding to its ith oracle query wi with either of

the following:
- Return the the real ciphertext CT(wi) = DfaFE.Enc(PK,w′i) where

w′i =
(
(SKS,wi,1), . . . , (SKS,wi,|wi|)

)
- Return the simulated ciphertext

C̃T(wi)← S2(stS ,M(w), 1|w|) where stS = (PK,MG, UE).
Repeat this (sending either all real or all simulated ciphertexts) till A2 outputs α.

3. Output α
When real ciphertexts are used then AFE simulates Hybrid 2 and when simulated cipther-
texts are used then they simulate Hybrid 1. Hence, a distinguisher that can distin-
guish between Hybrid 1 and 2 can also distinguish between {Expreal

DfaFE,A(1κ)}κ∈N and
{Expideal

DfaFE,S2
(1κ)}κ∈N which contradicts FULL-SIM security of DfaFE.

J
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