Post Correspondence Problem

Slides: https://www.andrew.cmu.edu/user/ko/pdfs/lecture-17.pdf

Suppose we have dominos

b a ca abc

)

cal’labl|’| a C

A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,

a||bj|cal| al|labc| abcaaabc
abl|cal| al|lab|| ¢ | abcaaabc

https://www.andrew.cmu.edu/user/ko/pdfs/lecture-17.pdf

Post Correspondence Problem

AN INSTANCE OF THE PCP

A PCP instance over X is a finite collection P of dominos

=[5} (3] 4]

where forall /.1 <i <k, t, b € X*.

MATCH
Given a PCP instance P, a match is a nonempty sequence

H [

i17i27"'7i€

of numbers from {1.2, ..., k} (with repetition) such that
ZLi"1 tfz T tfe — bﬁ bfz T bfe

Post Correspondence Problem

Does a given PCP instance P have a match? \

LLANGUAGE FORMULATION:

PCP = {(P) | Pis a PCP instance and it has a match}

PCP is undecidable. \

Proof: By reduction using computation histories. If PCP is decidable then so
Is Ary. That is, if PCP has a match, then M accepts w.

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] = T
b H QoW Wo - - - Wp# |’

(Lecture 17) Slides for 15-453 Spring 2011 15/28

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - |7t

bi] |#Qwiwe - Wy |’

© Handle right moving transitions. For every a,b € I and every q,r € Q
where q 7é Qreject

br

if 5(q,a) = (r, b, R), put [q—a]into P

(Lecture 17) Slides for 15-453 Spring 2011 15/28

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - |7t

bi] |#Qwiwe - Wy |’

© Handle right moving transitions. For every a,b € I and every q,r € Q
where q 7é Qreject

if 5(q,a) = (r, b, R), put [z—‘f]into P

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where q 7é Qreject

. B cqal. /
if 0(g,a) = (r,b,L), put [rob] into P

(Lecture 17) Slides for 15-453 Spring 2011 15/28

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - |7t

bi] |#Qwiwe - Wy |’

© Handle right moving transitions. For every a,b € I and every q,r € Q
where q 7é Qreject

if 5(q,a) = (r, b, R), put [z—‘f]into P

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where q 7é Qreject

. B cqal. /
if 0(g,a) = (r,b,L), put [rob] into P

© Forevery a e I put [g] into P’

(Lecture 17) Slides for 15-453 Spring 2011 15/28

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - |7t

bi] |#Qwiwe - Wy |’

© Handle right moving transitions. For every a,b € I and every q,r € Q
where q 7é Qreject

if 5(q,a) = (r, b, R), put [z—‘f]into P

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where q 7é Qreject

. B cqal. /
if 0(g,a) = (r,b,L), put [rob] into P

© Forevery a e I put [g] into P’

ks jia
@ Put [g] and [m

(Lecture 17) Slides for 15-453 Spring 2011 15/28

PCP - HOw THE DOMINOS WORK

o Letusassume ' ={0,1,2, 1}, w = 0100 and that 6(qo,0) = (g7, 2, R)

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

o Letusassume ' ={0,1,2, 1}, w = 0100 and that 6(qo,0) = (g7, 2, R)
e Part 1 places the first domino and the match begins

#
g0 0 1 0 0

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

o Letusassume ' ={0,1,2, 1}, w = 0100 and that 6(qo,0) = (g7, 2, R)
e Part 1 places the first domino and the match begins

qo O
@ 0 1 0 0 # 2 q

o Part 2 places the domino [M]

24y

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

Letus assume I' = {0,1,2, 1}, w = 0100 and that 6(qo,0) = (97,2, R)
Part 1 places the first domino and the match begins

qo O
@ 0 1 0 0 # 2 q

Part 2 places the domino [%]

Part 4 places the dominos [%] and [ﬁ] into P’ so we can

extend the match.

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

Letus assume I' = {0,1,2, 1}, w = 0100 and that 6(qo,0) = (97,2, R)
Part 1 places the first domino and the match begins

qo O
@ 0 1 0 0 # 2 qy

Part 2 places the domino [%]

Part 4 places the dominos [%] and [ﬁ] into P’ so we can

extend the match.
Part 5 puts in the domino

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

Letus assume I' = {0,1,2, 1}, w = 0100 and that 6(qo,0) = (97,2, R)
Part 1 places the first domino and the match begins

qo O
@ 0 1 0 0 # 2 qy

Part 2 places the domino [%]

Part 4 places the dominos [%] and [ﬁ] into P’ so we can

extend the match.
Part 5 puts in the domino

What exactly is going on ?

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

Letus assume I' = {0,1,2, 1}, w = 0100 and that 6(qo,0) = (97,2, R)
Part 1 places the first domino and the match begins

qo O
@ 0 1 0 0 # 2 qy

Part 2 places the domino [%]

Part 4 places the dominos [%] and [ﬁ] into P’ so we can

extend the match.
Part 5 puts in the domino

What exactly is going on ?
We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom — We are simulating M on

w!

(Lecture 17) Slides for 15-453 Spring 2011 16 /28

PCP - HOw THE DOMINOS WORK

Let us assume ' = {0, 1,2, U}, w = 0100 and that §(qp,0) = (g7, 2, R)
Part 1 places the first domino and the match begins

q O
g 0 1 0 0 # 2 qy

Part 2 places the domino [qug]

Part 4 places the dominos [%] and 5] into P’ so we can

extend the match.
e Part 5 puts in the domino

e What exactly is going on ?

e We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom — We are simulating M on
w!

e The process continues until M reaches a halting state and we then pad
the upper string.

(Lecture 17) Slides for 15-453 Spring 2011 16/28

L/ v 1 - - ¥ =
- . K 3 § \ ¥ Y i~ ~
e 4 vy e >, 3 ¢ | D, (N 3 P 23
1Y g x $ e >4) R ’ \ . N 8 e S o L S |
v < S g X > \B 1 \ (: J i b g i o ™ /) w N B 1
. "y \{ Jl @ ¢ S Ly % 7 » P 3

achines and Computation: Recap

Some slides by: Emanuele Viola, Madhusudan Parthasarathy

s - S e W . & p 5 0 P AN . AP -,
" -~ 5 s i y 4 jn “‘? .T‘\ ’g £s) 3 : = - 0 T s‘ [” A U .. (X i i \‘ , l \'4/ : T ," ,! o
4 - Yol P b - Y : o~ A g et U ~ ot 4 ;SRR 3)
R . 27 3% J TR Ty y s ! 18 ‘ 2
R , " : N S \, : ' 50 c v \

What did we learn?

* Mathematical maturity
* Key to success in a scientific career
* Exposure to proofs and rigorous reasoning

* Theory of computation

e Develop models of computation and ask what can and cannot be computed
by these models?

* How quickly? With how much memory?

* Most famous question in CS, is P = NP? Millennium problem, S 1
million prize

What did we learn?

* Understand the notion of computability
* Define computation independent of physical computer

* Inherent limits of computability
* Tractability of weaker models of computation

* Relation of computability to formal languages

Turing machines

Context-free
languages

Automata

Models of Computation

* Finite automata: Computers with no memory

* Context-free grammars: Memory = stack.

* Turing machine: real computers, no bounds on
memory

Key Classes of Languages

* Regular languages
* Languages decided by finite-state machines
* Robust, tractable

e Context-free languages
* Languages expressed by CFGs
* Decidable by machines
* Semi-robust, semi-tractable

* Decidable Languages
* The class of languages decidable using algorithms
* Turing machine computable
* Robust, not tractable

Finite Automata: Applications

* Finite automata: Computers with no memory
* Examples: vending machines, switches etc
* Lexical analysis in compilers

e Searching for patterns: unix grep, web search, antivirus
software

* Finite automata model protocols, electronic circuits.
* Theory is used in model-checking.

Regular Languages

* DFAs = NFAs = RegExp
* Closed under union, intersection, complement, concatenation, *, reversal, ...

* RegExp-> NFAs, NFAs -> RegExp, NFAs -> DFAs (subset construction; 2”n
blowup)
 Suffix languages and Myhill-Nerode theorem:
* Lis regular iff L has finitely many suffix languages (equivalence classes)
* Hence minimal DFAs exist (one state for every suffix language)
* Efficient minimization of DFAs.

* Pumping Lemma

* Decidable problems: acceptance, equality, emptiness

Context Free Languages

* CFG = PDA

* Closed under union, concatenation, reversal, ...

* Not closed under intersection, complement

* Membership problem is decidable: CYK algorithm
* Decidable problems: acceptance, emptiness

* Undecidable problems: fullness, equality

* Non-CFL: pumping lemma

Context Free Languages: Applications

* Parsing
* Natural languages (semantic web; understanding speech, understanding text)
* Programming languages (compilers)

* Recursive automata/PDAs
* Modelling software control
* Recursive procedures give recursive automata models
 Static analysis of software done using these models
* Compilers use them to check safety (types) and to do optimizations.

* XML

* XML is basically bracketed text encoding hierarchical data

» <car><make> Honda </make> <year> 2002 </year> </car>

* Data-type definitions —CFGs expressing valid XML documents
* Conformance checking to DTDs, etc. are solvable.

Decidable Languages

* Turing machines that halt
e Captures the class of problems solvable using “algorithms”

* Robust simple mathematical notion
* independent of current knowledge of physics/engg
e captures computability without using current proglang

* Closure under union, intersection, complement, concatenation,
Kleene-*, reversal

* Nothing about the language of a TM is decidable (Rice’s thm)

* Undecidable: Halting, acceptance, equality, emptiness...

More on Turing Machines

* Halting problem is undecidable (used diagonalization)

* Reductions: Reduce A to B so that solution to B gives solution
to A

 If A reduces to B and B is decidable, then A is decidable.
 If A reduces to B and A is undecidable, then B is undecidable.

* Reductions: Direct, via computation histories

* Simple undecidable problem:

* Post Correspondence Problem

* Given a set of polynomial equations is there an integer valuation of the
variables that satisfies the equations?

Russell’s paradox: Let us
call a set "abnormal" if it
IS a member of itself, and
"normal” otherwise. Now
we consider the set of all
normal sets, R.

Is R normal or abnormal?

?

‘s answer to Russell

Turing

1S

What

Learn to love abstraction.

Hope you enjoyed the course!

