
On Algebraic Traceback in Dynamic Networks
Abhik Das, Shweta Agrawal and Sriram Vishwanath

Department of Electrical & Computer Engineering
University of Texas, Austin, USA

Email: {akdas, shweta.a}@mail.utexas.edu, sriram@austin.utexas.edu

Abstract—This paper discusses the concept of incremental
traceback for determining changes in the trace of a network
as it evolves with time. A distributed algorithm, based on the
methodology of algebraic traceback developed by Dean et al.,
is proposed that can determine a path of d nodes using O(d)
marked packets, and subsequently determine the changes in it
using O(log d) marked packets. The algorithm is established to
be order-wise optimal i.e. no other distributed algorithm can
determine changes in the path topology using lesser order of
bits (i.e. marked packets). The algorithm is shown to have a
computational complexity of O(d log d), which is significantly less
than that of any existing non-incremental algorithm for algebraic
traceback. The extension of traceback mechanisms to systems
deploying network coding is also considered.

Index Terms—Incremental traceback, MANETs.

I. INTRODUCTION

Given the increasing number and forms of attacks on net-
works in recent years, developing efficient counter-measures,
such as traceback, is of significant value. In simple words,
traceback refers to determination/tracking of the paths tra-
versed by packets in a network. In this paper, we focus
on developing efficient traceback mechanisms for networks
with time-varying topologies. Settings such as mobile ad-
hoc networks (MANETs) are of particular interest in which
we desire to use traceback towards network management and
defence against attacks. For the Internet and wired networks,
IP traceback is a popular mechanism for countering denial-
of-service (DoS) attacks [1], [2]. Similarly, generalized (not
necessarily IP-based) traceback proves to be useful in deter-
mining the origin of attacks and monitoring network behavior
for MANETs. There are many other purposes that traceback
can serve. For instance, it can be used for network maintenance
and monitoring [3], source/route verification and determining
the location of faulty nodes in the network.

In this paper, we present an algebraic incremental traceback
approach for time-varying networks. Our traceback mechanism
is suitable for networks where the topology changes at a
rate much slower than the rate of data transmission, such as
wireless networks. We analyze the performance of this mecha-
nism using a framework similar to random coding arguments.
Traceback mechanisms have been traditionally studied for IP-
based networks under the name of IP traceback [4], [5], [6],
[7], [8], but all these approaches have been non-incremental
in a dynamic network setup, which do not utilize existing

We acknowledge the support of the DARPA IAMANET program, the
AFOSR and the ARO for this research.

knowledge of network topology in computing changes to the
same. In contrast, our approach to traceback is incremental and
the information about network topology, obtained from prior
traceback operations, is actually utilized. We base our incre-
mental traceback mechanism on the framework of algebraic
traceback, developed by Dean et al [8].

We consider traceback being performed in a continuous
manner, with the goal of ensuring that the destination(s) stay
well informed of the path(s) traversed by the received packets.
We show that, once a path of d routers/nodes in a network is
learnt using the non-incremental version of algebraic trace-
back, O(log d) marked packets and a traceback algorithm
with a computational complexity of O(d log d) (operations per
execution) are sufficient to track the changes (node addition
and deletion) in the path. Note that, if we were to use
the non-incremental traceback process each time there is a
change in the path, O(d) marked packets would be required
to perform traceback. Next, we argue that our incremental
traceback process is order-wise optimal in terms of the number
of marked packets (number of bits) required.

We limit our incremental traceback approach to track single
node addition and deletion in a path of the network. This is
deliberate, as conventionally, in wireless networks, the time-
scale at which routes/paths change in an ad hoc network (order
of seconds) is many orders of magnitude greater than the time-
scale of data transmission (order of milliseconds or less). Thus,
any one change can be detected before additional changes
occur in a path. Our algorithm and analysis framework can
be naturally extended to scenarios when multiple nodes can
enter or leave a path.

II. SYSTEM MODEL

We consider a directed graph, that represents the connectiv-
ity model of the network considered. The nodes in the graph
have unique identifiers (IDs) that come from the finite field
GF (p), for some large, suitable prime number p. A directed
edge between a pair of nodes in the graph represents an error-
free channel. We assume that the transmissions across different
edges do not interfere with each other in any way.

We focus our attention on a source and a destination in
the network, represented in the graph by nodes r1 and D
respectively. The source node wants to transmit data to the
destination node using the path P = (r1, r2, . . . , rd, D). How-
ever, this path may change over the course of the transmission,
and we consider the case when exactly one node is added



D

D

D

r1 r2 rdrd-1

r1
rdrm-1 s rm

Path P

Node Addition

Node Deletion

r1
rdrm-1

rm+1

rm

Fig. 1. Dynamic behavior of P

to or removed from path P (Figure 1). We want to develop
an incremental algebraic traceback mechanism that enables
destination D to figure out this change in path P .

We assume that there is the possibility of node-ID spoofing,
i.e., a malicious node in path P misreporting its ID. We include
a flag-bit field and hop-count field (with initial values 0) in
each packet and assume that the hop-count field cannot be
altered by any malicious node. For the case when the hop-
count field is attackable, please refer to [8].

III. REVIEW: ALGEBRAIC TRACEBACK

In this section, we present the relevant aspects of algebraic
traceback, developed by Dean et al [8]. The main idea behind
this traceback scheme is that a polynomial of degree n
in GF (p) is completely determinable using (n + 1) of its
evaluations at distinct points in GF (p).

A. Deterministic Path Encoding
The deterministic path encoding scheme is used when

no node-ID spoofing is suspected. The encoding or packet
marking process is initiated by the first node (source node)
that encounters the packet (r1 for P). The flag-bit and hop-
count values are set to 1 when a packet is marked, otherwise
the flag-bit value remains unchanged and each node following
the source node just increments the hop-count by 1. In path P ,
when node r1 initiates the packet marking process (with some
fixed probability), it encodes a value-pair (x, y) into it, where
x is chosen uniformly at random from GF (p) and y = r1.
When node ri (i = 2, . . . , d) encounters a marked packet, it
uses the values x, y, ri to update y as:

y ← y · x+ ri. (1)

If destination D gets d distinct value-pairs (xi, y(xi)), i =
1, 2, . . . , d, from the marked packets, then path P can be
reconstructed by solving the following matrix equation:

1 x1 x2
1 . . . xd−1

1

1 x2 x2
2 . . . xd−1

2
...

...
...

. . .
...

1 xd x2
d . . . xd−1

d




rd
rd−1

...
r1

 =


y(x1)
y(x2)

...
y(xd)

 .

The resulting matrix in the equation is a full-rank Vander-
monde matrix, which is solvable in O(d2) operations.

B. Randomized Path Encoding

The deterministic path encoding scheme may be infeasible if
node-ID spoofing is possible and/or the first node to receive a
packet is unsure if it is the source node (for example, if r1 does
not know it is the source node in path P). This situation can
be addressed by using a probabilistic traceback mechanism.
For path P , node r1 initiates marking of a packet as before
(with probability, say q1), but now each intermediate node ri
clears an existing marking on a packet, if any, and re-marks it
with probability qi, i = 2, . . . , d. Otherwise, with probability
(1 − qi), node ri follows the update mechanism as given by
Equation (1). Note that the hop-count and flag-bit values are
reset to 1 every time a packet gets remarked.

If the values of marking probabilities qi, i = 1, 2, . . . , d, are
non-trivial, apart from marked packets with value-pairs corre-
sponding to path P , there are marked packets with value-pairs
corresponding to sub-paths Pi = (ri+1, ri+2, . . . , rd), i =
1, 2, . . . , (d − 1). Then, a marked packet received by D has
value-pair of the form (x, y(x)) where

y(x) =
k∑
i=0

rd−ix
i, k = 0, 1, . . . , d− 1.

These marked packets can be segregated in terms of the sub-
paths their value-pairs correspond to, on the basis of their
hop-count values, as hop-count value of i(< d) means that
the value-pair is for sub-path Pd−i and hop-count value of
d means that the value-pair is for path P . Using this, the
sub-paths and therefore the path P can be reconstructed after
getting sufficient number of marked packets.

Let fi, i = 1, 2, . . . , d, be defined as the fraction of packets
whose marking was initiated by node ri and received by des-
tination D. fi can be expressed in terms of qi, i = 1, 2, . . . , d,
as

fi =
{
qi
∏d
j=i+1(1− qj) i 6= d

qd i = d
.

The fraction of unmarked packets received by destination D is
given by f0 = 1−

∑d
i=1 fi =

∏d
i=1(1− qi). It can be shown

that an average of dd(1−f0)/f1e or O(d(1−f0)/f1) marked
packets need to be received by destination D to determine the
path P with a computational complexity of O(d2).

IV. INCREMENTAL ALGEBRAIC TRACEBACK:
DETERMINISTIC PATH ENCODING

In this section, we present an incremental traceback ap-
proach based on the methodology of deterministic path encod-
ing. We adopt the same packet encoding/marking procedure
as in Section III-A, i.e. the source node initiates the packet
marking process with some fixed probability.

As discussed earlier, the path P can be ascertained using
O(d) marked packets with a computational complexity of
O(d2). Our interest lies in the case when path P has been
determined by destination D, and then its topology changes



due to node addition or deletion. The conventional way to
determine the change(s) would be to repeat the traceback
process, i.e. destination D waits until it receives O(d) marked
packets again, reconstructs the modified path and detects the
change(s) in topology of path P . This scheme is very ineffi-
cient – the number of marked packets and computational load
incurred remains the same despite the fact that destination D
has knowledge of path P . The proposed incremental traceback
mechanism makes use of this knowledge to determine the
correct change in topology of path P accurately using O(log d)
marked packets with a complexity of O(d log d).

The change in topology of path P involves either addition
or deletion of a single node, which can be detected using the
hop-count value of a marked packet – it changes from d to
(d + 1) for node addition and to (d − 1) for node deletion.
Hence, we examine these two cases separately.

A. Node Addition

Suppose a node with identity s gets added to path P in the
mth position, 1 ≤ m ≤ (d + 1) (1st position refers to the
position before node r1 and (d + 1)th position refers to the
position after node rd). Then the new packets have value-pairs
of the form (x, z(x)) encoded in them, where

z(x) = am(x) + xd−m+1(s+ xbm(x)). (2)

ak(x) and bk(x) are polynomials given by

ak(x) =
{
rd + rd−1x+ . . .+ rkx

d−k k 6= d+ 1
0 k = d+ 1 (3)

bk(x) =
{
rk−1 + rk−2x+ . . .+ r1x

k−2 k 6= 1
0 k = 1 (4)

for k = 1, 2, . . . , (d + 1). These polynomials are known to
destination D from the usual traceback performed previously,
which gives r1, r2, . . . , rd. The polynomials also satisfy

y(x) =
d−1∑
i=0

rd−ix
i = ak(x) + xd−k+1bk(x)

for all k, where y(x) refers to the y-value of the marked packet
received by D prior to entry of node s in path P .

Suppose (xi, zi), i = 1, 2, . . . , l, be the value-pairs encoded
in l marked packets received after the addition of s in the path
P . We consider the following set of equations:

zj = ak(xj) + xd−k+1
j (s+ xjbk(xj)), 1 ≤ j ≤ l. (5)

From relation (2), the above set of equations is consistent for
k = m. For k 6= m, the set of equations is not consistent
with high probability (established by Theorem 1 below). We
make use of this property to design an incremental traceback
algorithm, for the case of node addition, as follows:
Algorithm I

(i) Construct a (d+ 1)× l matrix Ŝ = [ŝkj ] where

ŝkj =
zj − ak(xj)
xd−k+1
j

− xjbk(xj).

(ii) If there exists a unique row in Ŝ with equal elements,
say the m̂th row, declare that the new node is in m̂th
position with identity ŝ = ŝm̂j , 1 ≤ j ≤ l.

(iii) If there exists more than one row in Ŝ with equal
elements, declare that an error has occurred. Wait for
more value-pairs to arrive through marked packets, say
(xi, zi), i = l + 1, . . . , l + ε, where ε is an integer of
smaller order compared to l. Repeat the algorithm using
the value-pairs (xi, zi), i = ε + 1, . . . , l + ε. Theorem
1 below shows that the algorithm terminates with high
probability, giving the correct node identity.

Theorem 1: A newly added node in path P can be determined
by destination D using Algorithm I and l = dlogp d + δe
marked packets (δ ∈ N) with an error probability of atmost
p−δ and a computational complexity of O(d log d).
Proof: From (5), it is clear that all elements of the mth row of
Ŝ will be equal. If this is the only such row, we have the correct
new node position and identity s = ŝmj , 1 ≤ j ≤ l. An error
occurs if there exists another row i 6= m such that all elements
of the ith row are equal as well. To determine the probability
of this happening, we note that xj is chosen uniformly over
GF (p). This makes ŝkj uniform for any k 6= m, since each
ŝkj is purely a function of xj . So, ŝij , j = 1, 2, . . . , l is an
i.i.d. uniform random process. This gives

Pr(ŝij = ŝij′) =
1
p

= 2− log2 p

for any 1 ≤ j, j′ ≤ l and j 6= j′. Let Ei be the event that
all elements of the ith row of Ŝ are same. Then we have
Pr(Ei) = 2−l log2 p for i 6= m, since there are l elements in
each row. The probability of error is

Pe = Pr(∪i 6=mEi) ≤ dPr(Ei) = 2log2 d−l log2 p

where the inequality above is due to the union bound. Pe can
be made arbitrarily small if log2 d − l log2 p can be made as
negative as possible. If we require that l > log2 d

log2 p
, then this can

be satisfied. Thus, we choose l = d log2 d
log2 p

+ δe, where δ ∈ N
is a small constant. Then Pe gets upper-bounded as

Pe ≤ 2log2 d−l log2 p =
1
pδ

2log2 d−log2 pd
log2 d
log2 p e ≤ 1

pδ

where the second inequality follows from the fact that a −
bdab e ≤ 0 ∀a, b ∈ R, b 6= 0. By choosing a large enough
value for p, Pe can be bounded above by any arbitrary small
positive value. In other words, l = O(log d) is sufficient for
determining the newly added node correctly.

Since the algorithm relies on the computation of Ŝ which
has (d+ 1)l entries, we get a complexity of O(d log d) (since
l = O(log d)). This completes our proof.

B. Node Deletion

The case of node deletion is handled analogously using
an incremental traceback algorithm named Algorithm II – for
details please refer to [9]. We have the following result for
node deletion in P:
Theorem 2: A deleted node in path P can be determined by



destination D using Algorithm II and l = dlogp d+δe marked
packets (δ ∈ N) with an error probability of atmost p−δ and
a computational complexity of O(d log d).

Thus, be it node addition or deletion, O(log d) marked
packets are always sufficient for D to determine the correct
change in P . Note that the order-optimality of Algorithms
I and II is fairly straightforward. The entropy of a uniform
source with an alphabet of size k is log2 k bits. Thus, even
if a centralized mechanism existed that could communicate
the location of the node being inserted/deleted in P , it would
require O(log2 d) bits to do so, as there are d equally likely
positions for the change to occur. Our distributed mechanism
uses dlogp d + δe packets or 2(log2 d + δ log2 p) bits. Thus,
in terms of the order of growth of network overhead in d, the
incremental traceback algorithms are optimal.

V. INCREMENTAL ALGEBRAIC TRACEBACK:
RANDOMIZED PATH ENCODING

In this section, we present an incremental traceback ap-
proach, based on the methodology of randomized path en-
coding. This is useful in scenarios when node-ID spoofing
is suspected or there are multiple attacks. We use the same
packet marking procedure as in Section III-B, i.e. each node
clears the encoded data in a marked packet with some fixed
probability and re-initiates the marking process.

For path P , the packet remarking probability for node ri
is qi. As a result, multiple nodes in path P act as source
nodes and the marked packets carry value-pairs corresponding
to path P and sub-paths Pi, i = 1, 2, . . . , (d−1). As described
earlier, path P is completely determinable using an average
of O(d(1 − f0)/f1) marked packets with a computational
complexity of O(d2). Once P is known to D, we show that
it possible to detect the correct changes in P , using smaller
number of marked packets.

Due to the random nature of packet-marking, we cannot
immediately ascertain if node addition or node deletion has
occurred from the hop-count value of the marked packets. A
change occurring at the first position in path P , i.e. either node
r1 getting deleted or a new node getting added before it, can be
detected only using those packets that are marked by the first
node on the new path, which we call path P ′. In fact, these
marked packets give information about any change occurring
anywhere in path P . Let f ′i denote the fraction of packets
received by destination D and marked by the ith node of path
P ′. Then, the fraction of marked packets coming from the first
node of path P ′ is f ′1/(1−f ′0), where f ′0 = 1−

∑
i≥1 f

′
i is the

fraction of unmarked packets. This means that, from a average
of ld(1−f ′0)/f ′1e new marked packets received by destination
D after a change in path P (addition or deletion of a node),
the l marked packets with highest hop-count values are most
likely to come from the first node of path P ′.

Suppose a new node with identity s gets added at the mth
position in path P (1 ≤ m ≤ d + 1). Then a marked packet
with hop-count value h, where d−m+2 ≤ h ≤ d+1, contains
information about the new node. The value-pair (x, z(x))

encoded in the marked packet satisfies

z(x) = am(x) + xd−m+1(s+ xbm,h(x)). (6)

am(x) is defined as in (3) and bk,h(x) is defined as

bk,h(x) = rk−1 + rk−2x+ . . .+ rd−h+2x
k−d+h−3

for k = d−h+2, . . . , d+1 and bk,h(x) = 0 for k = d−h+2.
Similarly, if node rm (1 ≤ m ≤ d) gets deleted from path P ,
a marked packet with hop-count h, where d −m + 1 ≤ h ≤
d− 1, contains information about the deletion. The value-pair
(x,w(x)) of the marked packet satisfies

w(x) = am(x)− xd−m(rm − bm,h+2(x)). (7)

Depending upon whether a node gets added or deleted in
path P , the new path P ′ has d+1 or d−1 nodes respectively.
If there is no change in path P , we have P ′ = P . So, (f ′0, f

′
1)

can take three possible values, one is (f0, f1) when there is
no change, the other two values result from node addition
or deletion in path P . Let (F0, F1) be that value of (f ′0, f

′
1)

which maximizes (1−f ′0)/f ′1 over the three choices. Suppose
(xi, zi), i = 1, 2, . . . , l, be the value-pairs in the marked pack-
ets with the highest hop-count values, say hi, i = 1, 2, . . . , l,
among ld(1−F0)/F1e marked packets received by destination
D. By an average/expected value arguement, these l packets
are marked by nodes close to the first node of new path P ′
and they possess information about any change in path P . If
hi = d+ 1 for some i, it means there has been node addition
but if hi ≤ d for all i, we cannot conclude anything and
have to consider both the possibilities of node addition and
node deletion. We propose the following incremental traceback
algorithm for destination D to determine any change in path
P accurately:
Algorithm III

(i) Construct a (d+ 1)× l matrix Ŝ = [ŝkj ] where

ŝkj =
zj − ak(xj)
xd−k+1
j

− xjbk,hj
(xj)

for k ≥ d− hj + 2 and ŝkj = 0 otherwise.
(ii) If there exists a unique row in Ŝ, say the m̂th row, such

that all non-zero elements (there should be atleast two
non-zero elements) of the row are equal, declare that
there is a new node added in m̂th position with identity
ŝ equal to the non-zero element value.

(iii) If there exists more than one row in Ŝ with equal non-
zero elements, declare that an error has occurred. Wait to
get more value-pairs with high hop-count values through
marked packets. Repeat (i), (ii) using these and some of
the earlier value-pairs (l value-pairs in all).

(iv) If there exists no row in Ŝ with equal non-zero elements,
construct a d× l matrix R̂ = [r̂kj ] where

r̂kj = bk,hj+2(x)−
zj − ak(xj)

xd−kj

for k ≥ d− hj + 1 and r̂kj = 0 otherwise.



(v) If there exists a unique row in R̂, say the m̂th row,
such that all non-zero elements of the row are equal,
declare that the node in m̂th position has been deleted
with identity equal to the non-zero element value.

(vi) If there exists more than one row in R̂ with equal non-
zero elements, declare that an error has occurred. Wait to
get more value-pairs with high hop-count values through
marked packets. Repeat (iv), (v) using these and some
of the earlier value-pairs (l value-pairs in all).

(vii) If there exists no row in R̂ with equal non-zero elements,
declare that there has been no change in P .

Theorem 3: Any change in path P can be determined by
destination D using l = O(log d) marked packets, which
contain information about the change encoded in them, and
Algorithm III with a computational complexity of O(d log d).
Proof: See proof of Theorem 3 in [9].

Thus, O(log d) marked packets, with the information
about the change in P encoded in them, or an average of
O((log d)(1 − F0)/F1) marked packets in general, are suffi-
cient to determine the correct change in path P . An intelligent
choice of marking probabilities can significantly reduce the
number of marked packets required for the incremental trace-
back algorithm based on randomized path encoding. The basic
idea is to make F1 converge to a constant as d→∞. Thinking
of the marking probabilities as functions of d (qi = qi(d)), a
necessary and sufficient condition for this to happen is that∑
i qi < ∞, i.e., the marking probabilities decrease along

path P . Two such schemes are described in [9] which give
a requirement of an average of O(log d) marked packets.

VI. TRACEBACK WITH NETWORK CODING

In this section, we extend traceback to networks that deploy
network coding. The main difference between traceback in
conventional networks and that in networks deploy network
coding is that in the former, any packet traverses a path
from source to destination, whereas in the latter, a packet is
now a combination of different packets and hence traverses
a subgraph (with potentially multiple sources) to reach the
destination. In such a network, traceback can be performed if
every node that performs coding randomly chooses a particular
path to encode. Thus, a subgraph can be traced by tracing each
of the individual paths that comprise it.

Specifically, let (xi, yi), i = 1, 2, . . . ,m, be the value-
pairs received by node A from other nodes. Then A chooses
one of the value-pairs with some probability, say (xi, yi),
and updates it using its own ID a, to get (xi, y′i), where
y′i ← yi · xi + a. To ensure that the same path is not chosen
every time, node A may change the probability of selection
in every time-slot. When the chosen value-pair is received
by the other nodes, the same policy as traditional marking is
followed. Thus, a destination receives multiple types of value-
pairs corresponding to the multiple paths in a subgraph, with
a value identifying the encoded path (so that decoding can be
performed). Note that incremental traceback can be performed
for each path and hence for the subgraph.

A. Faulty/Malicious Nodes in Network-Coded Systems

As described above, a receiver in a network-coded system
traces a subgraph instead of a path traversed by a packet. Here,
we describe an approach to identify a malicious or faulty node
in such a network. We restrict our attention to the case in
which a single node in the network is faulty or malicious; this
approach can be extended easily to the more general case.

The broad idea is that routing can be performed in such
a way that the subgraph traversed by packets from a set
of sources to a given destination evolves over time. More
precisely, if at time t1, the subgraph G1 traversed by packets
originating at sources S1 and S2 and ending at a destination D
is different from the subgraph G2 traversed between sources
S1, S2 and destination D at time t2, then the intersection of
G1 and G2 is small. So, if this subgraph evolves so that
it is different at different time-slots, then for each time-slot
that decoding fails (due to some node in the subgraph being
malicious or faulty), the subgraph traversed during that time-
slot can be isolated and intersected with subgraphs of other
such time-slots (when decoding failed). This will enable the
receiver to identify a small set of nodes (in the intersection)
as candidates for the malfunctioning node.

The subgraph creation needs to be done carefully, so that
every k subgraphs (for some chosen k) have a nonempty
but not too large intersection. We defer the details of such
a construction to a future version of the paper.

VII. CONCLUSION AND REMARKS

We present a way of performing incremental algebraic
traceback in a network whose topology changes at a slower
time-scale compared to the rate of data exchange and consider
an extension to network coding. Note that our proof mecha-
nisms closely resemble the random coding proofs for discrete
additive memoryless channels. Algorithms I through III can
be viewed as “achievability” proofs while, in this case, the
converse is straightforward. We also consider the extension of
traceback in network-coded systems.

REFERENCES

[1] A. Belenky and N. Ansari, “On IP Traceback,” IEEE Communications
Magazine, Vol. 41, Issue 7, pp. 142-153, July 2003.

[2] H. Burch and B. Cheswick, “Tracing Anonymous Packets to their
Approximate Source,” Unpublished paper, Dec. 1999.

[3] I.Y. Kim and K.C. Kim, “A Resource-Efficient IP Traceback Technique
for Mobile Ad-hoc Networks Based on Time-Tagged Bloom Filter,”
ACM International Conference on Convergence and Hybrid Information
Technology (ICCIT), Vol. 2, pp. 549-554, 2008.

[4] D. Song and A. Perrig, “Advanced and Authenticated Marking Schemes
for IP Traceback,” IEEE INFOCOM, Vol. 2, pp. 878-886, Apr. 2001.

[5] S.M. Bellovin, M. Leech and T. Taylor, “The ICMP Traceback Message,”
http://tools.ietf.org/html/draft-ietf-itrace-04, Oct. 2001.

[6] S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practical Network
Support for IP Traceback,” ACM SIGCOMM, Aug. 2000.

[7] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio,
S.T. Kent, and W.T. Strayer, “Hash-Based IP Traceback,” IEEE/ACM
Transactions on Networking (TON), Vol. 10, Issue 6, Dec. 2002.

[8] D. Dean, M. Franklin and A. Stubblefield, “An Algebraic Approach to
IP Traceback,” ACM Transactions on Information and System Security
(TISSEC), Vol. 5, Issue 2, pp. 119-137, May 2002.

[9] A. K. Das, S. Agrawal and S. Vishwanath, “On Algebraic Traceback in
Dynamic Networks,” arXiv:0908.0078v3.


