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Abstract—Face images obtained by an outdoor panoramic
surveillance camera, are often confronted with severe degra-
dations (e.g., low-resolution, low-contrast, blur and noise). This
significantly limits the performance of face recognition (FR) sys-
tems used for binding ‘“‘security with surveillance” applications.
This paper presents a framework to overcome the degradation
due to poor resolution and blur in the images obtained by an
outdoor surveillance camera, to improve the performance of
FR. Due to the unavailability of any benchmark face database,
acquired from a surveillance system, with gallery (indoor) and
probe (long distance outdoor shots) images, we have build
our own database and conducted experiments on a realistic
surveillance face database that we name as IITM SURV'. Super-
resolution techniques fail to provide satisfactory performance,
due to large difference in the resolutions and poor quality of
face templates available as probe samples. We hence propose
a combination of partial restoration (using super-resolution) of
probe samples and degradation of gallery, to provide superior
performance in FR. Based on the difference in entropies of the
gallery (large resolution, good quality samples) and probe (with
very low resolution, poor contrast and blur) images, the blur
parameter is estimated for degradation. A comparative study
of the performance of PCA (Principal component analysis) and
FLDA (Fisher Linear Discriminant Analysis), as baseline FR
classifiers, have been shown using ROC and CMS curves. In our
proposed method of compensating the degradation in surveillance
data, PCA consistently outperforms FLDA, although both show
an enhancement of the face classification accuracy’.

I. INTRODUCTION

For face recognition (FR) in a surveillance scenario, im-
ages used for training are usually available beforehand from
sources which are taken under a well controlled environment
in an indoor setup (laboratory, control room). Whereas, the
images used as test probes are available when a subject
comes under a surveillance scene. Images obtained by secu-
rity and surveillance cameras are generally confronted with
severe degradations (e.g., low-resolution, low-contrast, blur
and noise) due to environmental conditions (distance of the
sensor from the subject, low illumination), interface circuitry
(IP, analog camera) or camera’s hardware/software limitations.
Recognition accuracy of current intensity-based face recog-
nition (FR) systems significantly drop off, if facial images
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are of low quality (degraded). Most face recognition systems
[3]1[21][4][18], have been shown to perform well in controlled
environments, where both training as well as testing samples
are acquired in similar controlled illumination conditions in
indoor environments.

With ever increasing demands to combine “security with
surveillance” in an integrated and automated framework, it
is necessary to analyze samples of face images of subjects
acquired by a surveillance camera from a long distance (> 50
yards). Hence the face must be recognized from a low res-
olution, blurred and degraded image as obtained from the
surveillance camera. The training set of a subject is assumed to
be available from clear, good quality near-frontal face bitmaps.
We work under the following assumptions: (i) near-frontal
pose of the face, (ii) no occlusion, (iii) no change in emotion
or aging effect on the face.

In published literature, one barely finds any FR method
that has been designed using a real-world surveillance system.
Most of the benchmark databases used for performance anal-
ysis of FR methods, were obtained in controlled environments
(for both training and testing). The only known face database
that contains data acquired from both indoor and outdoor se-
quences is UTK-LRHM [20]. This database has been acquired
with the help of a sophisticated imaging system with high
magnification which introduces blocking artifacts and non-
uniform blur. Images obtained from an outdoor surveillance
(PTZ) camera are often available with low contrast and rarely
contain any useful color information. Thus the scope of using
color based face recognition [5] for degraded face images
is limited. To deal with the problem of low resolution, a
method of simultaneous super-resolution and feature extraction
for face recognition has been proposed in [11] and [9].
Gunturk et al. [9] discuss the use of super-resolution in
the eigenface domain. In the work by Hennings-Yeomans
et al. [11], Tikhonov regularization is used as the baseline
super-resolution algorithm. However, they do not model the
degradation due to blur. Experiment results are obtained on
Multi-PIE, FERET and FRGC face databases using eigen-
domain based classifier. Ahonen et al. [1] aimed to derive blur
invariant features from the original face images using the phase
information in frequency domain, using Local Phase Quantiza-
tion (LPQ). Very recently, Nishiyama et al. [13] showed further
improvement in accuracy by combining their method with



LPQ. They proposed to use the learned point-spread function
(PSF) parameter to deblur the test image, whereas, in our
method we simulate the degradation on the training images to
solve a deterministic problem. Solving an ill-posed problem
of image enhancement and super-resolution involving high
degree of degradation and difference in resolution is difficult.
In [13], results have been obtained on artificially degraded
samples from the FERET and FRGC 1.0 face databases, in
which target images were also synthetically blurred. Thus, we
find that in all of these methods published in literature, the
results are obtained after simulating the degradation (using
software tools) on some standard face databases, to create
test probes which are far from that available in real-world
surveillance data. We have used a more challenging real-world
surveillance dataset, where blur is accompanied by other types
of degradations (low-resolution, low-contrast and noise) on the
test probes.

Our approach fills the gap between good quality training
samples from gallery and poor quality test samples available
as probes, in a real-world data obtained in true surveillance
conditions, by estimating the degradation parameter for a PSF
(blur) function. We have adapted an indirect fusion of two
approaches:- (1) Use the estimated blur parameter to simulate
the degradation on good quality (i.e. training) images as well
as (2) Enrich the probe samples by a contrast enhancement
process. To deal with the problem of mismatch in resolution
of training and testing samples, two approaches are adopted:
(1) Use super-resolution (or interpolation) with restoration to
reconstruct higher resolution, better quality test images as
a preprocessing step; and (2) Downsample and degrade the
training images with a PSF (blur) function. A combination of
these methods produce both the training and testing samples
at identical resolution, with similar quality and appearance of
the face bitmaps. Results are obtained using ROC and CMS
measures to analyze the performance.

The rest of the paper is organized as follows: The method
of data acquisition using surveillance camera is discussed in
Section 2. The proposed framework is presented in Section 3.
In Section 4, we present experimental details and performance
results using baseline classifier namely PCA and FLDA
[3][6] for different experimental cases. Finally, conclusions
are presented in Section 5.

II. DATA ACQUISITION FROM A SURVEILLANCE SCENARIO

Gallery samples are obtained in a controlled (indoor) en-
vironment for different subjects, whereas probe images are
the face image samples obtained from video frames using
a surveillance camera for the same set of subjects in an
uncontrolled (outdoor) environment. The outdoor images are
captured from a distance of 50-100m, placing the camera at
around 20-25m of elevation. The face regions were extracted
from the video frames using the popular Viola-Jones face
detector (VJFD) [16]. Figure 1 shows typical examples of
indoor and outdoor scenes, with the identified face templates.
In Fig. 2, we present some samples of gallery and probe
images for the same set of subjects. Both set of frames
are displayed at the same scale i.e. dots per inch (dpi), to

(a) (b)

Fig. 1. Samples of a subject from an indoor shot and outdoor scene, with
the rectangular template around the face indicating the spatial extent of the
face, as detected using VJFD [16]: (a) Frame from indoor gallery, (b) Frame
from an outdoor video of the same subject.
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Fig. 2. Samples of (a) gallery images (average resolution ‘250x250’) and
(b) probe images (average resolution ‘45x45’) for 3 subjects, displayed at the
same scale (dpi).

illustrate the difference in the resolution. The complexity of
the problem is evident from the degradation (large change in
resolution and contrast) of the outdoor (probe) with respect
to that in indoor (gallery) shots (see Fig. 2). This unique
database has been acquired using Sony 3CCD Color Video
Cameras (Model EVI-D70P). Data acquisition has been done
for a typical surveillance system and no special equipments
(optical or digital hardware) have been used to magnify or
enhance the outdoor images. Thus this database is an useful
resource to the research community. Database has been build
for 51 subjects, with 50 samples per subject in both gallery
and probe. We have obtained these samples using VJFD on
frames from indoor and outdoor scenes. We have manually
identified 20 near-frontal faces per subject from the VJFD
output, for use in gallery (training) and probe (testing) sets of
the database.

III. THE PROPOSED FRAMEWORK

The proposed framework has three stages. In the first stage,
we estimate the degradation parameter of a PSF function
and in the second stage we perform degradation of gallery
and restoration of probe samples. In the third stage, face
recognition is performed using an eigen-domain approach
using degraded gallery and enriched probes. Figure 3 shows
the proposed framework, where videos obtained from the
cameras (indoor for gallery and outdoor for probes) are fed
to the VJFD. A set of gallery and probe images are used
to estimate the degradation parameter. Using this estimate,



the gallery images are degraded with a PSF function to
produce (simulated) degraded images. This degraded images
are downsampled to a low resolution and used for training the
FR system in the third stage. We also attempt to solve the
ill-posed problem of image enhancement and restoration for
probe images. In that direction, we have used super-resolution
(or interpolation) along with Wiener filtering [7] to partially
enhance and restore the probe images.

Degradation
Parameters A

Original
r Gallery !
Indoor ! ,
/Wnes// Estimate | / Degrade |
Video Frames ] Face /1 perpedatcn / / Gallery |
/Dﬂ/ | Parameters J

OQutdoor
L Probe
L * Interpolation

N + Super- resolution E""Ched
H ld | [

Recognized/
Rejected

Degraded
Gallery

Enriched
Probe

Degraded
Gallery

/ Classification -
L

Fig. 3. The proposed framework for compensating degradation, for Face
Recognition from a surveillance video.

A. Simulating the Degradation

To estimate the degradation, we define a measure that is
simple, intuitive and is based on gray level intensity value
of images. In this work, we have consider image degradation
only due to blurring by a PSF. A typical formulation of the
degraded image p(z,y) in the spatial domain and its relation
with the ideal image g(x,y) is given by the following [7]:

p(z,y) = h(z,y) * g(z,y) + n(z,y) )]

where, h(z,y) is the PSF, ‘*’ denotes the 2D convolution
and n(x,y) is the additive noise. Our objective is to obtain
an estimate of A(x,y) and then use them for improving the
accuracy of face recognition. For this, we use an empirical
method to estimate the degradation parameter for a blur PSF,
in the presence of other kind of degradations such as low
resolution and contrast. Later, this estimated parameter is used
to degrade the acquired gallery images so that they appear
qualitatively close to the corresponding probe images. In this
way, we obtain a set of (synthetically) degraded gallery images
at low resolution that are later used for training the face
recognition module. In our experiment, we have assumed that
the nature of blur kernel is Gaussian.

We start with downsampling the gallery images. This step
is required in order to compensate for the difference in
the resolution of gallery and probe faces. On an average,
resolution of probe images lie in the range [40-50], while that
of gallery images is [220-280]. Next, the intensity range of
blurred images are normalized with respect to probe samples.
Qualitatively a histogram reflects the difference in global
illumination of an image which is used for the formulation
of the process used in estimating the degradation parameter
Opur (for blur PSF).

B. Blur parameter estimation

Difference of Histogram Entropy (DoHE), is defined as a
measure based on the intensity histograms of the normalized,
blurred, downsampled gallery images and Wiener filtered
probe images, as

DoHE; = Wi
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where, EDf’k and EPJZ€ are the Entropies of gallery and probe
samples, computed as:

E‘D;.”]C = Entropy(Hist(Norm(gf’k(%y)lpé?(may)))) 3)
= Entropy(Hist(p? (z,9))) “4)

where, g7 #(x,y) is the degraded gallery image of the "
sample, for k' subject, obtained by convolution with a Gaus-
sian function with standard deviation o. p;?(x, y) is j*" probe
image of k" subject. Also, Hist() computes the histogram
and Norm() denotes a Normalization operation [12]. The
normalization operation is necessary, as the dynamic range of
gray levels in the gallery do not match that in the probe. M
denotes the number of probe images and N is the number of
gallery images for subject, used for estimating the degradation.
We observe this measure with increasing values of o. Initially
(for 0 = 0) the gallery has a better contrast and quality with
respect to the probe samples. With increasing o, the PSF
causes a greater amount of degradation of the gallery samples,
making it appear qualitatively similar to that of the probes.
Hence this measure saturates to a small value for larger values
of 0.

The plot for DoHE; averaged over 51 subjects is shown
in Fig. 4. We observe that the measure DoHE saturates after
some value of ¢. This happens when the two images (degraded
gallery and probe) appear to have qualitatively similar contrast
and illumination range. To find an optimal value of o, we use
the following condition;

k
EP;

d(DoHE)
do

where, DoHE is obtained by averaging DoHE; over 51
subjects. The measure in Egn. (2) is computed for all different
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Fig. 4. Plot of the measure DoHE, averaged for 51 subjects.

combinations of available gallery and probe images for a
particular subject, e.g. 10 gallery images and 10 probe images



for a subject produce 100 combinations. This process is then
repeated for all the subjects. Note here, that although in each
combination we have used gallery and probe images for the
same subject, this is not used as class-label information of
probe (testing) images in the FR module. At this stage, we
are estimating the degradation parameter for the surveillance
system with the help of acquired data (both gallery and probe
samples for a few subjects). Once the degradation parameter
is obtained we can use it to simulate degradation for data of
any other (new) subject. We also attempted the same without
information of class labels. The result obtained to estimate o
is similar.

With these estimated parameters, we first blur the gallery
images. Empirical observation over 51 subjects, produced an
optimal value of the parameter, as: op,, = 2. Value of
Thpomp is obtained as 0.125 using empirical observations. In
this way, we obtain the (simulated) degraded gallery images,
which appear identical to the low quality probe images. Figure
5 presents the results of degradation using the estimated PSF.
The first row in Fig. 5 shows a few downsampled gallery
images. Second row contains the (synthetically) degraded
gallery images for the corresponding (column wise) subjects
and the last row contains the probe images. One can visually
observe the closeness in quality between the samples in second
and the third rows. This process of blur parameter estimation
and degradation of the gallery (see Fig. 3) must be done for
any surveillance system installed, as the parameters are sensor
dependent.
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Fig. 5. Example images of: (a) Down-sampled gallery; (b) Degraded gallery
from (a); and (c) Acquired probe samples.

C. Interpolation and Super-resolution of probe samples

Downsampling the gallery images is one approach to com-
pensate the gap in resolution between galley and probe images.
The other way is, “Interpolation” or “Super-resolution” of
probe samples, which is generally an ill-posed problem. Since
the resolution of gallery face templates is too high (compared
to that of the probe samples), we choose an intermediate
resolution of 90x90 (which we term as “medium resolution’).
We have also observed that too high a resolution (> 200)
of face bitmaps contains redundant information and do not
contribute to any improvement in FR performance. For a
certain range of resolution (100-200), the FR methods typically
do not show any sensitivity in performance. Below this range,

the performance of most FR methods start to degrade. For very
low resolutions (< 50) the performance of FR methods drop
significantly to unacceptable qualities. The probe images are
up-sampled using interpolation or super-resolution, whereas
the gallery samples are first downsampled to match the same
resolution and then degraded using the PSF to obtain the
degraded version of gallery at this “medium resolution”.

Bicubic interpolation algorithm gives the best performance
with our surveillance database. A frequency domain approach
for registration of images has been used for super-resolution,
as proposed by Vandewalle in [15]. It also works for images of
low-resolution with aliasing artifacts. Use of super-resolution
in an automated way (without human intervention) on the
free form face images (VJFD output) is difficult. Successive
frames of a video are either not available from outdoor data,
due to acquisition conditions of outdoor data capture and
camera properties, or the VJFD fails due to poor lighting
and low resolution. We thus hand-picked a few cases, where
super-resolution of the probe samples was possible using face
samples from successive video frames. Hence the test cases
available for the super-resolved probes were fewer than the
case of simple interpolation.

Degraded gallery images are used to train the classifier for
face recognition. When a probe is detected, it’s face template
is first extracted, enhanced (deblurred using inverse Wiener
filter), interpolated (or super-resolved) and then projected into
classifier space, for recognition (in the testing phase) using
nearest neighbor (NN) criteria. Training with the acquired
gallery images produce an unsatisfactory performance with
low accuracy values of face recognition, because of the large
difference in the quality of gallery and probe images. Next, we
show how degradation of gallery improves the classification
accuracy.

IV. EXPERIMENTAL RESULTS

A real-world surveillance database as used by us, would be
the most preferable for the purpose of rigorous testing and
verification. Many face databases are available to the research
community, but still they are far from real-world surveillance
conditions. The proposed database is very challenging because
of the large variations between the training and testing sam-
ples. We used (hand-picked) 20 samples in gallery as well as
in probes per subject, which are all near-frontal faces without
any occlusion.

To describe the different experimental cases, we introduce a
set of abbreviations for the training and testing samples. These
and the corresponding sample details are presented in Table
I. Figure 6 shows the samples for each type of face data as
labeled in Table I. Different experimental cases used to verify
performance of the proposed framework, are listed in Table II.

We have obtained the Receiver operating characteristics
(ROC) for verification and Cumulative match score (CMS) for
face recognition, as shown in Fig. 7 and Fig. 8 respectively,
with training and testing cases as given in Table II for experi-
ments. The efficiency of the estimated degradation parameters
is presented with the help of two baseline FR methods: PCA



TABLE I
LIST OF ACRONYMS OF FACE DATA SAMPLES AT DIFFERENT RESOLUTIONS
AND INTERMEDIATE STAGES OF PROCESSING, USED FOR FACE
RECOGNITION EXPERIMENTS

Data Abbre- | Sample description Resolution
viation
Gallery AG Acquired gallery 250x250
LRG Low resolution gallery
. 45x45
LRDG | Low resolution degraded
gallery
Downsampled | MRG Medium resolution
Gallery gallery
MRDG | Medium resolution de- 90x90
graded gallery
Probe AP Acquired probe 45x45
INTP Interpolated probe
90x90
Up-Sampled SRP Super-resolved probe
Probe
REP Restored and Enhanced
probe
Gallery
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Fig. 6. Some samples for the face data of two subjects at different resolutions,
used for experimentation (for details see Table I): (a) Probe (b) Gallery.

and FLDA [3]. The performance of the GREEN (LRG-AP
combination) curve shows the worst performance, as this does
not involve any processing on the face samples (probe (test)
and downsampled gallery (training)) before they are fed to
the classifier. The BLUE (LRDG-AP), CYAN (MRDG-INTP),
MAGENTA (MRDG-SRP) and RED (MRDG-REP) curves
show the performances obtained using the proposed methods,
where, either the training gallery has been degraded with the
estimated blur parameter (Eqn. 5), and/or the probe has been
enhanced.

We see from Fig. 8 that training with degraded gallery
images provides a much improved performance compared to
training with downsampled gallery without degradation (see
GREEN curves). This improvement is significant given the
complexity of face samples as probes in our database. We
have obtained these performances by taking a 100-fold study
of the classifier output. In each fold, 10 training samples per
subject were selected randomly from the set of 20 from gallery.
Similarly, for testing 10 training samples per subject were
selected randomly from the set of 20 probes in each fold. Total
number of subjects used for our study is 51. Figure 8 shows
that PCA performs better than the FLDA in this scenario,
because PCA features are expected to perform better in case

TABLE II
TRAINING AND TESTING DATA PAIRS FOR THE DIFFERENT EXPERIMENTS
DONE WITH THE PROPOSED FRAMEWORK, OF FACE RECOGNITION IN
SURVEILLANCE SCENARIO

Experiment | Training | Testing
#1 LRG AP
#2 LRDG AP
#3 MRDG INTP
#4 MRDG SRP
#5 MRDG REP
Probe

Subjectl Subject? Subject3

ol -k -

Fig. 9. Samples from gallery and probe after using an elliptical mask, at
resolution 45x45.

of noise and degradation.

For all the above experiments we have used an elliptical
mask [2] around the face for both, gallery and probe samples.
We have used the elliptical mask to crop the significant
elliptical part of the face, such that the effect of hairstyle,
background and clothing are eliminated. This is done using
a 3 point normalization [8] of face images which involve
manual annotation of 2 eye points (left and right eye centres)
and 1 chin point (chin tip). Figure. 9 shows some samples
from gallery and probe at resolution 45x45, after using the
elliptical mask. In our earlier work presented in [14], face
templates obtained from VJFD were used directly (without
using the elliptical mask to remove hair and neck portions) to
observe the performance of FR. Results presented in this paper
provide a significant improvement with respect to that in [14].
The recognition accuracy significantly improves in this case-
when the probes are restored and the gallery downsampled to
a medium resolution and degraded before matching. Super-
resolution fails to provide improved performance compared to
interpolation, due to lack of enough support and features in
the probe data from successive frames in a video shot.

V. CONCLUSION

The work proposed in this paper concerns a face recogni-
tion application under surveillance conditions. It focused on
estimating degradation due to out-of-focus blur, low contrast
and low resolution. We define a measure- DoHE, which is
quite intuitive, simple, fast (for online application) and easy
to implement. From this measure, we obtain oy, as an out-
of-focus parameter for the blur function. Next, we simulate the
degradation on the gallery images. Probes are enhanced and
upsampled to a moderately high resolution. Finally, we trained



ROC using PCA

ROC using FLDA

-3
s
Q o3
04
'y‘,x“ —+ —LRG-AP -+ —LRG.AP
03 ¥ =& =LRDG-AP —& = LRDG-AP
o MROG-INTP MROG-INTP
02 —& —MRDG-SRP —B —MRDG-SRP
- —& —MRDG-REP —& — MRDG-REP
01
01 02 03 04 05 06 07 08 03 1 04 05 06 07 08 09 1
FAR FAR

Fig. 7. ROC curves for comparing the performance of the system, when experimented with different training-testing pairs for gallery and probe combinations
after using elliptical mask, using PCA and FLDA. Refer Table II for details.
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Fig. 8. CMS curves for comparing the performance of the system, when experimented with different training-testing pairs for gallery and probe combinations
after using elliptical mask, using PCA and FLDA. Refer Table II for details.

the classifier with degraded gallery instead of acquired gallery
to obtain significantly improved recognition accuracy. Results
are shown using data acquired from a surveillance video.

A combination of partial restoration and enhancement of
probe samples, using adaptive non-linear filters or stochastic
optimization based restoration for implementation of a robust
super-resolution technique, along with partial simulation of
degradation on gallery may be explored for better results.
Application engineers may use state of the art methods -
K-PCA, K-LDA [19], dual-space [17] and SVM [10] based
face recognizer with our proposed method, to improve the
classification accuracy further.
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