
Refactoring Opportunities for Replacing Type Code
with State and Subclass

Jyothi Vedurada

IIT Madras, Chennai, India, vjyothi@cse.iitm.ac.in

V Krishna Nandivada

IIT Madras, Chennai, India, nvk@iitm.ac.in

Abstract—Refactoring restructures a program to improve its
readability and maintainability, without changing its original
behavior. One of the key steps in refactoring is the identification of
potential refactoring opportunities. In this paper, we discuss the
relevance of two popular refactorings “Replace Type Code with
Subclass” and “Replace Type Code with State” in real world Java
applications and describe some of the challenges in automatically
identifying these refactoring opportunities.

I. INTRODUCTION

Polymorphism allows us to define supertypes that contain

common behaviors and subtypes which specialize those be-

haviors. Even though object-oriented languages provide mech-

anisms to support polymorphism, programmers often use state-

checking to simulate polymorphism, with the help of condi-

tional (switch and if) statements. Such a practice leads

to three main disadvantages : 1) extendability: adding new

behaviors to the subtypes requires changes to the conditional

statements spread across many classes; 2) maintainability:

modifying the existing behaviors or fixing bugs requires that

the changes do not affect the code surrounding the state-

checking code; 3) readability: since the state-checking code

may be spread across multiple classes, it becomes hard to

reason about the behavior associated with each state.

The code with complex conditional-state-checking state-

ments can be improved by using “replace conditional with

polymorphism” (RCP) refactoring [1], [2]. Kannangara and

Wijayanayake [3] also empirically show that RCP refactoring

is the most effective refactoring (among the ones listed the

Fowlers catalog [2]) to improve the code. RCP refactoring

uses two important refactorings underneath: i) replace type

code with subclasses (SC), and ii) replace type code with state

(ST). We now show an example to demonstrate typical RCP

refactoring opportunities found in real world programs.

Fig. 1 shows a code snippet of the class GraphAxis from

the jOcular [4] application (an optical design software). Here,

the field log controls if the object is a logarithmic axis

or not. Thus, intuitively there are two types of GraphAxis

objects: LogGraphAxis and NonLogGraphAxis, and the

conditional statements at Lines 5, 12, 18 in scale, unscale
and getGridLines methods of the class are used to control

the execution of the state specific codes. This state-checking

code can be seen as an SC/ST refactoring opportunity and can

be improved by applying SC/ST refactoring followed by RCP

refactoring [2]; Fig. 3 shows the resulting subclasses. After

the subclasses are created, the conditional-checking code can

1 public class GraphAxis {
2 protected boolean log; ...
3 public double scale(double n){
4 double res = n;
5 if(log){ /* state-checking on log */
6 res=Math.log10(res); res-=Math.log10(min);
7 res /= Math.log10(max) - Math.log10(min);
8 } else { res -= min; res /= max - min;}
9 ... return res; }

10 public double unScale(double n){
11 double res = n; res -= .1; res /= .8;
12 if(log){ /* state-checking on log */
13 res *= Math.log10(max) - Math.log10(min);
14 res += Math.log10(min); res=Math.pow(10,res);
15 } else { res *= max - min; res += min; }
16 return res; }
17 public ArrayList<Double> getGridLines(){
18 if (log) ...//20 lines of state-dependent code
19 } }//class GraphAxis

Fig. 1. Code snippet from jOcular-0.039.

be replaced with a polymorphic function call. For example,

Lines 5-8 can be replaced by "res=scaleLog(n);".

It is quite challenging to manually identify such refactoring

opportunities in large projects. Recent works [5], [6] aim

to automatically identify such opportunities. However, these

approaches fail to identify many ST refactoring opportunities

due to restrictions in their approaches (for example, when the

state checking is not done against named constants or the

state is computed via expressions involving locals and heap

locations). Further, they do not differentiate between SC and

ST refactoring opportunities. In this paper, we first present

some important challenges involved in: (i) identifying these

SC/ST refactoring opportunities effectively, and (ii) classifying

the identified opportunities (into SC or ST) precisely. We

also present our experience of studying a number of Java

applications to identify the RCP refactoring opportunities.

II. CHALLENGES

We now present the challenges involved in identifying and

classifying the SC/ST refactoring opportunities.

Identification. The first complexity in identifying refactoring

opportunities is to identify the possible list of type codes [2].

Not all the fields present in (or that influence the outcome of)

the conditionals can be qualified as type codes. The fields like

the log field of GraphAxis (see Fig. 1), that help differenti-

ate different forms/states of the object are called as type codes.

Identifying such fields is a key step in the identification of

SC/ST refactoring opportunities. However, these fields might

not be explicitly present at the conditionals (the value may

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.97

303

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

303

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

303

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.97

305

tmp=log; ...
if(tmp){...}
else {...}

(a)

if(getLog()){
...

}else {...}
(b)

if(expr || log){
... print (log)
} else {...}

(c)

Fig. 2. Field of a class at conditional statement

class LogGraphAxis extends GraphAxis{...
public boolean getLog(){return true;}
public double scaleLog (double res){
res=Math.log10(res); res-=Math.log10(min);
res/= Math.log10(max) - Math.log10(min);
return res;} ... }

class NonLogGraphAxis extends GraphAxis{...
public boolean getLog(){return false;}
public double scaleLog (double res){

res-= min; res/= max - min; return res; } ... }

Fig. 3. Subclasses created for the class GraphAxis

flow through some local variables or heap locations), or can

be present as a part of complex expressions which makes the

refactoring process difficult/not interesting/not possible.

The code snippets in Fig. 2 demonstrate a few such varia-

tions. In Fig. 2(a), the field log is not directly present in the

boolean expression, but its value is reaching this conditional

via one (or more) assignment statement(s). In Fig. 2(b) the

value of log flows via the function call getLog(). Finding

such paths (precisely) in large code bases is non-trivial.

In Fig. 2(c), although log is present in the expression

explicitly, it is present along with another expression expr
(joined using an || or && operator). Naively extracting sub-

classes in such a code might not always preserve the original

behavior (note: expr may have side effects). Even in the

absence of side effects, interesting challenges remain. It may

be semantically incorrect to extract the body of the conditional

as the behavior of a unique class (such as, in Fig. 2(c),

extracting the body of the conditional as a method in either

LogGraphAxis or NonLogGraphAxis). Identifying such

a field as type code may not lead to a successful refactoring.

Classification and Resulting Class Hierarchy. Choosing the

best suited refactoring between SC and ST requires checking

whether the typecode is mutable [2]. If the state of an object

(value of its type code) changes during its life time, then it is an

ST refactoring opportunity, or else it can be seen as either SC

or ST opportunity. Performing such an analysis in a scalable

and precise manner in large code bases is challenging.

Based on the chosen refactoring, the inheritance structure in

the refactored code varies. For example, for the code shown in

Fig. 1, both SC and ST refactorings may be performed. In case

of SC refactoring, it may lead to classes as shown in Fig. 3;

the created subclasses extend GraphAxis directly. In case of

ST refactoring, an intermediate state class is created and the

subclasses extend the state class. In addition to the arguments

shown in Fig. 3, the methods need an additional argument (of

type GraphAxis) to access the fields of GraphAxis.

III. RELEVANCE OF SC/ST REFACTORING

We present the relevance of SC/ST refactorings on eight Java

projects. Of these, jfreechart-1.0.14, jOcular-0.039, javaGeom-

0.10.2, RackJ-1.05, and Unicode-Rewriter(UR)-1.0 are cho-

sen from sourceforge [4]; these projects are alpha/pre-alpha

Bench LOC Refactoring Opportunity class #uses

jOcu- 31K 〈GraphAxis, log〉 SC 3
lar 〈BooleanProperty, m_value〉 SC 8
java- 27K 〈Ellipse2D, direct〉 SC 9
Geom 〈Circle2D, direct〉 SC 8
jfree 204K 〈XYSeries, autoSort〉 SC 5
chart 〈ChartPanel, useBuffer〉 ST 5
rackj 23K 〈AlignmentRecord, forwardStrand〉 ST 7

〈ReadMapComparator, forward〉 SC 3
UR 11K 〈ID3v2Frame, compression〉 ST 8

〈ID3v2ExtendedHeader, crc_present〉 SC 4
av- 100K 〈Set, delegating〉 ST 11
rora 〈Mon, show〉 SC 5
fop 162K 〈CommandLineOptions, inputmode〉 ST 5

〈BlockViewport, clip〉 SC 6
sun- 25K 〈Geometry, builtTess〉 ST 3
flow 〈UberShader, glossyness〉 ST 2

Fig. 4. Sample refactoring opportunities from benchmarks.

releases. The remaining projects avrora-1.7.106, fop-0.95,

sunflow-0.07.2 are taken from the DaCapo [7] benchmark

suite; these projects are stable releases. For each of these

projects, two illustrative opportunities are shown in Fig. 4, as

classname, type-code pairs, along with the class (SC/ST) and

the conditionals count (#uses) associated with each opportu-

nity. We now analyze first of the two reported opportunities.

jOcular: GraphAxis:log Discussed in Section I.

javaGeom: a geometrical computations library. The field

direct in Ellipse2D checks if it is directed; accordingly

the functionality of the object (such as, finding tangents) dif-

fers. Suggested subclasses: DirEllipse, UndirEllipse.

jfreechart: a Java chart library. Field XYSeries:

autoSort controls whether the elements of a collection class

data are sorted; accordingly, the behavior of the object varies.

Suggested subclasses: autoSorting, nonAutoSorting.

rackj: analyzes RNA-sequence data. The order of processing

an RNA strand (forward/backward) is decided by the field

forwardStrand in AlignmentRecord. Suggested sub-

classes: FwdAlignmentRec and BwdAlignmentRec.

UR: converts ID3 tags to Unicode. The field compression
in ID3v2Frame tells if the data is compressed. Suggested

subclasses: CompID3v2Frame and UncompID3v2Frame.

avrora: a simulator for running programs on a grid of

micro-controllers. The Set:delegating field controls the

operations like add, contains, and so on. Suggested states for

each Set object: delegating or nonDelegating.

fop: a print formatter. The type of the input (xml, image, and

so on) is indicated by CommandLineOptions:inputmode
field. Suggestion: six subclasses (one per input mode).

sunflow: image rendering software using ray-tracing.

The Geometry:builtTess field checks the object has

tesselation done. Else it builds one. Suggested subclasses:

GeometryTess and GeometryNoTess.

IV. CONCLUSION

In this paper, we presented the relevance of the SC and

ST refactorings using eight open source projects, which shows

that state-checking is indeed used to simulate polymorphism.

We also demonstrated the challenges involved in automatically

identifying these refactoring opportunities.

304304304306306306306306306306

REFERENCES

[1] W. F. Opdyke, “Refactoring Object-oriented Frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1992, uMI Order No. GAX93-05645.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] S. H. Kannangara and J. Wijayanayake, “An Empirical Exploration of
Refactoring effect on Software Quality using External Quality Factors,”
The International Journal on Advances in ICT for Emerging Regions
(ICTer), vol. 7, no. 2, 2014.

[4] “Soureforge: Web-based service that offers software developers a central-
ized online location to control and manage free and open-source software
projects,” https://sourceforge.net/.

[5] N. Tsantalis and A. Chatzigeorgiou, “Identification of refactoring oppor-
tunities introducing polymorphism,” Journal of Systems and Software,
vol. 83, no. 3, pp. 391–404, 2010.

[6] A. Christopoulou, E. A. Giakoumakis, V. E. Zafeiris, and V. Soukara,
“Automated refactoring to the strategy design pattern,” Inf. Softw.
Technol., vol. 54, no. 11, pp. 1202–1214, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.05.004

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The DaCapo
Benchmarks: Java Benchmarking Development and Analysis,” in OOPSLA
’06. New York, NY, USA: ACM Press, Oct. 2006, pp. 169–190.

305305305307307307307307307307

