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ABSTRACT
Functional site prediction is an important problem in the
structural genomics era where we have a large number of
experimentally determined protein structures with unknown
function. The functional sites provide useful insights into
protein function. In this paper, we propose a method for
prediction of functional residues in a given protein from its
three-dimensional (3D) structure. Our method exploits cor-
relation between labels of interacting residues to obtain sig-
nificant performance improvements over the existing meth-
ods on the benchmark dataset. We represent each protein
as a weighted undirected residue interaction network, where
spatially proximal residues in terms of their Van der Waal
radii are connected by an edge. The edge weight captures
correlation between the labels of interacting residues. The
correlation is estimated based on the features of interacting
residues. We then obtain a label assignment by minimizing
combined cost of residue-wise label misclassification and vio-
lation of label correlation constraints. We solve this problem
in two stages, where the first stage minimizes residue-wise
label misclassification cost followed by an iterative collec-
tive inference scheme that adjusts the labels predicted in
the first stage so as to minimize the correlation constraint
violations. Our approach significantly outperforms state of
the art methods on standard benchmark dataset. It achieves
23.06% precision at 69% recall and 87.78% recall at 18%
precision, which translates to an improvement of 5.06 per-
centage points in the precision at 69% recall and 18.78 per-
centage point improvement in recall at 18% precision.
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1. INTRODUCTION
Proteins play a vital role in cellular functions of living

organisms. Amino acids are building blocks of proteins.
The amino acid sequence of the protein determines its three
dimensional structure, which in turn determines its func-
tion. A small number of spatially proximal amino acid
residues (typically between three to six) are directly involved
in protein function. Such residues are known as functional
residues. These residues interact with one another and form
an entity called functional site. There may be one or more
functional sites in a protein depending on its functionality.
Knowledge of functional sites is essential for understand-
ing mechanism of protein function and discovery of effective
drugs. The functional sites are determined via experimen-
tal techniques in which biologists have to evaluate enormous
number of potential sites. Clearly such an exercise is infea-
sible due to time and resource constraints. Hence compu-
tational methods are required for obtaining a small number
of high quality leads from a large number of potential sites.
These methods are highly relevant in the current situation;
where worldwide structural genomic projects are producing
a large number of novel structures with unknown function
and functional sites.

A popular way of identifying functional residues is based
on the conservation scores of related sequences. Though
this method holds well in theory, it doesn’t perform well in
practice. One of the main disadvantages of this technique
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is that, even after selecting related sequences, which by it-
self is a herculean task, the conservation method returns
too many false positives [9]. Even though various methods
have been developed in the past for addressing the prob-
lem, they struggle to achieve substantial performance. This
reflects the challenging nature of the problem and calls for
sophisticated techniques to handle it. We refer the readers
to a survey by Xin et al. [38] for a detailed account of these
methods.

In this paper, we present a new method for functional
residue prediction using three dimensional (3D) structure
information. Our method takes 3D structure of protein
as an input and returns a list of functional residues. For-
mally, the problem can be stated as follows: Given a protein
three dimensional (3D) structure, S, containing n amino
acid residues 〈a1, a2, . . . , an〉, label each residue as either
functional or non-functional. This binary classification prob-
lem has been addressed by many different methods in liter-
ature [38]. We will review these methods in section 2. The
problem is challenging due to extremely skewed distribution
of functional and non-functional residues in any given pro-
tein.

In the past, Machine Learning(ML) techniques have shown
promising results for this problem. These methods classify
residues into functional and non-functional classes based on
their structural, physicochemical, evolutionary and electro-
static features. The following are some of the examples of
ML techniques used for addressing the problem: Wei et
al. [37] used näıve Bayes classifier, Gutteridge et al. [11]
used neural network, Youn et al. [40] used support vector
machines (SVMs) and Sankararaman et al. [30] used L1 lo-
gistic regression classifier. Among all the existing methods,
the L1 logistic regression classifier achieves the best perfor-
mance on standard benchmark datasets. The L1 regulariza-
tion enabled them to overcome the problem of overfitting,
which adversely affects the performance of ML techniques
due to lack of availability of large number of training exam-
ples. On CATRES-FAM benchmark [30], it achieves 18%
precision at 69% recall.

Traditional machine learning techniques do not exploit the
inherent structure (correlation between the labels of inter-
acting residues) in the problem, since they assume the data
to be i.i.d. (independent and identically distributed). Col-
lective classification is one of the popular methods which
extends the traditional machine learning techniques to ex-
ploit the structure in the problem by jointly classifying the
related instances. We propose a cautious collective inference

scheme that exploits the inherent structure in the problem to
provide a better performance than the existing techniques.
Of the existing techniques the closest to that of ours is the
usage of CRFs [30] to predict the functional residues. CRF
is one of the popular collective classification models. Our
work’s major difference is that we use a cautious scheme,
which helps us to prevent cascading errors due to misclassi-
fications.

Given a 3D structure of a protein, we construct a Residue
Interaction Network (RIN ), where nodes represent amino-
acid residues and the edges capture the interaction among
them. An edge is added between two nodes, when the corre-
sponding residues are spatially proximal to each other based
on their Van der Waal radii. Our method then obtains a la-
bel assignment for a given residue interaction network by
minimizing the combined cost of residue-wise label misclas-

sification and violations of interaction polarity constraints.
The problem is solved in two stages. The first stage in-
volves the use of statistical models to predict the label of
each residue and the polarity of interaction. Polarity of
interaction, is either positive (+1, when the labels of the
interacting residues are same) or negative (-1, when the la-
bels of the interacting residues are different). Polarity of
interaction helps us to capture the correlation among the
labels. The second stage uses a cautious collective inference
scheme, to obtain a label assignment by adjusting the la-
bels of the residues to satisfy the polarity constraints. The
cautious scheme prevents the cascading errors due to mis-
classifications by allowing to update the label of a residue
only when the model is highly confident of its prediction.

Organization: Section II gives detailed account of the ex-
isting functional residue prediction techniques. The section
III describes problem formulation and the proposed strat-
egy. Section IV describes results on a benchmark dataset
and comparison with state of the art techniques. Section
V discusses the salient features of the method and the im-
provement it provides over the existing methods.

2. RELATEDWORK
Several methods have been proposed in literature to ad-

dress the problem [38]. Broadly these methods fall into two
classes namely (i) template based methods; and (ii) residue
based methods.

The template based methods search for a user defined
three dimensional pattern of amino acids or their proper-
ties in the protein structure. The amino acid residues from
the matching constellation are labeled as functional residues.
The user defined templates are specified in various forms.
For example, TEmplate Search and Superposition (TESS)
method uses a reference frame based on amino acid side
chains and positions of atoms in the vicinity as specified by
a distance threshold [34]. Gregory et al. [10], Wallace et
al. [35], Russell [29], Camer et al. [5] define templates us-
ing a set of inter-residue or inter-atomic distance between
functional residues. The templates are also defined using
physicochemical properties of local structural neighborhood
[32, 13]. PDBSiteScan [14] uses PDB SITE record to define
templates. Several methods have been proposed for auto-
matic identification of templates from a set of related struc-
tures [38]. For example, SuMo uses triangle of chemical
groups to represent protein structures [16]. GASPS em-
ploys genetic algorithm strategy to create templates con-
sisting of 3-10 conserved residues in a protein family [27].
DReSPat models each protein structure as a graph. It then
applied graph theoretic algorithms to enumerates potential
functional site templates consisting 3 to 6 residues [36]. It
discovers functional sites by clustering the templates and
selecting the ones that recur in proteins performing similar
function. The template matching is performed via superpo-
sition transformations or geometric hashing [24, 8]. DReS-
Pat proposed an efficient scheme for template matching us-
ing a set of geometric invariant descriptors [33].

The residue based methods usually learn a model to
identify functional residues from a set of training examples.
The model is based on structural, evolutionary, electrostatic
and physicochemical features of a residue or its structural
neighborhood. The evolutionary conservation property of
residues is exploited by several methods like Evolutionary
Trace [21], Aloy et al. [1], Consurf [3], PHUNCTIONER [26]
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etc. The idea of conservation is also extended to the struc-
tural neighborhood of amino acids in order to predict func-
tional residues [25, 19]. Supervised machine learning tech-
niques like näıve Bayes classifier and support vector ma-
chines have been applied to predict functional residues from
their features mentioned earlier. FEATURE [37], WebFEA-
TURE [20], S-Blast [22], Xin et al. [39], Bhardwaj et al. [4],
Discern [30] are a few examples of methods which apply ma-
chine learning techniques for addressing the problem. Ami-
tai et al. [2] use network centrality features derived from a
network of residue interactions in a given protein to identify
functional sites.

3. METHODS
In this section, we describe the proposed approach in de-

tail. First we will describe the problem formulation followed
by details of each stages used in solving the problem.

3.1 Problem Formulation
The proposed method predicts functional residues for a

given protein structure S. We represent S as a weighted
undirected residue interaction network (RIN ) G, where nodes
represent amino-acid residues and the edges capture the in-
teraction among them. Thus, G has n nodes corresponding
to n amino acid residues in S. Let A = {a1, a2, . . . , an} be
the set of nodes, where ai is amino acid residue at i–th po-
sition in protein sequence. We add an edge between ai and
aj if they are spatially proximal to each other based on their
Van der Waal radii. We represent the contact information
in a n× n matrix E, whose (i, j)–th entry eij is as follows:

eij =

{
1 if ai and aj are in contact
0 otherwise.

(1)

Note that ai and aj can be in contact without being close
in the sequence. Each residue ai ∈ A takes a label yi as
follows:

yi =

{
+1 if ai is a functional residue
−1 otherwise

Let y ∈ {+1,−1}n be the label vector. The i–th component
of y corresponds to label yi of i–th residue ai. Let wij ∈
{+1,−1} be the polarity of interaction between any two
residues in contact. Let W be n × n matrix, whose (i, j)–
th entry stores wij . We will refer to W as an interaction
polarity matrix.

wij =

⎧⎨⎩ +1 yi = yj and eij = 1
−1 yi �= yj and eij = 1
0 otherwise.

(2)

We are interested in predicting a label vector ŷ for G that
not only has minimum residue-wise misclassification cost but
also violates as few polarity constraints as possible. Mini-
mizing only the residue-wise misclassification cost is equiva-
lent to applying any traditional machine learning technique
that does not exploit the correlation among the residues. On
the other hand, minimizing only the number of violations in
the polarity constraints alone is not sufficient as it will lead
to a label vector that satisfies these constraints without min-
imizing residue wise misclassification cost. For example, the
interaction polarity constraint w̃ij = −1 is satisfied by the
following two label configurations: (i) ỹi = −1 and ỹj = +1

and (ii) ỹi = +1 and ỹj = −1, with only one of them being
correct. The residue wise label misclassification cost helps to
overcome this limitation in order to achieve accurate predic-
tions. Since the actual label correlations are not available,
its estimated based on the features of interacting residues.

Let Ŵ be the estimated interaction polarity matrix.
We obtain the label assignment using a two stage approach

where the first stage focuses on minimization of residue-wise
label misclassification cost. It uses L1 regularized logistic re-
gression classifier that predicts a label vector ŷ. We will refer
to this classifier as a local classifier in the subsequent text.
According to the local classifier, ai is a functional residue if
ŷi = +1 and is non-functional otherwise. The second stage
uses an iterative collective inference algorithm to obtain a
label assignment by adjusting ŷi ∈ ŷ in order to satisfy the

polarity constraints specified in Ŵ. The labels ŷi ∈ ŷ are
carefully adjusted in order to avoid significant escalation in
the label misclassification cost, which was minimized by the
local classifier. Upon convergence, the iterative scheme re-
turns a label vector ỹ. We provide details of both the stages
in the next section.

3.2 Functional residue prediction by collective
inference

The broad steps in our approach for functional residue
prediction are shown in figure 1 and the scheme is listed
in Algorithm 1. Here we provide an overview of the steps
involved in the process leaving out the details to the subse-
quent subsections.

Algorithm 1 Algorithm for prediction of functional
residues
Input: Protein structure S
Output: Label vector ỹ

1: G ← formRIN(S)
2: ϑ← applyInteractionPolarityClassifier(Xij; θ)
3: ϕ← applyLocalClassifier(X; ρ)
4: ỹ← applyCollectiveInference (ϕ, ϑ,G, α, β, γ)

First of all, we construct a RIN G for the input 3D struc-
ture S as described in the previous section (line – 1). Then,

we estimate the interaction polarity matrix Ŵ based on fea-
tures of the interacting residues. We use L1-regularized lo-
gistic regression classifier parametrized by θ to obtain prob-
ability of each ŵij being +1. Let xij be the feature vector
constructed by concatenating features of a pair of interact-
ing residues ai and aj , then ϑij = Pr(ŵij = +1|xij; θ). Let
ϑ be the matrix containing ϑij for all the interacting pairs.
(line – 2). Similarly we use L1 regularized logistic regression
parametrized by ρ as a local classifier to estimate probabil-
ity of each residue being functional. Let ϕ be the label
probability vector and ϕi = Pr(ŷ = +1|xi; ρ) is the prob-
ability corresponding to residue ai being functional (line –
3). Finally, we use an iterative collective inference scheme to
obtain ỹ (line – 4). It has three tunable parameters namely
polarity threshold α, local classifier threshold β and mes-
sage strength threshold γ. These parameters enable us to
obtain label vector predictions of desired quality and also
enable us to understand effects of individual components on
the overall prediction accuracy. One of the main advantages
of the proposed scheme is that it is independent of the clas-
sifier being used to estimate the labels of the residue and
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Figure 1: Flow-chart of the proposed scheme

the interactions polarities. We use a L1 regularized logistic
regression[18] as mentioned previously.

The performance of our method for functional residue pre-
diction (Algorithm 1) is evaluated using the test set as fol-
lows: We use Algorithm 1 to obtain probability estimates for
+1 class label for residues and polarity of interaction from
the best local and interaction polarity classifier models. We
obtain different models by varying all three tunable param-
eters α, β and γ of iterative collective inference algorithm.
For each model, we obtain a precision-recall (PR) curve us-
ing class labels predicted by the model. We select the model
with the best AUC-PR. We repeat the process for different
test sets. Finally, we average the PR curves across different
test sets and obtain PR curve for our method.

3.2.1 Interaction Polarity Classifier
In this subsection, we will describe an interaction polar-

ity classifier, which estimates probability of a polarity of
interaction being +1. Let ŵij be the predicted polarity of
interaction between a residue pair ai and aj in the given
structure and ϑij be the corresponding probability. Let ϑ
be the matrix that stores such probabilities for all inter-
acting residue pairs. We estimate ϑij from the features of
residues ai and aj . Let xij be the augmented feature vector
for the interacting pair. We will call it as interaction feature
vector. Let cat(xi,xj) be the function that concatenates fea-
tures vectors xi and xj in that order and returns a vector
xij ∈ R

2k. We use cat(xi,xj) function to obtain interaction
feature vector as follows:

xij =

{
cat(xi,xj) if i < j and eij = 1
cat(xj,xi) if i > j and eij = 1

(3)

We predict ϑij for an interaction vector xij using L1 regu-
larized logistic regression classifier.

ϑij = Pr(ŵij = +1|xij; θ) =
1

1 + exp(−θTxij)
(4)

Note that Pr(ŵij = −1|xij; θ) = 1 − ϑij , since the polarity
can be either +1 or -1. The parameter vector θ ∈ R

2k+1 has
2k+1 parameters. The first parameter θ0 is a regularization
term that controls tradeoff between false positives and false
negatives. The remaining 2k parameters θ contain weights
of the corresponding interaction features in xij.

For each protein S ∈ S with n residues, there will be
c interaction feature vectors, where c =

∑
1≤i,j≤n eij . Let

C be the set of ordered pairs of interaction feature vectors
and the corresponding polarity {(xl

ij , w
l
ij)}

c
l=1 for S. We

estimate the parameters of the model (weights) by 5-fold
cross validation. In order to choose the best polarity clas-
sifiers among five models obtained from the cross-validation
procedure, we plot receiver operating characteristics (ROC)
curve for each model after obtaining its specificity and sen-

sitivity on proteins in the test set. For each model, we vary
polarity threshold α on its ϑ estimates to obtain a prediction
for interaction polarity.

ŵij =

{
+1 if ϑij ≥ α
−1 otherwise.

(5)

Based on these predictions, we calculate sensitivity or recall
and specificity as a fraction of number of true negatives (in
this case number of -1 labels) and the sum of the number of
true negatives and the number of false positives. We calcu-
late area under ROC curve (AUC-ROC) for each model and
select one with the best AUC-ROC. Such a model achieves
the highest performance while predicting negative polarity of
interaction which is a minority class in terms of distribution
of the two classes. Note that more than 99% interactions in
proteins have positive polarity. The best ROC curves across
different test sets are averaged to obtain ROC curve for the
interaction polarity classifier. The polarity threshold α helps
us to handle the issue of skewness in the class distribution
by allowing a flexible choice of decision thresholds.

3.2.2 Local Classifier
The local classifier takes a protein structure S as an input

and predicts a class label for each residue ai in the structure.
We use a logistic regression classifier to estimate probability
of each residue being functional ϕi.

ϕi = Pr(ŷi = +1 | xi; ρ) =
1

1 + exp(−ρTxi)
(6)

where ρ ∈ R
k+1 is a parameter vector that whose compo-

nents from ρ1 to ρk contains weights for the corresponding
residue features, while ρ0 is a bias term that controls the
rate of false positives and false negatives. Note that we
can calculate the probability of residue being non-functional
as 1 − ϕi, since a residue can be either functional or non-
functional. One of the primary challenges in solving the
problem is the skewness of the class distribution. The local
classifier threshold β helps us to alleviate the issue by allow-
ing a flexible choice of decision thresholds. We estimate the
parameters of the model (weights) by 5-fold cross valida-
tion. Each model estimates probability of each residue in
proteins from the test set being functional. For each model,
we obtain a precision-recall (PR) curve by varying local clas-
sifier threshold β from 0 to 1.

ŷi =

{
+1 if ϕi ≥ β
−1 otherwise.

(7)

At each value of probability threshold, we compute precision =
TP

TP+FP
and recall = TP

TP+FN
, measures. Here TP is the num-

ber of residues whose class label is correctly predicted, FP
is the number of residues predicted to be functional, but are
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actually non-functional and FN is the number of residues
predicted to be non-functional but are actually functional.
We calculates area under PR curve (AUC-PR) of each model
and select the models with the best values of AUC-PR. The
PR-curves across different test sets are averaged to obtain
PR-curve for the local classifier.

The local classifier used in our approach closely follows L1-
regularized logistic regression classifier used by DISCERN.
The only difference is in the feature vector: while our clas-
sifier solely uses features of individual residue, the one em-
ployed by DISCERN operates on a feature vector constructed
from features of individual residues along with its neigh-
bours.

3.2.3 Iterative collective inference scheme
In this subsection, we will describe an iterative collective

inference scheme. It operates on residue interaction network
G of protein structure S in order to predict a label vector
ỹ. The scheme also takes estimated label probability vector
ϕ and estimated polarity probability matrix ϑ along with
α, β and γ. Algorithm 2 provides stepwise account of the
scheme.

We use polarity threshold α to obtain Ŵ (line – 1) entry-
wise given by equation (5). We use local classifier threshold
β to obtain ŷ (line – 2) given by equation (7). We initialize

ỹ to ŷ (line – 3) We define a message vector q ∈ R
|A|,

where |A| is the number of nodes in G. The i–th component
qi stores a message of residue ai that signifies fraction of
positive votes received from its neighbours:

qi =

∑
∀j:eij=1

max(0, ŷj × Ŵij)∑
j
eij

(8)

The entire vector q can be calculated in one step as follows:

q = ŷTŴo (9)

where o stores inverse of number of neighbors of nodes in
Gi. Specifically,

oi =

{
1

∑|A|
j=0

eij
if

∑|A|
j=0

eij > 0

0 otherwise.
(10)

We initialize q to 1. In each iteration, we update q with
messages from the neighbouring nodes as per eq. (9) (line–
5). The message vector q is used to update the label vector
ỹ(line – 6). We take a cautious approach in updating the la-
bel vector ỹ, as misclassified instances will have an negative
influence on the accuracy of the method due to cascading
inference errors. We update the label ỹi only when the con-
fidence of the prediction (qi) is greater than the threshold γ
(confidence factor).

ỹi =

{
+1 if qi > max(0.5, γ)
−1 if qi < 1−max(0.5, γ)

(11)

If the confidence of the prediction (qi) is not sufficiently high,
we either retain or flip the label ỹi based on the confidence
of the local classifier (ϕi) on its prediction. The confidence
is measured using a local classifier threshold β as given by
equation (7). The iterative scheme terminates whenever q
ceases to change. This is the point when it is no longer
possible to satisfy polarity constraints without increasing
labelwise misclassification cost. Upon convergence, the label
vector ỹ contains predictions for each residue in S.

Algorithm 2 Iterative collective inference scheme

Input: (i) Interaction network G, (ii) Local classifier prob-
ability vector ϕ, (iii) Interaction polarity probability matrix
ϑ, (iv) Polarity threshold α (v) Local classifier threshold β
(vi) Message strength threshold γ
Output: Label vector ỹ

1: Ŵ← getPolarity(ϑ, α)
2: ŷ← getLabel(ϕ, β)
3: ỹ← ŷ
4: repetir

5: q← ŷTŴo
6: ỹ← updateLabel (q, ŷ, ϕ, γ)
7: hasta q stops showing any change

4. RESULTS

4.1 Benchmark
We evaluated our method on CATRES-FAM benchmark

dataset [30]. The dataset contains functional site annota-
tions for 140 proteins. The annotations are derived from
catalytic site atlas database [28]. The proteins in the dataset
are non-redundant at SCOP [23] superfamily level. The
dataset consists of 49180 amino acid residues, out of which
472 are labeled as functional and the rest are labeled as non-
functional. Thus, merely 0.95% residues in the dataset are
labeled as functional. The 3D structures for all the proteins
are available from protein data bank1. The proteins are par-
titioned into five folds, each containing 28 proteins and used
for five-fold cross-validation as described in section 3.2.

Each protein is converted into a RIN as described in sec-
tion 3. As part of RIN generation, we calculate 48 fea-
tures for each residue. These features were proposed by
Discern [30] and their detailed description can be found
in [30]. We will provide a brief description of these fea-
tures here. The features can be broadly divided into three
types: sequence conservation, amino acid properties and
structure features. Three real-valued sequence conservation
features were used: (i) GLOBAL-JS [6], (ii) INTREPID-
JS [31]; and (iii) INTREPID-LO [31]. We use twenty three
features based on amino acid properties. Out of these, we
use twenty binary features to capture amino acid sidechain
information. Only one of these features will be 1 for each
residue. Three more binary features denote the group of the
amino acid out of charged, polar and hydrophobic 2. We use
twenty-two structure based features. The twelve of these are
real valued features and the rest are binary features. The
real value features including B-factor, closeness centrality
calculated from residue interaction network, five each rela-
tive and absolute solvent accessibility values calculated by
NACCESS [12]. Out of ten binary features, seven features
capture secondary structure type of the residue as defined
in DSSP [17] and the remaining three features capture the
location of residues in one of the three largest pockets on
the surface.

4.2 Performance of our method
We evaluated the performance of our method as described

1http://www.rcsb.org/
2Charged amino acid includes {D, E, H, K, R}, polar in-
cludes {Q, T, S, N, C, Y} and hydrophobic includes {A, F,
G, I, L, M, P, V, W}
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in section 3.2. It is of interest to understand how different
components in our algorithm impact the functional residue
prediction task. First we will first present our results about
performance of individual modules and then present our
analysis of their impact, individual as well as collective, on
the performance of iterative collective inference scheme.

The performance of the local classifier is measured using
PR-AUC as described in section 3.2. We found that PR-
AUC is maximized at β = 0.5. At this threshold, we obtain
recall of 58% at 18% precision and precision of 14.38% at
recall of 69%. The precision and recall of our local classifier
is lower than Discern [30], which has precision of 18% at
69% recall. The drop in performance in our method is due
to the fact that our local classifier solely rely on the features
of the residue and does not take into account the features of
its neighbors as in Discern [30]. We do not take into account
the features of the neighbors as it has been shown that these
are not useful in collective classification framework [7].

The performance of the compatibility classifier is mea-
sured in terms of ROC-AUC as described in section 3.2. We
found that ROC-AUC is maximized at α = 0.1. At this
threshold, we obtain specificity of 88.5%.

The PR-curve of the collective inference scheme is shown
figure 2. We obtain PR-curves for various values of tuning
parameter α, β and γ. We analyzed number of iterations
required for convergence of the iterative scheme and found
that the iterative scheme converges in 15 to 20 iterations
for most of the parameter settings. We found that the best
PR-AUC is obtained for the following values of the tunable
parameter: α = 0.1, β = 0.5 and γ = 0.9. Under these
parameter settings, our method achieves recall of 87.78% at
18% precision and precision of 23.06% at 69% recall. It is
interesting to analyze the amount of improvement iterative
collective scheme provides over the local classifier. Across
different parameter settings, we observe that the iterative
inference consistently improves performance of local classi-
fier. At the best parameter settings mentioned earlier, we
obtain improvement of 8.5 percentage point in precision (at
69% recall local classifier has precision of 14.38%) and al-
most 30 percentage point improvement in recall of the local
classifier.

Now we will provide performance comparison of our method
with the existing methods. Our method significantly outper-
forms existing methods for functional site prediction both in
terms of precision and recall (Table 1). In comparison with
the existing ML methods for functional site prediction, we
obtained 18.78 percentage point improvement over relational
classifier and CRF used by Sankararaman et al.[30], 39 per-
centage point over neural network based predictor [11] and
31 percentage point improvement over SVM based predic-
tor [40] at 18% precision. The recall obtained by our method
is 70 percentage point more than the methods using sequence
conservation features alone [31, 3, 21]. INTREPID [31] has
recall of 19%, ET [21] has recall of 2% [30] at the same level
of precision. At 69% recall, we obtain precision of 23.06%,
which is 5 percentage point more than Discern [30] and 15
percentage point more than Consurf [3] at the same level
of recall [30]. In addition, we also compared our results by
implementing iterative classification algorithm (ICA) [15].
It achieves 8% precision at 69% recall, which is 15 percent-
age point lesser than our method. The maximum precision
achieved by ICA was 10% at 85% recall. ICA iteratively ad-
justs labels of residues using the labels of neighbors without

taking into account the interaction polarity. The ICA results
shows importance of using polarity of interaction while la-
beling label of a residue based on its neighbors. We reported
performance numbers at specific levels of precision and recall
in order to enable comparison with earlier methods.

Method Precision69 (%) Recall18(%)
Collective Inference 23.06 87.78
Discern [30] 18 69
CRF [30] 18 69
Local classifier 14.38 58

Table 1: Comparative performance of various clas-
sification techniques for predicting functional site
residues in CATRES-FAM dataset. We have not
included neural network [11] and support vector ma-
chine [40] predictors in this table as their precisions
are not reported at 69%.

Finally, we analyze how well we can do using a perfect in-
teraction polarity classifier. We conducted this experiment
by using actual interaction polarity matrix W correspond-

ing to the protein structure instead of Ŵ in iterative collec-
tive inferencing scheme. Using the best tuning parameters
mentioned above, our method achieves 80% precision and
94.35% recall on CATRES-FAM benchmark data. The re-
sults indicate that we could profitably focus more effort on
improving the polarity classifier.

5. DISCUSSION
In this paper, we have proposed a novel method for predic-

tion of functional residues from a given 3D structure. Our
method has the following contributions:

1. Unlike existing methods, our approach exploits corre-
lation between labels of interaction residues in the form
of interaction polarity constraints. These constraints
act as regularizers forcing the labels of neighbouring
residues to conform to the correlations typically ob-
served. This helps our method to achieve significantly
better performance than existing methods that obtain
labels by minimizing only the residue-wise misclassifi-
cation costs.

2. This is the first instance when the collective inference
techniques have been applied for functional residue
prediction problem. The collective inference techniques
have been state of the art for many different problems
in the domain of computer vision, web and network
classification. The previous best method, Discern by
Sankararaman et al. [30], use relational classifier that
labels a residue based on its own features as well as
features from its neighbors. The collective inference
scheme used in this paper labels a residue based on its
features, labels of its interaction partners in RIN and
the polarity of their interaction. We do not take into
account the features of the neighbors as it has been
shown that these are not useful in collective classifica-
tion framework [7].

3. We have provided two stage approach to solve the
problem of predicting functional residues. It has got
three main components namely interaction polarity clas-
sifier, local classifier and iterative collective inference
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scheme. Since iterative collective inference scheme ad-
justs labels predicted by the local classifier iteratively
in collective inference scheme, we get results that are
consistently better than that of the local classifier. Our
iterative collective inference scheme works well in prac-
tice and rapidly converges to steady state within 15 to
20 iterations across different values of tunable param-
eters.

4. Our method achieves significant improvement over the
existing methods in terms of precision and recall on
CATRES-FAM benchmark dataset.
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Figure 2: Precision-recall (PR) curve for iterative
collective inferencing scheme. We have also shown
PR curve of local classifier for the comparison pur-
pose.

The proposed method can be applied for predicting func-
tional residues in novel proteins since the method does not
require information about homologous proteins.
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