International Conference on Methods and Models in Computer Science, 2009

Top-k Query Processing with Multidimensional
Range Search

Shiva Rudrani', Saleena N

! Department of Computer Science and Engineering
National Institute of Technology Calicut,Calicut, India.
e-mail: rudrani.shiva@gmail.com saleena@pnitc.ac.in

Abstract— An m-dimensional top-k query (with m
search conditions) is primarily processed by scanning the
corresponding m index lists in descending score orders in
an interleaved manner (and by making judicious random
accesses to look up index entries of specific data items). In
this paper a new algorithm is proposed that makes use of a
data structure that facilitates multidimensional range
search. An m-dimensional top-k query can be processed by
searching for the data items that satisfies a range of score
over each dimension. At every step of the algorithm a new
set of ranges (one for each dimension) is specified such that
more accurate tuples are added in the candidate top-k set.
The process continues till we get the actual top-k data
items. The incremented range set is specified with the help
of the statistics of the distribution of data items in m-
dimensional space. Thus, efficiency of the algorithm very
much depends on the proper study and analysis of the
distribution of the data items in the m-dimensional space
and the data structure used.

Keywords-Top-k Query Processing; Information
Retrieval; Multidimensional Range Search; Database
Indexing; TA; FA.

I. INTRODUCTION

op-k query processing is a key building block for

data discovery and ranking, and has been
intensively studied in the context of information
retrieval, multimedia similarity search, text and data
integration, business analytics, preference queries over
product catalogs, Internet-based recommendation
sources, distributed aggregation of network logs and
sensor data, and many other important application areas.
Top-k queries operate on index lists for a query’s
elementary conditions and aggregate scores for result
candidates. One of the best implementation methods in
this setting is the family of threshold algorithms(TA),
which aim to terminate the index scans as early as
possible based on lower and upper bounds for the final
scores of result candidates. This procedure performs
sequential disk accesses for sorted index scans, but also
has the option of performing random accesses to resolve
score uncertainty. This entails scheduling for the two
kinds of accesses:
1.The prioritization of different index lists in the

sequential accesses, and
2.The decision on when to perform random accesses
and for which candidates.

TA also incurs a lot of useless accesses to the lists.
Here the data items can be any search item. For example,
in context of database, it may be tuples from a table or
in context of internet search, it can be web documents.
Since the background for this paper is the Threshold
Algorithm (TA), in this section we briefly describe TA.

In the TA or FA model, we assume that each
database consists of a finite set of objects. We shall
typically take N to represent the number of objects.
Associated with each object R, are m fields x1, x2, ...,
xm where xi € [0,1] for each i. We may refer to xi as the
ith field of R. The database can be thought of as
consisting of a single relation, where one column
corresponds to the object id, and the other columns
correspond to m attributes of the object. Alternatively,
the way we shall think of a database in TA model as
consisting of m sorted lists L1, ..., Lm, each of length N
(there is one entry in each list for each of the N objects).
We may refer to Li as list i. Each entry of Li is of the
form (R, xi), where xi is the ith field of R. Each list Li is
sorted in descending order by the xi value. We are
taking into account only access costs, and ignoring
internal computation costs. Thus, in practice it might
well be expensive to compute the field values, but we
ignore this issue here, and take the field values as being
given.

TA considers two modes of access to data. The first
mode of access is sorted (or sequential) access. Here the
middleware system obtains the grade of an object in one
of the sorted lists by proceeding through the list
sequentially from the top. Thus, if object R has the Ith
highest grade in the ith list, then 1 sorted accesses to the
ith list are required to see this grade under sorted access.
The second mode of access is random access. Here, the
middleware system requests the grade of object R in the
ith list, and obtains it in one random access. If there are
s sorted accesses and r random accesses, then the sorted
access cost is scS the random access cost is rcR, and the
middleware cost is scS + rcR (the sum of the sorted
access cost and the random access cost), for some
positive constants ¢S and cR.

A. The Threshold Algorithm (TA) [1]

Do sorted access in parallel to each of the m sorted
lists Li. As an object R is seen under sorted access in
some list, do random accesses to the other lists to find
the grade xi of object R in every list Li. Then compute
the grade t(R) = t(x1, x2, ... , xm) of object R, where t is
monotone aggregation function. If this grade is one of
the k highest we have seen then remember object R and
its grade t(R) (ties are broken arbitrarily, so that only k
objects and their grades need to be remembered at any
time).

For each list Li, let xi be the grade of the last object
seen under sorted access. Define the threshold value
T to be t(x1, X2, ..., xm). As soon as at least k objects
have been seen whose grade is at least equal to 7 then
halt.

Let Y be a set containing the k objects that have been
seen with the highest grades. The output is then the
graded set {{R,t(R))|R € Y}.

B. The idea behind the proposed Algorithm

We already have m lists L1, ..., Lm corresponding to
m attributes’keywords. These lists consist of local
scores of objects corresponding to assigned attributes.
Assigned scores within a list form a range. Thus, we
have m ranges of scores. Now consider an m-
dimensional space. Without loss of generality each of
the m lists can be assigned one of the dimensions and it
is always possible to do this.

Now, if we fix a range of scores for each dimension
and do a multidimensional range search (using some
suitable data structure) then we can get as result a set of
tuples that comes under specified ranges for all the lists.
Thus, if ranges are specified such that it will give good
candidate tuples for top-k, then the final top-k tuples can
be obtained out of the candidate tuples. In
correspondence to the TA, the set Y is the set of
candidate tuples. Using this idea we can get the top-k
results. The algorithm is discussed in detail in section V.
This method can be useful over TA in many aspects,
among which, important ones are:-

e The overhead of scheduling sorted access (SA) and
random access (RA) is removed.

e The algorithm will stop scanning much early
(provided input to the algorithm is based on the
statistics).

e Running Time of the proposed algorithm is better
than TA and based on the efficiency of the data
structure used for doing multidimensional range
search.

II. PROBLEM DEFINITION

The problem that is addressed in this paper, is to
overcome the overhead of scheduling index-access steps
in TA-style top-k query processing, early stopping of
scanning and improving the time complexity. “How to

leverage the statistics to find the cut-off ranges?” is also
studied, so that top-k results can be obtained in least
possible number of multidimensional range searches.

III. MOTIVATION

Implementation methods based on threshold algorithms
(TA) perform sequential disk accesses for sorted index
scans, but also have the option of performing random
accesses to resolve score uncertainty. This entails
scheduling for the two kinds of accesses:

the prioritization of different index lists in the
sequential accesses, and

the decision on when to perform random accesses and
for which candidates.

The proposed algorithm, completely discard the use
of such scheduling. TA also incurs a lot of useless
accesses to the lists.

When scanning multiple index lists (over attributes
from one or more relations or document collections),
top-k query processing faces an optimization problem:
combining each pair of indexes is essentially an equi-
join (via equality of the tuples or document ids in
matching index entries), and we thus need to solve a
join ordering problem. As top-k queries are eventually
interested only in the highest score results, the problem
is not just standard join ordering but has additional
complexity. The proposed Algorithm does not have to
consider such problems and uses an entirely different
approach to match tuples or documents under given
attribute/keywords.

IV. COMPUTATIONAL MODEL FOR THE
PROPOSED ALGORITHM

For the explanation of the algorithm, the case of a
database system (as is used by the TA model, discussed
above) is taken, but without loss of generality, the
algorithm can be used for any relevant systems. The
input to the TA is a set of sorted lists. For our discussion
we can visualize the proposed algorithm as scanning
over sorted lists parallely from top to bottom. We also
visualize these lists put adjacent to each other so that
each row of each list is at same level of the
corresponding rows of the other lists or in other words,
these lists, when put adjacent to each other forms a
matrix. Now each row of this matrix will be referred by
the index variable “j”. These lists are used to determine
new (incremented) ranges during the running of the
algorithm. Note that actual implementation of the
proposed algorithm may not even require these lists at
all. What we need, is to index the database with a data
structure that supports multidimensional data (e.g. kd-
tree[4], UB-tree[5S] etc). These lists are helpful in
finding the new lower bounds, so that we can obtain a
new set of ranges for next search. If we can guess the
new set of ranges (for example, by analyzing the
distribution of data items in m-dimensional space), then
we may not need these lists.

To make the algorithm clear and simple, a baseline
algorithm is discussed first. A more concrete algorithm
is presented in the implementation section of this paper.
We name the proposed algorithm as ‘MRS-Top-k’
which can be expanded as ‘Multidimensional Range
Search Top-k’. Following is the Baseline algorithm.

A. Baseline MRS-Top-k Algorithm
Each list Li is sorted in descending order by the xi

value.

1. Determine the ranges <L1[j].Score , L1[0].Score>,
<L2[j].Score , L2[0].Score> , ... , <Lm[j].Score ,
Lm[0].Score> for each list where Li[j] being the jth
entry of ith list. That is, if the lists are concatenated
next to each other, it will form a matrix and we have
to find the entries in jth row for each column. The
value of j can be calculated based on statistics of
previous search or analysis of distribution of data.

2. Do a multidimensional range search with the specified
ranges on their respective axes.

3.1f we get less than k results then we repeat the search
with the ranges <LI1[j’].Score , L1[0].Score>,
<L2[j’].Score , L2[0].Score> , ... , <Lm][j’].Score ,
Lm[0].Score> for each list, where j> >jand j’ - j=c,
where c is a positive integer.

4.Doj=j’.

5.Repeat steps 2 and 4 till we get k or more results.

6. After getting k or more than k results, we sort the
retrieved records in descending order of their
aggregate value and check whether the first k records
among the sorted records have the top k aggregate
score among all the records. This checking is based
on a condition which is explained in the concrete
algorithm in section V. If we get the final top k results
then we exit else we increment the ranges as in step 3
and 4.

7.Do a multidimensional range search with the new
ranges and sort the retrieved records according to the
aggregate score.

8. Check whether the top k records among the sorted
records have the top k aggregate score among all the
records. If it is then we exit else we increment the
ranges and repeat from step 7.

Fig. 1: 3D Normal distribution with high density at top.

B. Leveraging statistics to find the cut-off ranges

Let us consider the 3D distribution of scores under
the attributes Al, A2 and A3 as depicted by Fig. 1. If
the density of the distribution on the top of the curve is
high, the ranges <LI[j].Score , L1[0].Score>,
<L2[j].Score , L2[0].Score> and <L3[j].Score ,
L3[0].Score> on lists L1, L2 and L3 respectively, are
considerably small and vice-versa. In Fig. 1, the points
above the circle C1 may be considered if the density is
high at top.

Similarly if the density is uniform, the points above
the circle C2 (see Fig. 2) may be considered, as they
cover comparatively larger range on each dimension.

Finally, if we are not certain about the distribution,
we can refer to Fig. 3.

Ll
INT] \
Ly e Y ; \/[’-‘"""
Increaments _ Lalj] Y/
o il

Fig. 3: 3D Normal distribution with unknown density.

V.IMPLEMENTATION

We first start with discussing, what are the inputs
required by the proposed MRS-Top-k algorithm. The
algorithm asks user to input the value of & in top-£. It
also requires a set of initial ranges and an increment
value (a positive integer, basically indicating the number
of rows by which to move down the matrix). As
discussed in computational model that each row of the
matrix will be referred by the index variable ¢, so for
setting up the initial ranges, we can identify a row i.e.
give a value to ¢j° so that for each column, the initial
range will be from the value at that row to value at the
top most row. With these initial ranges, the algorithm
does the first range search. For the next search, the new
range set is calculated with the help of increment value.

For the proposed algorithm, a data structure suitable
for multidimensional range search is required. There are

many available data structure like kd-tree, hB-tree, UB-
tree etc. Clearly, the chosen data structure is also
implemented and populated with scores, as discussed in
the previous section. As mentioned before, for
terminating the running of the algorithm, some condition
is required. The checking is done on the following
variables.

CurMinAgg = Minimum Aggregate of retrieved
records in the current top-k search.

CurMaxAgg = Maximum Aggregate of retrieved
records in the current top-k search.

PrevMinAgg = Minimum Aggregate of retrieved
records in the previous top-k search.

PrevMaxAgg= Maximum Aggregate of retrieved
records in the previous top-k search.

That is if more than k or equal to k records are found
then sort them according to aggregate score in
descending order. Let the sorted List of Retrieved
Records be L, such that L[1].Agg is the Maximum
Aggregate score of the top k records. Similarly
L[k].Agg is the Minimum Aggregate score of the top k
records.

Thus,

CurMinAgg = L[k].Agg and CurMaxAgg = L[1].Agg.

Therefore a more concrete algorithm can be as
follows.

MRS- Top-k Algorithm
Input: value of k, Initial Ranges (value of j i.e. row
number), Increment
1. Range Search with Initial Ranges
<L1[j].Score,L1[0].Score>,
<L2[j].Score,L2[0].Score>, ... , <Lm[j].Score ,
Lm[0].Score> for each list.

2.If (number of retrieved records < k)
Increment the ranges i.e. j = j + Increment.
3.Range Search with new range set.

4.Repeat step 2 and 3 till (number of retrieved records)
>k

5.1f (number of retrieved records > k)
Sort according to aggregate score

6. Set,

CurMinAgg = L[k].Agg

CurMaxAgg =L[1].Agg
7.j =] + Increment, range search with new ranges.
8. Set,

PrevMinAgg = CurMinAgg

PrevMaxAgg = CurMaxAgg

Calculate the CurMinAgg and CurMaxAgg as in Step6.

9.1f ((PrevMinAgg == CurMinAgg) and
(PrevMaxAgg == CurMaxAgg) and

(Vt (3 (L,[0])+ Lt[j]) < CurMinAgg)))

i#t

Where, i,t=1, 2... m. m is the number of lists.
Then, stop and return top-k records.

Else, repeat from step 7.

VI. RESULT & FUTURE WORK

The most efficient algorithm proposed so far for
answering top-k queries over sorted lists is the
Threshold Algorithm (TA). However, TA may still
incur a lot of useless accesses to the lists. As mentioned
in the section IV, we actually do not need sorted lists for
running the algorithm. The lists were introduced to
determine new set of ranges for next search, in a
systematic way. Instead, algorithm can be provided
with new set of ranges in an interactive way. With the
help of lists we can easily visualize the running of the
algorithm. Also, when we do a multidimensional range
search (as explained in section VI) with a suitable data
structure, we try to optimize the search by minimizing
the search area. While traversing the tree from top to
bottom our intension is to be as close to the given ranges
as possible. Finally, we get the data items that exactly
satisfy the ranges. Thus, we find that the need for sorted
access and random access is discarded in the proposed
algorithm. Also, the proposed algorithm does not do
scheduling of random accesses and sequential accesses,
thus this overhead is also relieved.

Since the proposed algorithms involve
multidimensional range search, it becomes very
essential to correctly judge the data structure according
to the application. The complexity of the algorithm
depends upon the complexity of the range search
performed on the selected data structure. In most cases
this complexity depends on the height of the tree. If we
consider a height balanced tree then height of the tree is
approximately O(logN), where N is the number of
records in the database. kd-tree is not that efficient
when k£ > 10. UB-tree is more efficient for the
multidimensional range search. The number of times the
range search will be done depends upon the value of £ in
top-k. Whereas, TA in its worst case takes the running
time of Fagine’s Algorithm i.e. O(N ™ /'™ g 1m),

As a future work, we can develop an statistic analyzer
which should analyze the distribution of the data items
in m-dimensional space and give more accurate input to
the algorithm(i.e. the initial range and increment) so that
algorithm will stop much early and should perform
minimum number of range searches. Usually such
distributions follows some curve for example say
normal curve or follow some pattern, thus it is always
possible to develop such an analyzer. If we can do so,
this algorithm should give excellent performance with
large databases.

Also, if someone can come up with a more strong
terminating condition for the algorithm then that will be
an edge. Because we can easily find that the algorithm’s
terminating condition is very weak, this is the root cause
that the efficiency of the algorithm depends on the
statistics of the distribution of the data tuples in m-

dimensional space. Once the above goals are achieved,
we can test the performance of the proposed algorithm
in real applications.

(1
[2]

[3]
[4]

[5]
[6]

M

(8]

REFERENCES

R. Fagin, A. Lotem and M. Naor.,, ”Optimal aggregation
algorithms for middleware”, PODS Conf, 2001.

U. Guntzer, W. Kiessling and W.-T. Balke., “Towards efficient
multi-feature queries in heterogeneous environments.”, IEEE Int.
Conf. on Information Technology, Coding and Computing
(ITCC), 2001.

S. Nepal and M.V. Ramakrishna., ”Query processing issues in
image (multimedia) databases.”, ICDE Conf., 1999.

Andrew W. Moore., ”An introductory tutorial on kd-trees,
Extract from Andrew Moore’s PhD Thesis: Efficient Memory-
based Learning for Robot Control PhD. Thesis. ”, Technical
Report No. 209, Computer Laboratory, University of Cambridge.,
1991, pp. 10-29.

Rudolf Bayer,, “"The Universal B-Tree for multidimensional
Indexing.”, TUM-19637., November 1996.

S. Michel, P. Triantafillou and G. Weikum. , "KLEE: A
Framework for Distributed Top-k Query Algorithms.”, VLDB
Conf., 2005.

Reza Akbarinia, Esther Pacitti, Patrick Valduriez. ”Best Position
Algorithms for Top-k Queries”, VLDB’07 Vienna, Austria,
September 23-28, 2007.

Thomas H. Corman, Charles E. Leiserson, Ronald L.
Rivest, ”Introduction to Algorithm”, MIT Press, Cambridge, MA,
USA, 1990

