
138

Identifying Refactoring Opportunities for Replacing Type

Code with Subclass and State

JYOTHI VEDURADA, IIT Madras, India

V. KRISHNA NANDIVADA, IIT Madras, India

Refactoring is a program transformation that restructures existing code without altering its behaviour and is

a key practice in popular software design movements, such as Agile. Identification of potential refactoring

opportunities is an important step in the refactoring process. In large systems, manual identification of useful

refactoring opportunities requires a lot of effort and time. Hence, there is a need for automatic identification of

refactoring opportunities. However, this problem has not been addressed well for many non-trivial refactorings.

Two such non-trivial, yet popular refactorings are łReplace Type Code with Subclass" (SC) and łReplace Type

Code with State" (ST) refactorings. In this paper, we present new approaches to identify SC and ST refactoring

opportunities.

Our proposed approach is based around the notion of control-fields. A control-field is a field of a class

that exposes the different underlying behaviors of the class. Each control-field can lead to a possible SC/ST

refactoring of the associated/interacting classes. We first present a formal definition of control-fields and then

present algorithms to identify and prune them; each of these pruned control-fields represents a refactoring

opportunity. Further, we present a novel flow- and context-sensitive analysis to classify each of these refactoring

opportunities into one of the SC and ST opportunities. We have implemented our proposed approach in a

tool called Auto-SCST, and demonstrated its effectiveness by evaluating it against eight open-source Java

applications.

CCS Concepts: • Software and its engineering → Software reverse engineering; Automated static anal-

ysis; Software maintenance tools; Design patterns; • Theory of computation→ Program analysis;

Additional Key Words and Phrases: Refactoring, Replace Type Code with State, Replace Type Code with

Subclass, Replace Conditionals with Polymorphism, Static Program Analysis, Points-to Analysis

ACM Reference Format:

Jyothi Vedurada and V. Krishna Nandivada. 2018. Identifying Refactoring Opportunities for Replacing Type

Code with Subclass and State. Proc. ACM Program. Lang. 2, OOPSLA, Article 138 (November 2018), 28 pages.

https://doi.org/10.1145/3276508

1 INTRODUCTION

Object-oriented programming languages provide mechanisms supporting polymorphism to avoid
explicit checking of object properties for executing various actions. Though many developers are
familiar with the concepts of polymorphism, it is quite common to find explicit state checking
code in large applications. This is because, even though many large projects start with a good
design, as the projects evolve over time and new requirements are introduced into the system,
developers/maintainers often take the easier route of adding pieces of conditionally executed code
to address each newer design requirement. This leads to an increase in the complexity of the code.

Authors’ addresses: Jyothi Vedurada, Department of CSE, IIT Madras, Chennai, India, vjyothi@cse.iitm.ac.in; V. Krishna

Nandivada, Department of CSE, IIT Madras, Chennai, India, nvk@iitm.ac.in.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART138

https://doi.org/10.1145/3276508

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276508
https://doi.org/10.1145/3276508

138:2 Jyothi Vedurada and V. Krishna Nandivada

1 public class XYSeries extends Series {

2 private boolean autoSort; ...

3 public XYSeries(..., boolean as, ...)

4 { ... this.autoSort = as; ... }

5 public void add(XYDataItem item,...)

6 { ...

7 if (this.autoSort){

8 int index = Collections.binarySearch

(data,...);

9 if (index<0)

10 {data.add(-index-1, item);}

11 else { ...

12 /* handle duplicates. */ }

13 } else {.../* add unsorted. */ }

14 ...

15 }

16 public int indexOf(Number x) {

17 if (this.autoSort){

18 return Collections.binarySearch(data

,...);

19 } else {

20 /* do linear search */ ...

21 return ...;}

22 } }

(a) Code snippet from the jfreechart-1.0.14 project.

1 public class Set {

2 private boolean delegating = false; ...

3 public int size() {

4 if (this.delegating)

5 return delegate.size();

6 else

7 return oneState == null ? 0 :1;

8 }

9 public boolean add(StateCache.State ns)

10 { ...

11 if (this.delegating){

12 return delegate.add(ns); }

13 else {

14 if (oneState==null) {

15 oneState = ns; return false;

16 }

17 if (ns == oneState) return true;

18 beginDelegation();

19 return delegate.add(ns);

20 }

21 }

22 private void beginDelegation(){...

23 this.delegating = true;...

24 } }

(b) Code snippet from the avrora-1.7.106 project.

Fig. 1. Motivating Examples. The boxed entries indicate the control-fields.

The design of such code can be improved through refactoring [Fowler 1999], which restructures
existing code without altering its behavior.

A popular and highly recommended way [Kannangara and Wijayanayake 2014] to refactor code
with conditional-state-checking statements (like the ones discussed above) is by using the łReplace
Conditional with Polymorphismž (RCP) refactoring [Fowler 1999; Opdyke 1992; Vedurada and
Nandivada 2017]. The popularity of RCP refactoring can also be seen from the web link [Tsantalis
2018], which shows that programmers often perform polymorphism (RCP) refactoring.
Effective RCP refactoring depends on systematically performing two important [Vedurada and

Nandivada 2017] refactorings to build the required class hierarchy: i) replace type code with
subclasses (SC), and ii) replace type code with state (ST)1. One of the key challenges in doing
systematic SC/ST refactoring is that of identification of the refactoring opportunities. This challenge
becomes more tedious and time-consuming in the context of refactoring of large applications that
consist of hundreds of classes and fields. We illustrate some of these challenges using twomotivating
examples.

Fig. 1a shows a snippet of code from the class XYSeries taken from the jfreechart [Sourceforge
2016] application. The autoSort field of the class controls how the collection object data stores the

1 Considering the similarities between the state and strategy refactorings [Fowler 1999], in this paper we do not differentiate

between the state and strategy refactoring opportunities. See Section 4 for a discussion on this topic.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:3

elements (sorted or unsorted). Based on the value of this field, the behavior of the XYSeries object
varies; see the code of add and indexOf functions, for example. That is, implicitly, an XYSeries

object can be in two states: autoSorting and nonAutoSorting, and the If-statements at Lines 7
and 17 are used to control the execution of the state-specific code. Hereafter, we refer to If and
Switch statements as conditional-statements.
As a second example, Fig. 1b shows a snippet of code from the class Set taken from the

avrora [Blackburn et al. 2006] application. The add method has an If statement switching on
field delegating. Seven of the eight methods present in the class have similar code. Thus, the
behavior of an object of type Set varies depending on the value of the delegating field. In other
words, a Set object may be present in two states: delegating or nonDelegating and the conditional-
statements at Lines 4 and 11 are used to control the execution of the state-specific codes.
Codes such as the ones shown in Fig. 1 can be made more readable by performing SC/ST

refactoring, followed by RCP refactoring [Fowler 1999]. The first step in this process is to identify
the opportunities to perform SC/ST refactoring that lead to RCP refactoring (hereafter, just referred
to as SC/ST refactoring opportunities). There are two important challenges in this step as discussed
in a recent work [Vedurada and Nandivada 2017]: (i) In large code bases, like jfreechart (513 classes)
and avrora (1,746 classes), identifying SC/ST refactoring opportunities, manually or via scripts [Kim
et al. 2015], is a non-trivial task; (ii) Further, even after an SC/ST refactoring opportunity is identified,
it is still hard to choose the best-suited refactoring between SC and ST. Fowler [1999] suggests that
if the observable state of an object changes during its lifetime, we should choose the ST refactoring,
else it should be SC. For example, in Fig. 1a, the field autoSort is defined only in the constructor
at Line 4 and that single value of the field autoSort is used throughout the life cycle of any object
of type XYSeries. That is, the state of the object does not change and this makes it a candidate for
SC refactoring. However, in Fig. 1b, different values of the field delegating may be used during
the life time of an object Set ś updated in beginDelegation method called from the add method.
Thus, it is a candidate for ST refactoring. Performing such an analysis manually in large code
bases, (for example, avrora with 4836 fields in 1731 classes spread over 100K lines of code), can be a
daunting task.
Considering the challenges in manually identifying the opportunities for SC/ST refactoring,

there have been attempts towards building tools that automatically identify such opportunities.
Tsantalis and Chatzigeorgiou [2010] identify individual conditional-statements that can be replaced
by polymorphic calls; consequently, they do identify a few of the SC/ST refactoring opportuni-
ties. For example, they identify SC-refactoring opportunities only in conditional-statements that
check runtime-type-information, via instanceof checks. Thus, they cannot identify Fig. 1a as an
opportunity to perform SC-refactoring. Similarly, they cannot infer ST-refactoring opportunity in
either of the examples shown in Fig. 1, as they need static-final fields (named constants) in the
conditional-statements to be able to identify ST-refactoring opportunities.

Christopoulou et al. [2012] propose an approach to identify individual conditional-statements that
can be refactored using ‘replace type code with Strategy’ pattern (has similarities to ST refactoring).
Naturally, their approach does not identify occurrences of SC-refactoring opportunities (for example,
Fig. 1a). But it identifies Fig. 1a for strategy refactoring. It does not identify the opportunity in
Fig. 1b ś not a strategy refactoring opportunity. Similarly, if the instance field is stored inside a
local variable, and the variable is used in a conditional-statement (for example, the code shown in
Fig. 4), their approach fails to identify such opportunities. This motivates us to design dedicated
schemes to identify SC/ST refactoring opportunities.

In this paper, we present a novel approach to identify and classify SC/ST refactoring opportunities
effectively. Our identification phase is based around an innovative scheme to identify the fields
(termed as control-fields) that expose the different underlying behaviors of the corresponding classes;

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:4 Jyothi Vedurada and V. Krishna Nandivada

see the boxed entries in Fig. 1, for example. Identifying control-fields from the numerous fields
that are declared across a large number of classes, and used in many conditional-statements is a
non-trivial challenge.
Further, classifying the identified refactoring opportunities (each corresponding to a unique

control-field) into one of the SC and ST categories becomes quite challenging in large code bases,
as one has to analyze the whole code base to establish if the observable state of an object changes
during its lifetime. Note that, a completely syntactic approach is not sufficient for establishing
this property. For example, conservatively considering only final fields for SC-refactoring will
miss marking the opportunity in Fig. 1a for SC-refactoring because the field autoSort is not
declared final. To track the state changes in the life cycle of an object, we need an analysis which
uses points-to information and which takes into consideration the paths across different function
calls. In addition, using context-insensitive points-to information is not sufficient to establish the
above property. For example, if the constructor XYSeries() in Fig. 1a is called from different
calling-contexts, the objects that the variable ‘this’ points-to, are not differentiated by a context-
insensitive analysis and hence the field autoSort of each object is assumed to get different values
corresponding to different states, during the lifetime of the object. Consequently, the analysis will
miss marking this code for SC-refactoring. We address these challenges, by presenting a novel flow-
and context-sensitive algorithm to perform this classification. Similar to other RCP-refactoring
related tools [Christopoulou et al. 2012; Tsantalis and Chatzigeorgiou 2010] our proposed approach
also requires the whole-program including the client-codes as input.

Our approach can precisely identify that Fig. 1a has an opportunity to apply SC-refactoring and
Fig. 1b has an opportunity to apply ST-refactoring. Such a refactoring can lead to improved codes
such as the ones shown in Fig. 2 and Fig. 3, where some conditional-statements are replaced with
polymorphic calls; see Section 2 for details. To the best of our knowledge, no existing approaches
or tools have addressed this problem of refactoring-opportunity identification effectively, for SC/ST
refactoring. We have also implemented an RCP refactoring tool (invoked after the identification
phase) to perform the actual code transformation. Note that since the main focus of this paper is to
precisely identify SC and ST refactoring opportunities, the discussion about the actual transforma-
tion for replacing type codes with subclasses or state, along with the various difficulties involved
therein are outside the scope of this paper.
Contributions.

• We formally introduce the notion of control-field by building on the idea of type code [Fowler
1999]. The control-fields form the basis for detecting SC/ST refactoring opportunities.

• We present a systematic approach to precisely identify control-fields. Each control-field can
be seen as a refactoring opportunity for the associated conditional-statements.

• We present a novel and efficient analysis to choose between SC and ST refactoring, and to
create a precise inheritance structure for an identified refactoring opportunity. To the best of
our knowledge, no such analysis is present in the literature to do such classification.

• We have implemented the proposed analysis in an Eclipse [2017] refactoring plug-in called
Auto-SCST. We have demonstrated the effectiveness of Auto-SCST by evaluating it on eight
open source Java applications.

2 BACKGROUND

We now briefly explain the SC, ST and RCP refactorings. Interested readers may refer to Fowler
[1999] for a detailed discussion.
Replace Type Code with Subclasses (SC). This refactoring is performed as part of the RCP
refactoring when we have an immutable type code which does not change its observable value

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:5

1 class XYSeriesAutoSort extends XYSeries

2 {...

3 public boolean getAutoSort ()

4 {return true;}

5 public int addItem(XYDataItem item){

6 int index=Collections.binarySearch(

data,...);

7 if (index<0) {...} else {...} }

8 }

1 class XYSeriesNoAutoSort extends XYSeries

2 {...

3 public boolean getAutoSort ()

4 {return false;}

5 public int addItem (XYDataItem item) {

6 .../*add unsorted*/

7 }

8 }

(a) Subclasses created for the class XYSeries.

1 public abstract class XYSeries extends Series{ ...

2 public abstract boolean getAutoSort ();

3 public abstract void addItem (XYDataItem item);

4 public void add(XYDataItem item,...) {

5 ... this.addItem(item); ...

6 } }

(b) Modified original class.

1 ... XYSeries s1 = new XYSeries(..., true, ...);/*three params*/

2 ... XYSeries s2 = new XYSeries(..., false, ...);/*three params*/ ...

(c) Client code, before RCP refactoring.

1 ... XYSeries s1 = new XYSeriesAutoSort(..., ...); /*two params*/

2 ... XYSeries s2 = new XYSeriesNoAutoSort(..., ...); /*two params*/ ...

(d) Client code, after RCP refactoring.

Fig. 2. Example code to illustrate SC- and RCP-refactoring.

throughout the life cycle of an object. The main steps for performing the SC refactoring on the
example shown in Fig. 1a are: (i) self encapsulating the type code autoSort, by adding an abstract
‘get’ method, in the XYSeries class; and (ii) creating a subclass for each value of the type code,
XYSeriesAutoSort and XYSeriesNoAutoSort, with concrete implementations for the ‘get’ method;
see the ‘get’ methods in Fig. 2a.
Replace Type Code with State (ST). This refactoring is performed as part of RCP refactoring
when the type code is mutable and/or when the class under consideration to refactor already has
subclasses. The main steps for performing the ST refactoring on the example shown in Fig. 1b are:
(i) self encapsulating the type code delegating; (ii) creating an abstract class SetState with a
declared abstract method to get the value of the type code (see Fig. 3b); (iii) creating two subclasses
of SetState: SetDelegating and SetNonDelegating (see Fig. 3a), for each value of the type code,
with each class having a concrete implementation for the ‘get’ method, similar to the code in Fig. 2a
(methods not shown in Fig. 3a for brevity); and (iv) replace the type code variable delegating with
a state variable state and adjust the ‘set’ method (to set the variable state to the appropriate
instance of the subclass) and ‘get’ method (to invoke the state.getDelegating method); see
Fig. 3c.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:6 Jyothi Vedurada and V. Krishna Nandivada

1 class SetDelegating extends SetState

2 { ...

3 public int size(Set set)

4 { return set.getDelegate().size(); }

5 }

1 class SetNonDelegating extends SetState

2 { ...

3 public int size(Set set) {

4 return set.getOneState()==null?0:1;

5 } }

(a) Subclasses created for the class SetState.

1 public abstract class SetState {...

2 public abstract boolean getDelegating();

3 public abstract int size(Set set);

4 }

(b) Abstract state class.

1 public class Set { ...

2 private SetState state; /*state field*/

3 public void setDelegating(boolean st){

4 if (st)

5 this.state = new SetDelegating();

6 else

7 this.state = new SetNonDelegating();

8 }

9 public boolean getDelegating() {

10 return state.getDelegating();

11 }

12 public int size(){

13 return this.state.size(this);/*rcp*/

14 }

15 private void beginDelegation(){ ...

16 this.setDelegating(true); ...

17 } }

(c) Modified original class.

Fig. 3. Example code to illustrate ST- and RCP-refactoring.

Replace Conditionals with Polymorphism (RCP). This refactoring is used to simplify condi-
tional statements. It starts with choosing between SC and ST to create the inheritance structure,
followed by a series of refactorings like extract method, move method, and so on. The main steps for
performing the RCP refactoring on the method add shown in Fig. 1a are: (i) If XYSeriesAutoSort
and XYSeriesNoAutoSort are the two subclasses created for the class XYSeries for performing SC
refactoring, then new overridden concrete methods are created in the subclasses by extracting the
bodies of each branch of the associated conditional-statements; for example, see addItem methods
in Fig. 2a. (ii) An abstract declaration of addItem is inserted in the baseclass XYSeries. See Fig. 2b.
(iii) Finally, a call to the overridden method replaces the conditional-statement; see Line 5 in Fig. 2b.

In case of RCP-refactoring based on ST-refactoring, there is one main difference in step (ii): the
abstract method declaration is added to the abstract class (for example, SetState) created as part
of the ST-refactoring step. Fig. 3 shows the changes due to RCP refactoring on the method size

shown in Fig. 1b; see the definitions of the method size therein.
Changes in the Client Code. For both SC and ST refactoring, explicit accesses of type-codes in
the client code are replaced with calls to ‘get’ and ‘set’ methods (for example, see Line 16 in Fig. 3c).
In addition, for SC-refactoring, the instantiations of the base class in the client code need to be
changed to the instantiations of specific subclasses. For the code in Fig. 1a, snippets of the client
codes before and after SC-refactoring are shown in Fig. 2c and Fig. 2d, respectively. In Fig. 2d, the
static types of the variables s1 and s2 do not change, but the variables point to instantiations of
the subclasses. Note that the changing of instantiations to specific subclasses can also be done via a
factory method. Thus, RCP-refactoring may lead to changes in the base-class, as well as the client
code and hence requires the whole-program to be available.
If the refactoring steps discussed in this section are performed manually, one needs to compile

and test the code after each step, which can be avoided if done by a refactoring tool [Fowler 1999].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:7

A Key Property of the Values of the Type Codes. Consider an if-statement of the form if

(e1) S1; else if (e2) S2; . . . else Sn and say the expressions e1, e2, and so on, include a
sub-expression involving a type code (say, f1). As discussed by Fowler [1999], an object executes
different conditional bodies (such as S1, S2, and so on) when present in different states; each
state corresponds to one or more non-overlapping control-values. Thus, the mapping from the
conditional bodies to the values of their associated type codes forms a surjective function. We now
use a simple example to show the importance of the surjective property.
Consider two conditional-statements ‘if (a.x > 4) S1; else if (a.x < 4) S2’ and ‘if

(a.x > 2) S3’. There are overlapping ranges of control-values across multiple control-expressions
of these conditional-statements. For example, the ranges of control-values corresponding to a.x

< 4 and a.x > 2 are overlapping and have a common control-value (the number 3). Now, if we
create three sub-classes: C1 for a.x > 4, C2 for a.x < 4, and C3 for a.x > 2, then S2 has to be
refactored into C2 and C3, and S3 has to be refactored into all the three classes ś both violations
of the surjective property. By the definition of SC/ST refactoring, the conditional body of each
extracted branch statement corresponds to a unique state. In the example conditional-statements,
the code specific to one branch is getting associated to multiple control-values (or states), which is
against the definition of SC/ST refactoring. Hence it is important for the state-checking code to
satisfy the surjective property to be fit for SC/ST refactoring.

3 IDENTIFYING SC AND ST REFACTORING CANDIDATES

In this section, we describe our approach to identify potential opportunities for doing SC/ST
refactoring. Our approach is based around the definition of control-fields. Intuitively, a control-field
is a field of some class X, whose different values, termed as control-values, help identify the different
underlying behaviors of the associated objects of type X. We first present a definition of control-
fields and then proceed on to present novel algorithms to identify, prune and classify them.
We define control-fields using the concept of control-expressions. A control-expression is an

expression used in the guard of any If/Switch statement and for the discussion in this paper, we
define control-expression using the following grammar:

⟨control-expression⟩ ::= [⟨exp⟩ &&]? ⟨EQ-exp⟩ [&& ⟨exp⟩]? | !⟨EQ-exp⟩
⟨EQ-exp⟩ ::= ⟨FV⟩==⟨CONST⟩ | ⟨FV⟩.equals⟨CONST⟩

| ⟨FV⟩ instanceof ⟨Type⟩
⟨FV⟩ ::= ⟨Field-Dereference⟩ | ⟨Variable⟩
⟨CONST⟩ ::= ⟨Constant⟩ | ⟨Final-Field⟩

A control-expression can be a logical-AND expression with EQ-exp as a sub-expression, or a
simple expression derived from EQ-exp, or !EQ-exp. The non-terminal ⟨exp⟩ derives any arbitrary
Java expression. EQ-exp derives only simple expressions that consist of an equality comparison
operation with constants or an instanceof comparison operation. Note that since we are interested
in SC and ST refactorings, we only focus on the = and , operations and skip other arithmetic and
logical operations. See Section 4, for a discussion on other possible forms of control-expressions.

Note that, in a control-expression, we do not allow !EQ-exp within a logical-AND expression, as
otherwise the key property (see Section 2) may be violated. For example, say we want to choose the
predicate in the following if-statement as a control-expression: ‘if(o1.base != 2 && exp1){S1}

else {S2}’, and the target control-field base may take the values 2 and 16. Such a choice may
lead to S1 and S2 both to be associated with the control-value 16 (of o1.base). Using a similar
argument, we do not allow control-expression to have a logical-OR expression with EQ-exp as a
sub-expression.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:8 Jyothi Vedurada and V. Krishna Nandivada

1 public void receiveFrame(Frame frame) {

2 int data = frame.value;

3 if (mode) { // Instruction mode

4 switch (data) {

5 case CLEAR_SCREEN: ...

6 case SCROLL_LEFT: ...

7 case SCROLL_RIGHT: ...

8 } ...

9 } ...

10 }

Fig. 4. Control-field propagating via copy statements. Code snippet from the avrora-1.7.106 project.

The CONST non-terminal in the above grammar refers to literals or final fields of the fol-
lowing types: Java primitive types, String or Enum. Similar to the treatment of null-objects in
Jdeodorant [Tsantalis and Chatzigeorgiou 2010], we do not include łnullž as a possible CONST.
This is because, typically null is used to check if a field has been allocated or not, and does not
represent the state of the object. Further, the Introduce Null Object [Fowler 1999], is an independent
refactoring [Gaitani et al. 2015] and is handled differently from RCP refactoring.
Note: we handle simple boolean expressions of the form (FV), (!FV), (FV.getClass() ==

Type.getClass()), and (FV.getClass() != Type.getClass()), by treating them like expres-
sions of the form (FV==true), (FV==false), (FV instanceof Type), and !(FV instanceof

Type), respectively.
We now use the above-presented grammar of the control-expressions as the basis to formally

define control-fields, by building on the concept of type codes [Fowler 1999].

Definition 3.1. A field f of a class with fully-qualified nameC is called a control-field (denoted as
⟨C, f ⟩), iff

• CF-Property 1: it is directly present in EQ-exp of a control-expression, or

• CF-Property 2: its value is copied (by one or more copy statements) to a variable that is
present in EQ-exp of a control-expression. Such a variable is called a control-variable.

We are interested in finding the control-fields because often one of these fields, or their as-
sociated control-variables are used by If and Switch statements to simulate polymorphism.
Thus, a control-field ⟨C, f ⟩ guides the behavior of objects of type C . For example, in Fig. 1a,
the field autoSort of class XYSeries which is used in the control-expression at line 5, is an
example of a control-field. Based on this observation, we can create two subclasses of XYSeries:
XYSeriesAutoSort and XYSeriesNoAutoSort (see Fig. 2a). Similarly, ⟨USART.Frame, value⟩ in
Fig. 4 (snippet from avrora [Blackburn et al. 2006]) is a control-field because it is copied to a
control-variable data and data is used in the control-expression of Switch.

The idea of control-fields forms the basis for identifying the SC/ST refactoring opportunities in
our proposed approach. We have implemented our proposed approach as an Eclipse plug-in called
Auto-SCST. Fig. 5 outlines the block diagram of Auto-SCST, which consists of two main parts :
Auto-SCST-I and Auto-SCST-R. Auto-SCST-I takes as input a Java application and returns a list of
SC/ST refactoring opportunities along with a proposed new inheritance structure for each such
opportunity. The developer can use this information to pick and perform the actual refactoring
(using Auto-SCST-R or manually). We now describe each of the three components of Auto-SCST-I
and follow it up with a brief discussion of Auto-SCST-R.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:9

Java

application

Control-

Fields

Identifier

Condi-

tionals

Analyzer

Classifier :

SC Vs ST

Auto-SCST-I

Refactoring
opportunities Refactoring

pass

Auto-SCST-R

Fig. 5. Block diagram of the working scheme of Auto-SCST.

1 Procedure computePotentialControlFields(m)

2 foreach s ∈ conditional-statements ofm do

3 foreach i ∈ conditional-points of s do

4 CFi := CFi ∪ PFInfo(i); // CFi = potential control-fields in i , satisfying CF-Property 1

5 foreach v ∈ Vars (i) do // Local variables

6 CFiv := computeRelevantFields(m.G, i,v); //m.G is the CFG ofm

7 if |CFiv | = 1 then

8 CFi := CFi ∪CFiv ; // CFiv satisfies CF-Property 2

Fig. 6. Algorithm to detect potential control-fields.

3.1 Identifying Control Fields

We now present a systematic approach to identify the potential control-fields and their associated
If/Switch statements that simulate polymorphism. The associated If/Switch statements are the
potential conditional-statements to get replaced with a polymorphic call. Thus, each of the identified
control-fields represents an SC/ST refactoring opportunity. The potential control-fields and the
associated conditional-statements found in this step are further pruned in the next step (Section 3.2)
to get the final set of candidate control-fields and conditional-statements, which are then classified
(in Section 3.3) into SC and ST opportunities, and presented to the developer for performing the
actual refactoring.

We now present an algorithm (Fig. 6) to identify the potential control-fields and their associated
conditional-statements. We do this by focusing on the two discussed properties of control-fields
(see Definition 3.1). We first construct the control flow graph (CFG) for each method; for the ease
of presentation, we consider each statement as a basic block node. We define the set of guard
expressions of a conditional-statement as conditional-points: (1) for an If statement of the form
‘if(e1) s1 else if(e2) s2 . . . else sn’, the set of conditional-points is given by {e1, e2, . . . };
(2) for a Switch statement of the form ‘switch (e) S’ the set of conditional-points is given by
{e}. To compute the set of potential control-fields, we perform a backward analysis starting from
the conditional-points of each conditional-statement.
The procedure computePotentialControlFields iterates over the conditional-points of each

method. The procedure first adds the potential control-fields (returned by PFInfo(i)) that are used in
the conditional-point i to the setCFi (Line 4). These fields potentially satisfy CF-Property 1 (Defini-
tion 3.1), as they directly participate in a predicate of a conditional-statement. The function PFInfo

(code omitted for brevity) takes an expression e as input, and first finds all the sub-expressions
connected by logical, arithmetic, or relational operators. For each such sub-expression es of e ,
PFInfo adds a control-field ⟨C, f ⟩ to the list of returned potential control-fields, if es is of the form
(i) ex .f , where ex can be any arbitrary expression, and typeOf (ex) = C , or (ii) ex.foo(⟨arдs⟩), and if
the set of all possible return expressions from all possible invocations of ex.foo is given by the set

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:10 Jyothi Vedurada and V. Krishna Nandivada

S = {er1, er2, · · · ern }, and ∀eri ∈ S , PFInfo(eri) = {⟨C, f ⟩}. Note that if foo is a recursive method,
then we conservatively set the PFInfo of each of its return expressions as the empty set. We have
found that the above case (ii) has been effective in analyzing the ‘get’ methods prevalent in Java
classes.
For each variable v used in the conditional-point i , computePotentialControlFields calls

computeRelevantFields, by passing the CFG ofm, along with i and v . computeRelevantFields
(body not shown for brevity) uses an iterative worklist-based backward data-flow algorithm. It
computes the potential control-fields that satisfy CF-Property 2 (see Definition 3.1) by checking if
their value may flow to the variable v at conditional-point i via one or more ‘sCopy’ statements.
We define an sCopy statement to be either a simple copy statement (of the form x = var); or an
assignment statement x = ez , where ez is of the form ey . f or ey .foo(⟨arдs⟩), and |PFInfo(ez) | = 1.
A brief outline of the function computeRelevantFields can be found in Appendix A.1.

Note that the function computeRelevantFieldsmay returnmore than one potential control-field.
For example, consider the synthetic code snippet: ‘if (cond) { x = a.f; } else { x = b.f; }

switch (x /*target conditional point*/) { ... }’. Here, for the conditional-point x, the function
computeRelevantFields returns a set with potential control-fields corresponding to both a.f and
b.f. Here, if the static types of a and b are different, then the procedure computeRelevantFields
will return a set with two elements. For the ease of refactoring, we include only those cases where
there is exactly one potential control-field corresponding to any variable (Lines 7ś8).

Example. By establishing CF-Property 1, the procedure computePotentialControlFields sets:
(1) CF7 and CF17 to {⟨XYSeries, autoSort⟩} for the code in Fig. 1a, and (2) CF4 and CF11 to
{⟨Set, delegating⟩} for the code in Fig. 1b.
Similarly, by establishing CF-Property 2, the procedure computePotentialControlFields sets

CF3 to {⟨Frame, value⟩} for the code in Fig. 4.

3.2 Analyzing Conditionals

In this step, we compute the final set of candidate control-fields and their associated candidate

conditional-statements (SC/ST refactoring opportunities) by analyzing and pruning the set of
potential control-fields and their associated conditional-statements, identified in the previous step.
We analyze the If and Switch conditional-statements separately.
If conditional-statement. Consider an If conditional-statement S of the form: if(e1) s1; else

if(e2) s2; ... else sn;. We consider S to be a candidate conditional-statement if the set of
conditional-points E = {e1, e2, . . . , en } has the following candidate-expr properties:

• Every expression ei ∈ E is a control-expression.

• If CF1, CF2, . . . , CFn are the sets of control-fields associated with e1, e2, . . . , en , respectively,
thenCF1∩CF2∩ . . .∩CFn , ∅. This ensures the presence of at least one common control-field
in all branches of the conditional-statement.

• No ei ∈ E has any side-effects.

We use the potential control-fields computed in Section 3.1 to see if the corresponding conditional-
points satisfy the candidate-expr properties. Besides identifying the candidate conditional-statements,
we also populate a set CFcand containing the corresponding set of candidate control-fields. In addi-
tion to this, during the analysis, we collect the constants against which the control-field ⟨C, f ⟩ is
compared in the guard expressions. We call these constants as control-values. The number of distinct
control-values indicates the number of subclasses of C that will be created during refactoring.
Switch conditional-statement. A Switch statement S of the form switch(e) { case c1:s1;

case c2:s2; case c3:s3; . . . default:sn; } is considered to be a candidate conditional-statement

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:11

Name Brief Description

m.G CFG (Control Flow Graph) of a methodm.

CFcand Set of candidate control-fields.

η For each CFG node n, η(n) maps expressions to their points-to information at n.

µ For each call-site node n in the CFG, µ (n) maps the temporary (outside) parameter

objects of the target method to the actual argument objects at the call site n.

subClassCF A control-field classified as subClassCF indicates an SC refactoring opportunity.

stateCF A control-field classified as stateCF indicates an ST refactoring opportunity.

subClassCFSet Set of control-fields classified for SC refactoring.

stateCFSet Set of control-fields classified for ST refactoring.

n.objectFieldDefs Set of object-field pairs of the form ⟨(o, f)⟩ that are explicitly defined in n.

n.objectFieldUses Set of object-field pairs of the form ⟨(o, f)⟩ that are explicitly used in n.

Fig. 7. Variables/Names used in Section 3.3 along with their brief descriptions.

(and added to Scand), if the candidate-expr properties are satisfied for the set {e}. The control-values
with respect to the control-field of S is given by the set of constants {c1, c2, . . ., cn }. Similar to
the treatment for the If conditional-statements, besides identifying the candidate conditional-
statements, we populate the set CFcand to include the corresponding candidate control-fields.

Example. For the examples shown in Fig. 1a, Fig. 1b, and Fig. 4, the current step identifies all of the
control-fields identified in the previous step as final candidate control-fields. That is, for jfreechart:
{⟨XYSeries, autoSort⟩} ⊆ CFcand , and for avrora: {⟨Set, delegating⟩, ⟨USART.Frame, value⟩} ⊆ CFcand .

3.3 Classification: Subclass vs State Pattern

Once the candidate control-fields (CFcand) are identified, our next step is to classify them into
opportunities for performing SC and ST refactoring. We refer to these classes as subClassCF and
stateCF, respectively. Based on the classification of a refactoring opportunity (referred to by the
corresponding candidate control-field ⟨C, f ⟩), the actual refactoring steps that are required can be
decided using the standard procedures given by Fowler [1999]. For ease of reference, we list the
names/variables that are used in this section along with their brief descriptions in Fig. 7.
Note that a naive classifier would classify each of the candidate control-fields as a stateCF and

would still lead to a correct refactoring of the classes. But such a scheme would miss the SC
refactoring opportunities ś which otherwise may further improve the code quality (see Section 2).
Inspired by the argument given by Fowler [1999], in this paper, we classify a control-field ⟨C, f ⟩ as
a stateCF, if at least one of the following conditions hold; otherwise, we classify it as a subClassCF.

• Classification-condition I: There exists an object o1 of type C , such that multiple values of
the field f of o1 are used. It indicates that o1 is accessed in multiple states, each denoted by a
different value of f .

• Classification-condition II: Class C already has one or more subclasses: creating subclasses
of the base class in the presence of existing subclasses may lead to a large explosion of
subclasses.

Note that to establish Classification-condition I, it is not sufficient to simply establish a path
from one definition of a field o. f to another definition of o. f . Consider the code snippets shown in
Fig. 8. Class X has a field f1 which is defined in its constructor. A naive redefinition check claims
that the field f1 is redefined, because f1 is defined once at Line 2 and again at Line 4 of class X,
and there is an execution path between these two lines. Consequently, this scheme may classify
⟨X, f1⟩ as a stateCF (and not as a subClassCF), but in reality, it is not true. Note that to correctly

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:12 Jyothi Vedurada and V. Krishna Nandivada

1 class X {

2 int f1;

3 X() {

4 f1 = _;

5 } ...

6 }

1 class Y {

2 int f2;

3 m() {

4 switch(f2) { ... }

5 f2 = _; } ...

6 }

Fig. 8. Code snippets showing the definitions of control-fields.

capture the redefinitions, we cannot ignore the field declarations as definitions even though they
are present without any explicit initialization. For example, in class Y, if we do not consider the
declaration of field f2 at Line 2 as a definition, then we may wrongly assume that the field f2 is
not redefined, even though the default value of f2 is used at Line 4 and f2 is redefined at Line 5.
To address this problem and to avoid naively classifying every refactoring opportunity as an ST
opportunity, our proposed analysis checks the satisfiability of Classification-condition I by looking
for a path from a use of a field to a definition of the same field for any given object (hereafter
referred to as write-after-read property).
We now present a novel, modular, inter-procedural, flow- and context-sensitive analysis to

establish Classification-condition I. We start by adding all the candidate control-fields to the
set subClassCFSet that represents the elements of the class subClassCF, and initializing the set
stateCFSet, which represents the elements of the class stateCF, to the empty set (∅). For each
⟨C, f ⟩ ∈ CFcand , our proposed algorithm (shown in Fig. 9) checks if Classification-condition I holds
for ⟨C, f ⟩, and if so, it moves ⟨C, f ⟩ from subClassCFSet to stateCFSet. Establishing Classification-
condition II is trivial and is done as a pre-pass, where control-fields satisfying Classification-
condition II are moved from subClassCFSet to stateCFSet (details skipped for brevity).

Establishing Classification-condition I.We use an SCC (strongly connected component) call
graph [Chatterjee et al. 1999] constructed using Class Hierarchy analysis (CHA) [Dean et al. 1995]
for performing our static analysis. The procedure classifySCST (Fig. 9) takes as input a set of
candidate control-fields and a list of SCC-nodes SCC. The procedure analyzes the input SCC-nodes
in reverse topological order of the SCC call graph. The procedure analyzes each methodm in an
SCC-node and computes its summary. The procedure first invokes findPointsToSet function to
compute the points-to information and then invokes the procedure performRedefCheck to verify
Classification-condition I. In case of recursive methods, the procedure invokes findPointsToSet
until fixed-point, followed by performRedefCheck until fixed-point. The fixed-point in both the
cases is reached when there is no change in the summaries of the methods (handling the recursive
methods is not shown in Fig. 9).
The procedure findPointsToSet (body is not shown) is an implementation of compositional

pointer analysis [Salcianu 2006; Whaley and Rinard 1999] to compute the points-to information of
each of the accessed variables. The invocation findPointsToSet(m) returns a pair (η, µ). The map
η contains the points-to information at each statement in the functionm. In the bottom-up points-to
analysis for any methodm′, each parameter (and ‘outside’ nodes [Whaley and Rinard 1999]) is
made to point to a special temporary object and the summary ofm′ is represented in terms of these
temporary objects. Inm, at each call-site n that callsm′, µ (referred to as the temporary-objects
map) keeps a mapping of the temporary objects ofm′ to the actual parameter values (objects) at n.
The maps η, µ, along withm, are passed to performRedefCheck.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:13

1 Procedure classifySCST(CFcand , SCC)

2 subClassCFSet := CFcand ; stateCFSet := ∅; // global vars

3 foreachm ∈ non-recursive nodes of SCC do // in reverse topological order of the SCC call graph

4 (η, µ) := findPointsToSet(m);

5 m.summary.objectFieldDefs := m.summary.objectFieldUses := ∅;

6 performRedefCheck(m, µ,η); // Establishes write-after-read property.

7 Procedure performRedefCheck(m, µ,η)

8 foreach n ∈m.G do // each node in CFG

9 updateObjectInfo(n, µ,η);

10 foreach (o, f) ∈ n.objectFieldUses do

11 if ⟨o.type, f ⟩ ∈ subClassCFSet then

12 foreach s ∈m.G do s .visit := false;

13 foreach n′ ∈ succ (n) do

14 if ¬dfsDefCheck(n′,o, f ,η, µ,m.G) then break;

15 foreach n ∈m.G do // build summary

16 m.summary.objectFieldDefs ∪= n.objectFieldDefs;

17 m.summary.objectFieldUses ∪= n.objectFieldUses;

18 Function boolean dfsDefCheck(n,o, f ,η, µ,G)

// Returns false, if further traversal is not required.

19 if n.visit = true then return true;

20 n.visit := false;

21 updateObjectInfo(n, µ,η);

22 foreach (o′, f ′) ∈ n.objectFieldDefs do

23 if o′.id = o.id and f = f ′ then

24 say t = ⟨o.type, f ⟩; // field f of o is redefined

25 subClassCFSet := subClassCFSet − {t };

26 stateCFSet := stateCFSet ∪ {t };

27 return false;

28 foreach n′ ∈ succ (n) do

29 if ¬dfsDefCheck(n′,o, f ,η, µ,G) then break;

30 return true;

Fig. 9. Algorithm to classify control-fields to subClassCF and stateCF.

For a control-field ⟨C, f ⟩, the procedure performRedefCheck establishes Classification-condition I
by checking the write-after-read property. For each node n in the CFG G ofm, the function first
invokes the procedure updateObjectInfo (Line 9) to get the object-field pairs (of the form (o, f),
where f is a field of an object o) that are defined and used in n, given by n.objectFieldDefs and
n.objectFieldUses; we elaborate on the procedure updateObjectInfo later in this section. Then, it
invokes dfsDefCheck for each entry (o, f) ∈ n.objectFieldUses, if ⟨o.type, f ⟩ is a candidate control-
field and is under consideration for being classified as a subClassCF. The function dfsDefCheck

performs a depth-first-traversal on the CFG G starting from the input node n to check if the field
f of the object o is defined at any of the successor nodes reachable from n in G. If such a node is
found, it indicates that the write-after-read property is satisfied and then we move the control-field

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:14 Jyothi Vedurada and V. Krishna Nandivada

1 Procedure updateObjectInfo(n, µ, η)

2 if n.isAnalyzed = true then return;

3 n.isAnalyzed := true; µn := µ (n); ηn := η(n);

4 n.objectFieldDefs := matchingPairs(ηn ,n.de f ,CFcand); // object-field pairs defined at n

5 n.objectFieldUses := matchingPairs(ηn ,n.use,CFcand); // object-field pairs used at n

6 foreachm′ ∈ calleesAt (n) do

7 foreach (o, f) ∈ m′.summary.objectFieldDefs do

8 foreach o′ ∈ µn (o) do // compose summary

9 n.objectFieldDefs := n.objectFieldDefs ∪ {(o′, f)};

10 foreach (o, f) ∈ m′.summary.objectFieldUses do

11 foreach o′ ∈ µn (o) do // compose summary

12 n.objectFieldUses := n.objectFieldUses ∪ {(o′, f)};

Fig. 10. Algorithm to populate object-field pairs.

corresponding to (o, f) from the set subClassCFSet to the set stateCFSet (Line 25-26). After each
node has been processed by performRedefCheck, it builds a summary for the current method by
taking a union of the use/def information of all the nodes (Lines 15-17).
The procedure updateObjectInfo (in Fig. 10) takes as input the node n, the points-to map

η, and µ. First, it initializes n.objectFieldDefs and n.objectFieldUses with the object-field pairs that
are explicitly defined and used in n (Lines 4, 5) by invoking the function matchingPairs. The
function matchingPairs takes as input ηn , E (set of expressions), CFcand and includes an object-
field pair (o, f) in the return value if the following conditions hold: (i) ∃e . f ∈ E, (ii) o ∈ ηn (e),
(iii) typeOf (e) = C , and (iv) ∃⟨C, f ⟩ ∈ CFcand . Second, the procedure updateObjectInfo finds the
object-field pairs that are defined and used via function calls at n by composing the summaries
of the callees. At Lines 6-12, for each procedure that is called at n, the summaries of the callees
are composed. As discussed earlier, at each call-site n, the mapping of the temporary objects of
a callee to the actual parameter values (objects) at n is maintained during the points-to analysis
and is given by µ. During the summary composition, the procedure updateObjectInfo uses µ to
convert the object-field pairs with temporary objects at callee to the object-field pairs with actual
objects in the current context.
An interesting point of our classifySCST procedure (Fig. 9) is that calls to the functions

findPointsToSet and performRedefCheck are interleaved. Consequently, after processing each
methodm, it is enough to keep the summary information aboutm (containing points-to information
at the exit node ofm, and informationm.summary.objectFieldDefs andm.summary.objectFieldUses)
and discard the detailed points-to, objectFieldDefs and objectFieldUses information at each program
point. This keeps our analysis scalable.

Example. In Fig. 1b, the opportunity ⟨Set, delegating⟩ cannot be an SC refactoring opportunity
because there is a path from read/use of the field delegating at Line 11 in method add to the
write/definition of the same field dereferenced with the same object pointed to by this, at Line 23
in method beginDelegation via the function call at Line 18. The presence of this path violates the
Classification-condition I for ⟨Set, delegating⟩ and hence it is an ST refactoring opportunity.
We now explain in steps, how our algorithm in Fig. 9 finds such a path in Fig. 1b. For the ease

of reference, we have shown in Fig. 11, pieces of code from Fig. 1b that are of interest to the
current example. In Fig. 11, next to each node ni , we show the points-to graph at ni (this is same as

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:15

9 boolean add(StateCache.State ns)

{

...

11 if (this.delegating)

{...}

else {

18 beginDelegation();

...}

21 }

22 void beginDelegation(){...

23 this.delegating = true;...

24 }

this → q0
ns → q1

n10.objectFieldDefs = {}
n10.objectFieldUses = {}

this → q0
ns → q1

n11.objectFieldDefs = {}
n11.objectFieldUses = {(q0,deleдatinд)}

this → q0
ns → q1

n18.objectFieldDefs = {(q0,deleдatinд)}

n18.objectFieldUses = {} µn18 (p0) = {q0}

this → p0

objectFieldDefs = {(p0,deleдatinд)}

objectFieldUses = {}

summary

Fig. 11. Execution of the algorithm in Fig. 9 on the code in Fig. 1b.

η(ni)) and the sets of object-field pairs that are defined and used at ni . In the beginDelegation
method (in Fig. 1b), assuming p0 is the temporary object used for the receiver (or this pointer), our
analysis will update its summary.objectFieldDefs to include the pair (p0, delegating). Similarly, in
the addmethod, say q0 and q1 are the parameter nodes for the receiver and the field ns, respectively.
When the method summary is composed at Line 18, (q0, delegating) will be added to the set
n18.objectFieldDefs, because at n18, µn18 (p0) = {q0}. Since, (q0, delegating) ∈ n11.objectFieldUses

and there is a path (shown with dotted arrows in Fig. 11) from a read at n11 to a write at n18, the
algorithm classifies ⟨Set, delegating⟩ as a stateCF. However, for the examples shown in Fig. 1a and
Fig. 4, the function classifySCST() does not find any such path from the reads of the control-fields
to the writes (and hence classifies them as SC opportunities).

3.4 Automatic Refactoring Using Auto-SCST-R

The developer may choose to pass one or more of the SC/ST opportunities identified by Auto-SCST-I
to Auto-SCST-R (see Fig. 5) for performing the actual refactoring. For each such opportunity,
Auto-SCST-R invokes the refactoring procedure described by Fowler [1999] to perform the actual
code transformation.

Inspired by the conditions used by JDeodorant [Tsantalis and Chatzigeorgiou 2010]) to identify
refactoring opportunities suitable for automatic refactoring, and considering the complexities in
performing the actual transformation, Auto-SCST-R does not consider an opportunity for automatic
refactoring, if the branch bodies of the corresponding conditional-statements contain (not-so-
frequent) patterns such as: (C1) assignments to more than one local variable, where the variables
are live after the conditional-statement; (C2) branching statements such as break and continue

associatedwith a loop outside the conditional-statement; (C3) supermethod invocations (with super
keyword); (C4) return statement(s) only in some (not all) branches of the conditional-statement.

We now briefly describe the complexities involved in refactoring the code with patterns C1-C4.
C1 requires to return more than one value from the extracted methods. C2 requires to change
the control-flow in the outer-loop based on the events in the extracted methods. C3 requires the
extracted method to invoke the ‘super’ method of the original method. C4 requires the caller
method to return based on the code of the invoked actual extracted method.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:16 Jyothi Vedurada and V. Krishna Nandivada

4 DISCUSSION

We now briefly elaborate some salient points of Auto-SCST.
Scalability. Inspired by the heuristics specified by Salcianu [2006] (to keep the bottom-up analysis
scalable in the presence of large strongly-connected components) we have parameterized our
implementation with the maximum size of the SCC (Kmax). If the size of an SCC exceeds Kmax , we
abort the fixed-point computation for that SCC and analyze the intra-SCC methods in a standalone
manner. For each such call, we conservatively assume that (i) the fields of the actual arguments
may points-to the ‘global-node’ and (ii) each control-field associated with the arguments may be
both used and defined in the call. In Section 5, we present our evaluation by setting Kmax = 1. We
have carefully analyzed the results and interestingly found no loss of precision due to this heuristic,
for any of the chosen applications.
Design Decisions I/III. As discussed by Fowler [1999] the biggest gains in RCP refactoring occur
when the same set of conditions occur at many places in the program. Hence, we only report the
refactoring opportunities that have more than one associated conditional-statements.
Design Decisions II/III. Any static control-field that gets classified into the subClassCF, we
change it to stateCF (as a post pass). Since the static fields may be modified anywhere in the
program, refactoring the class, based on such a control-field, using SC seems unintuitive.
Design Decisions III/III. In this paper, we do not handle expressions where the control-field is
compared using operators like > and <. In such codes, each ‘state’ may correspond to one or more
control-values. When the ranges of control-values of two states overlap, it violates the surjective
property; see Section 2. In cases where the ranges do not overlapÐchecking requires elaborate
range-analysis [Harrison 1977]Ðwe can introduce a new type code in the class such that the type
code has unique values for each range of the control-values and then we can invoke our tool on
the modified class. We call such a two-step refactoring as indirect RCP refactoring; different from
our focus of direct RCP refactoring.
SC/ST Classification. Our classification algorithm shown in Figure 9 models both the call graph
information and the points-to information in a conservative way, and concludes that Classification-
condition I is not satisfied by a candidate control-field only after the procedure performRedefCheck
has traversed all the conservatively reachable nodes in the CFG. Hence, the algorithm is conservative
andwould notmiss any pathwhich satisfies write-after-read property. In other words, a control-field
of class stateCF is never incorrectly classified as subClassCF.
Improving the Recall of Auto-SCST. We have found that the recall of Auto-SCST may get
affected because of the following two reasons: (i) the control-field is compared against a field (con-
stant nevertheless) from an unknown source (e.g., some libraries). (ii) the control-field is compared
against another non-final field/variable whose value does not change. Providing Auto-SCST with
the source code of the whole program, and using a helper tool to perform constant propagation
will further improve the recall.
State vs Strategy Pattern. State pattern and Strategy pattern are very similar in structure although
there are differences in the design problems they solve. State pattern is used when an object changes
its state and exhibits different behaviours corresponding to each state. In contrast, strategy pattern
is used when the object performs a task using different variants of an algorithm/approaches,
depending on some condition. Despite these subtle differences, the overall refactoring approach
for both the cases is the same [Fowler 1999]. Consequently, in our paper, we do not differentiate
between the state and strategy pattern, towards the identification of RCP refactoring opportunities.
Further, automatically differentiating strategy pattern from state pattern, in a precise manner
is a very hard problem, as it would require checking for code equivalence (to identify if we are
demarcating different behaviors of an object or different algorithms for performing a task).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:17

Fig. 12. Screenshot of Auto-SCST plug-in in action.

5 IMPLEMENTATION AND EVALUATION

We have implemented Auto-SCST as an Eclipse source-to-source refactoring plug-in. It has two
components: Auto-SCST-I (for identifying the refactoring opportunities using the techniques
presented in Section 3) and Auto-SCST-R (a prototype for performing the actual RCP refactoring
using the mechanisms discussed in Section 2). Auto-SCST works in the following manner: After the
developer has invoked it on a chosen project (or a package, or a file), Auto-SCST first presents the
set of identified refactoring opportunities to the developer. Once the developer selects a particular
refactoring, the developer is given an option to change the names of the new classes to be generated.
After that, a preview of the refactored code is shown to the developers and based on their input
the actual refactoring is performed. Fig. 12 shows a sample screenshot of Auto-SCST in execution,
invoked to refactor the jfreechart application; the screenshot shows the preview-screen while
refactoring the XYSeries class (discussed Fig. 1a), for the control-field autoSort.
We have evaluated Auto-SCST on an Intel i5 2.9GHz machine with 8GB RAM, running macOS

10.13, using eight Java applications (see Fig. 13) taken from multiple sources, covering both stable
and alpha/pre-alpha releases. Recently, Vedurada and Nandivada [2017] show that these applications
span over varied domains and have multiple opportunities for RCP refactoring. The alpha and
pre-alpha releases include javaGeom-0.10.2 (a geometrical computations library), jfreechart-1.0.14
(a Java chart library), jOcular-0.039 (an optical design software for simulating systems of lenses,
prisms, and so on), RackJ-1.05 (a tool to analyze RNA-sequence data), Unicode-Rewriter-1.0 (UR, in
short ś a tool to convert ID3 tags to Unicode) from SourceForge [Sourceforge 2016]. Stable projects
include avrora-1.7.106 (a simulator for running programs on a grid of micro-controllers), fop-0.95
(a print formatter), and sunflow-0.07.2 (ray-tracing based image rendering software) ś all from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:18 Jyothi Vedurada and V. Krishna Nandivada

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Application LoC # classes IF CF %CF class # Uses MCF %MCF Atime

IPC QC %QC SC ST >15 11-15 6-10 2-5 (sec)

javaGeom 27K 105 5 4.8 199 5 2.5 4 1 0 0 2 3 4 80.0 5

jfreechart 204K 510 58 11.4 2845 100 3.5 34 66 2 2 5 91 88 88.0 26

jOcular 31K 219 16 7.3 791 17 2.1 13 4 0 0 2 15 13 76.5 36

RackJ 23K 102 14 13.7 694 17 2.5 5 12 0 0 2 15 14 82.4 71

UR 11K 41 5 12.2 294 8 2.7 3 5 0 0 1 7 7 87.5 1

avrora 100K 1731 66 3.8 4836 112 2.3 20 92 9 2 8 93 91 81.2 337

fop 162K 1125 91 8.1 4120 120 2.9 46 74 2 0 5 113 97 80.8 65

sunflow 25K 185 12 6.5 905 16 1.8 6 10 1 0 0 15 8 50.0 13

Fig. 13. Refactoring opportunities in different applications. Abbreviations used: Atime = analysis time;

IPC = input classes; QC = classes qualified for refactoring, IF = input fields; CF = identified control-fields;

MCF = marked control-fields.

the DaCapo [Blackburn et al. 2006] benchmark suite. Fig. 13 (columns 2-3, and 6) shows some
static characteristics of these applications: 11K-204K lines of code (LoC), 41-1731 classes (IPC), and
199-4836 fields (IF).

For each of the applications, Fig. 13 (columns 4-5, 7-8) lists the number of classes qualified
for refactoring (QC), %QC (= QC*100/IPC), number of identified control-fields (CF), and %CF
(= CF*100/IF). As it can be seen, Auto-SCST is able to identify a number of SC/ST refactoring
opportunities. Further, the set of refactoring opportunities identified by Vedurada and Nandivada
[2017] is a subset of the ones identified by Auto-SCST. On an average, the refactoring opportunities,
identified by Auto-SCST, cover 8.47% of the classes and 2.54% of the fields. Columns 9-10 show
the statistics of classification into SC (between 3-46) and ST (between 2-92). Among the identified
refactoring opportunities, the presence of up to 80% of SC opportunities confirms the importance
of our proposed classification algorithm, in the absence of which those would have been classified
to ST.

5.1 Effectiveness of Auto-SCST

We now present our evaluation of the effectiveness of Auto-SCST by answering four research
questions.

5.1.1 What is the Precision and Recall of Auto-SCST? To reason about the precision of the identified
opportunities empirically, we use the standard equation, P = 100×T P

T P+F P
, where TP (number of true

positives) represents refactorable opportunities that are identified by Auto-SCST and FP (number
of false positives) represents non-refactorable opportunities that are identified by Auto-SCST. We
invoked Auto-SCST on each of the identified refactoring opportunities (counts are listed in column
7, Fig. 13) and we found that all of the opportunities identified by Auto-SCST are refactorable.
That is, the number of refactorable opportunities identified by Auto-SCST (TP) is equal to the total
number of opportunities identified by Auto-SCST (TP + FP); precision is 100%. We believe that the
high value of precision is due to the properties of cond-statements (Section 3.2) and the grammar
for control-expressions (Section 3).
We calculate the recall using the standard equation, R = 100×T P

T P+FN
, where TP (number of true

positives) represents refactorable opportunities that are identified by Auto-SCST and FN (number
of false negatives) represents the refactorable opportunities that are not identified by Auto-SCST.
That is,TP+FN represents the total number of refactorable opportunities that are present in a given
application. As discussed in Section 1, manual identification of SC/ST refactoring opportunities
(to compute #total refactorable opportunities), in large (23K-204K LOC) unfamiliar applications is

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:19

extremely challenging. Note that measuring the recall using a separate set of smaller applications
(with a couple of thousands of lines) is not interesting because such small applications may not
have many refactoring opportunities. Consequently, we believe that the conclusions drawn on
these applications may not be applicable to the real-world large applications. Hence, we created
a sample subset of 400 ‘potential’ refactoring opportunities (to satisfy a margin of error of ±5%
and a confidence interval of 95%) to evaluate the recall of the heuristics used by our identification
approach2.

We say that ⟨C, f ⟩ is a ‘potential’ refactoring opportunity if the field f of an object of type C is
used (either explicitly or via return statement(s) of a function call) in the guard expressions of at
least two conditional-statements. Our definition of ‘potential’ opportunities for computing recall,
is inspired by Fowler [1999], who states that the ground truth to identify an SC/ST refactoring
opportunity is the presence of If/Switch-statements that switch on type codes (fields). Note that
the ground truth from Fowler does not take into consideration ‘refactorability’ issues. As our recall
computation is based on ‘refactorable’ opportunities, we first identify the potential (= possibly
refactorable) opportunities, and then we manually analyze them for refactorability. We randomly
selected 400 of the total 980 such potential opportunities (across all the chosen applications), to
evaluate the recall. Among the 400 potential opportunities, we found that TP = 167. To compute
the FN , we manually analyzed the remaining 223 potential opportunities to check if they can
be refactored. We found that only 9 of those could be refactored; that is, FN = 9. Hence, recall =
(100*167/ (167+9)) = 94.89%.

Summary: The high values of precision (100%) and recall (94.89%) attest to the relevance and
effectiveness of Auto-SCST.

Discussion 1: We made the following two observations during the above analysis: (1) Using the
extensions discussed in Section 4, the recall percentage can be further improved to 98.29% (by
additionally identifying 6 of the above 9 false-negatives). The rest (three) fall into the category
where the guard expressions in the conditional-statements refer to the control-fields as part of
return expressions of functions (involving local variables/constants), deep inside nested calls.
(2) The 214 opportunities cannot be refactored (even manually) due to the presence of one of the
following: (i) complex expressions involving operators such as ||, or with operators that result
in the overlapping of the sub-ranges of the control-values (see Section 4), (ii) expressions with
side-effects, (iii) expressions with library calls that take the candidate field as an argument, or
(iv) the candidate field is not present in all the predicates of a conditional-statement.

Discussion 2: The definition of łpotential-opportunity" is not complete; for example, it does not
consider opportunities where the value of control-field is flowing via some local/array-element.
However, to include such opportunities as well in the set of ‘potential’ opportunities, we may
have to consider all the conditionals (on fields, locals, and array-elements, totaling 253,167) as
expressions containing potential-opportunities and this may result in an unreliable recall-value.

5.1.2 How Many of the Opportunities Identified by Auto-SCST are Acceptable to Experts? To un-
derstand which of the opportunities identified by Auto-SCST are accepted by the experts, we
performed manual analysis (as done in other prior works [Christopoulou et al. 2012; Tsantalis and
Chatzigeorgiou 2010]). We selected two experts, each having nearly 25 years of experience in large
software development, to participate in the experiment. Both the experts had prior understanding
of object-oriented design and design patterns. The experts volunteered their services on our request,
because of their passion for software engineering and their desire to learn about Auto-SCST, so
that they can use it in their own projects.

2 Thanks to the anonymous reviewers of ICSE on a previous version of this manuscript for this suggestion on computing

the recall.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:20 Jyothi Vedurada and V. Krishna Nandivada

Application Cb Ca %Impr Application Cb Ca %Impr

javaGeom 3.62 1.95 46.05% UR 9.0 5.89 34.57%

jfreechart 10.8 8.57 20.66% avrora 11.12 5.02 54.88%

jOcular 6.55 4.42 32.47% fop 9.01 6.88 23.66%

Rackj 17.08 14.83 13.18% sunflow 7.76 5.24 32.49%

Fig. 14. Cyclomatic complexity before (Cb) and after (Ca) SC/ST refactoring, and the resulting improvements.

Each of the experts was given independent time slots, spanning across multiple days. Before
starting the experiment, we made a presentation of Auto-SCST to them individually.
Considering the complexities in understanding very large pieces of code, we requested the

experts to only analyze applications (from Fig. 13) that have < 100K lines of code, namely jOcular,
javaGeom, Rackj, UR and sunflow. Further, compared to the very large applications, the chosen
applications had a fewer number of refactoring opportunities, thereby making it easier for the
experts to reason about the opportunities. Each of the experts was given access to Auto-SCST, the
chosen applications, and a pdf file containing the explanation and details (#uses, #subclasses after
refactoring, SC/ST) of all the 63 identified opportunities. For each of these opportunities, the experts
were asked the following two key questions: KQA: łIs it a candidate SC/ST refactoring opportunity?ž
KQB : łIf the answer to KQA is ‘Yes’, then will you be open to performing the refactoring?ž
Feedback from the experts E1 and E2. For KQA: we found that E1 and E2 have both marked ‘Yes’

for 57 opportunities each. Further, we found that of 52 opportunities (83%) were marked ‘Yes’ by
both, 10 were marked ‘Yes’ by only one, and 1 was marked ‘No’ by both.
For KQB : we found that E1 and E2 have marked ‘Yes’ for 40 and 49 opportunities, respectively.

Analyzing further, we found that of the 63 opportunities 33 (52%) were marked ‘Yes’ by both, 24
were marked ‘Yes’ by only one expert, and 6 were marked ‘No’ by both.

Summary: 52% of the identified opportunities were accepted by both the experts for refactoring
and 91% by at least one. This shows the effectiveness of Auto-SCST.

Discussion: We now list some of the reasons provided by the experts for their negative answers
to the key questions. (i) The identified opportunity involves debugging code, controlled by a ‘debug’
flag, leading to a subclass with methods containing only debug statements. KQB : (i) The identified
opportunity has few (two/three) associated conditional-statements and those conditional-statements
have a very small average body size; (ii) Most of the conditional-statements associated with the
identified opportunity perform state-checking for only one state (subclasses in the refactored
code may contain methods with no statements or with only a return statement); (iii) More than
one control-field in a class are identified as refactoring opportunities (note: the expert chose
only one of them to refactor, to avoid class explosion); (iv) Too many control-values and hence
refactoring would lead to a large number of sub-classes. (v) The identified refactoring was found in
obsolete/auto-generated part of the code.

5.1.3 How is the Software Quality Affected by Applying the Identified Refactoring Opportunities?

To show the impact of Auto-SCST on improving the code quality, we first show the number of
conditional-statements associated with the identified opportunities. Fig. 13 lists the number of
uses (# associated conditional-statements, columns 11-14) of the identified control-fields, which
gives an indication of the number of the conditional codes that will be replaced. It can be seen
that Auto-SCST identifies refactoring opportunities with ≥ 2 uses in all the applications under
consideration and even ≥ 15 uses in some.

Next, we show the improvement of software quality in terms of McCabe’s cyclomatic complex-
ity [McCabe 1976] metric (CCM, in short). CCM is an appropriate measure as RCP-refactoring

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:21

removes the branches at the outer-level in a conditional-statement. In contrast, other possible
code-quality metrics such as lines-of-code (LOC), number of new classes added, and change in
inheritance depth are not much interesting, in our context: (1) Change in LOC: this metric is not
interesting because LOC reduction due to the removal of conditional-statements is almost the same
as LOC increase due to new methods; (2) New classes added: this metric is straightforward and it
matches the #control-values (Section 3.2); (3) Change in depth of inheritance hierarchy of existing
classes: this metric is trivial/uninteresting because in case of SC-refactoring, it always increases by
1 and in case of ST-refactoring, there is no change. Hence we use CCM.

We compute CCM for each of the methods that contained conditional-statements associated
with the identified refactoring opportunities, before and after refactoring (SC/ST followed by RCP
refactoring)3. To make a fair comparison with the input code, while computing the CCM of the
refactored code, we do not ignore the CCM of the branch-bodies, as they remain unchanged in
the new methods. CCM of a methodm (to be refactored) is calculated as: (1) for the original code:
CCMo = 1+#decision points inm; (2) for the code to be obtained after refactoring =CCMo−#decision
points in the outer-levels of conditional-statements associated with the control-fields. Fig. 14 lists
these metrics as an average over each application. It can be seen that SC/ST refactoring (coupled
with RCP refactoring) led to improving the CCM of the associated methods by 13.18% to 54.88%.

5.1.4 How Fast Does Auto-SCST Run? Fig. 13 (last column) shows the time taken by Auto-SCST to
identify the refactoring opportunities. As it can be seen, the analysis is quite scalable: Auto-SCST
took 1-337s (geomean 23.5s) to analyze the full applications. We found that the analysis time
depends not only on the application size but also on the size of the SCCs (Section 4), precision of
the static call resolution (too many ‘compose’ operations), length of call chains, and the method
summaries sizes. Example: the higher timing for avrora is due to the last 3 reasons. However,
considering the large number of classes present in avrora (#classes=1,731), we believe that the
analysis time is reasonable. In addition, for the convenience of the developers, we also have a
command line version of the tool (runs faster than the GUI version - geomean 19.6s) that can be
invoked offline to obtain the list of refactoring opportunities; which can be fed to the Eclipse plugin
of Auto-SCST to actually perform the refactorings.
Further, in practice, the developer may invoke Auto-SCST at sub-application level granularity

(for example, package level, class level, and so on). This would lead to much more faster execution
times (order of few seconds). Also, note that the actual refactoring (code-modification) is quite-fast;
independent of the identification process (our focus).

5.1.5 Study of the Points-to Analysis as a Parameter. We have found that the most time-consuming
part in Auto-SCST is the points-to analysis component, which is invoked by our classification
algorithm; the rest of the computation takes a small fraction (5.98%) of the total time. Since points-
to analysis can be seen as a parameter to Auto-SCST, it is natural to ask if instead of the used
context-sensitive whole-program analysis, an equally precise demand driven points-to analysis, or
a less precise context-insensitive whole-program analysis can further speed up the tool, without
compromising on the precision.

We have compared Boomerang [Späth et al. 2016], the only known demand-driven flow-sensitive,
context-sensitive analysis for Java, and Spark [Lhoták and Hendren 2003], the inbuilt context-
insensitive analysis of Soot, against our used points-to analysis. Fig. 15 presents brief comparison
of the times taken by Boomerang, Spark, and Auto-SCST to compute the points-to information
followed by the classification of SC/ST refactoring opportunities for the set of applications discussed

3Only performing SC/ST refactoring alone does not lead to any reduction in CCM. And RCP refactoring cannot be performed

without doing a pre-pass of SC/ST refactoring. But together they lead to improvement in CCM.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:22 Jyothi Vedurada and V. Krishna Nandivada

Application #points-to queries Boomerang (sec) Auto-SCST (sec) Spark (sec)

javaGeom 91 5.8 3.9 1.6
jfreechart 707 409.4 25.2 15.5
jOcular 172 39.5 32.3 3.3
RackJ 73 31.4 70 1.4
UR 58 0.8 0.5 0.5
avrora 1788 1068.7 336 14.2
fop 882 636.5 54.2 19
sunflow 84 63.1 11.4 2

Fig. 15. Points-to analysis used in Auto-SCST vs Boomerang and Spark.

in Section 5. We found that Auto-SCST generates a large number of points-to queries (up to 1788)
in each application, and the performance of Boomerang was much lower than that of the used
points-to analysis (average 418.3% slower). Note that our used points-to analysis computes only the
specific information required by Auto-SCST. In contrast, a generic tool like Boomerang computes
all-alias information for each variable in the query; which we believe is the main reason for slow-
down. Extending the ideas of Boomerang to design an efficient demand-driven points-to analysis
to suit the needs of Auto-SCST would be a challenging exercise and is left as an interesting future
work.

In contrast, Spark ran much faster (average 66% faster). However, the resulting imprecision led a
number of SC refactoring opportunities being classified as ST. For example, over the application used
by the experts to evaluate Auto-SCST (UR, Sunflow, Jocular, JavaGeom, and RackJ), we found that
compared to Spark, our used context-sensitive analysis led to 50.2% (geomean) more SC refactoring
opportunities.
We conclude that using a precise whole program points-to analysis is more efficient than the

demand-driven analysis for classifying SC/ST opportunities. And while a context-insensitive
analysis is faster, it leads to a situation where a number of SC refactoring opportunities are missed.
We argue that for the precision obtained, the time taken by our used whole-program points-to
analysis is reasonable.

Overall. Auto-SCST successfully identifies a number of precise refactoring opportunities across
varied real-world applications, and is scalable. 52% of the identified opportunities were accepted by
both the experts and the refactoring improves the code quality.

5.2 Comparison with Related Work

To the best of our knowledge, we are not aware of any other tool whose focus is to identify SC/ST
refactoring opportunities. The tools that come closest are the ones by Tsantalis and Chatzigeorgiou
[2010] and Christopoulou et al. [2012]; we refer to these works as JDEO and STRP, respectively.
The goal of JDEO is to identify and refactor some individual conditional-statements that can be
replaced by polymorphic calls (but not necessarily controlled by control-fields that lead to SC/ST
refactoring). Similarly, the goal of STRP is to identify some individual conditional-statements that
can be refactored using ‘replace type code with Strategy’ pattern (has similarities to ST refactoring;
see Section 4). Consequently, a subset of the opportunities identified by JDEO/STRP does lead to
SC/ST-refactoring. Hence, considering the similarities (and keeping in mind the differences in their
goals), we present a brief comparison of Auto-SCST with JDEO and STRP.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:23

Application JDEO STRP

|A−R| |R−A| |A∩R|(SC) #Ref |A−R| |R−A| |A∩R|(SC) #Ref

javaGeom 5 0 0 (0) 0 2 4 3 (3) 3

jfreechart 99 0 1 (0) 1 89 18 11 (5) 18

jOcular 13 0 4 (4) 4 13 0 4 (2) 4

Rackj 17 0 0 (0) 0 15 2 2 (1) 2

UR 7 0 1 (0) 1 8 0 0 (0) 0

avrora 109 0 3 (0) 3 109 4 3 (0) 4

fop 102 2 18 (8) 20 × × × ×

sunflow 16 0 0 (0) 0 15 1 1 (1) 1

Fig. 16. Auto-SCST vs JDEO and STRP. A and R denote the set of comparable opportunities identified

by Auto-SCST, JDEO/STRP, respectively. #Ref indicates the number of SC/ST refactorable opportunities

identified.

We have studied all the comparable opportunities reported by JDEO and STRP.We consider any of
their reported opportunities to be łcomparablež in our context if (i) it involves fields of classes (so as
to apply RCP refactoring), (ii) it has >1 associated cond-stmts (see Section 4), and (iii) the predicates
in the associated cond-stmts do not compare the control-field against null (see Section 3). For each
of the applications, Fig. 16, lists the unique and common comparable opportunities identified by
JDEO vs Auto-SCST (columns 2-4) and STRP vs Auto-SCST (columns 6-8). Note: STRP crashed
while analyzing fop.

Comparison against JDEO: We found that if we exclude fop, the set of comparable opportunities
identified by JDEO forms a strict subset of the opportunities identified by Auto-SCST. In the case
of fop, we studied the two additional reported opportunities and found that these opportunities
cannot be refactored (note: the JDEO tool does perform refactoring in these cases, but generates
incorrect code).

Comparison against STRP: We found that for the set of chosen applications, Auto-SCST identifies
many more RCP opportunities than STRP. However, there were 29 comparable opportunities that
were identified by STRP, but not by Auto-SCST, as shown in column 7 (Fig. 16). However, of these
only eight were refactorable. We found that using the extensions discussed in Section 4 we can
handle seven of them. (three of them by analyzing the full program and four by doing whole program
constant propagation). The last case falls into the category where the conditional-statement uses a
guard in which the control-field is accessed in a return expression of a function (involving other
local variables/constants), deep inside a nested call.
For each of the applications, columns 4 and 8 show (in brackets) the possible SC opportunities

that would be marked as ST/Strategy opportunity if we use JDEO or STRP for identifying RCP
refactoring. Among the RCP opportunities identified by JDEO and STRP, Auto-SCST is able to
identify 24 (22 unique) opportunities for SC refactoring. This shows the importance of Auto-SCST
in comparison to JDEO and STRP in precisely classifying the refactoring opportunities (SC or ST).
Thus it can be seen that Auto-SCST is able to identify more SC/ST refactoring opportunities

than JDEO and STRP; mainly because of our proposed analysis to identify control-fields. Also, the
novel classification algorithm of Auto-SCST helps identify many SC opportunities.

Fig. 17 gives a summary of the behavior of Auto-SCST, JDEO and STRP, in terms of (i) precision
(column 2), (ii) recall (column 3), (iii) acceptance by the experts (columns 4, 5), (iv) average improve-
ment to CCM (column 6), and (v) average execution time (column 7). We could not obtain the CCM
for STRP as the tool does not have the option to perform the actual refactorings.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:24 Jyothi Vedurada and V. Krishna Nandivada

Tool Precision Recall Expert Acceptance CCM impr (avg) Time (avg)
both at least one

Auto-SCST 100% 94.89% 52% 91% 32.5% 23.5

JDEO 93.5% 8.52% 20% 80% 21.7% 12.4

STRP 57.1% 6.25% 50% 80% × 17.2

Fig. 17. Comparison of Auto-SCST with JDEO and STRP.

The comparison of precision and recall clearly states the insufficiency of existing tools such as
JDEO and STRP and the relevance (and importance) of Auto-SCST for performing SC/ST refactoring.
Note that this finding is only in the context of the SC/ST refactoring opportunities (the focus of
our paper) and does not in anyway comment on the general effectiveness of JDEO and STRP, in
the context of their respective goals (different from that of Auto-SCST).
For the five applications used by the experts to evaluate Auto-SCST (Section 5.1.2), the sets

of identified ‘comparable’ opportunities by both JDEO and STRP are proper subsets of that by
Auto-SCST. The columns 4-5 reveal that compared to JDEO and STRP, the percentage acceptance
for Auto-SCST was better (though marginally).
In terms of percentage improvement to the CCM, we see that Auto-SCST leads to more im-

provement in CCM than JDEO. This is consistent with the more number of SC/ST refactoring
opportunities identified by Auto-SCST than JDEO.

In terms of time taken, we see that Auto-SCST takes more time than JDEO and STRP. However,
we believe that considering the higher precision and recall, the additional time taken is a reasonable
trade-off.
Summary: Looking at the low impact of JDEO and STRP in identifying SC/ST refactoring op-

portunities, we can easily see the need and importance for a dedicated (and effective) tool like
Auto-SCST, for identifying (and refactoring) SC/ST opportunities.

5.3 Threats to Validity

Ausual threat to external validity is that the conclusions drawn from a limited set of Java applications
might not be generalized to wider classes of applications. We tried to mitigate this threat by using
open-source applications with varied domains, sizes and implementation stages (pre-alpha, alpha
and matured).
Threats to internal validity: (1) The relevance of the identified refactoring opportunities is

analyzed manually. To mitigate this threat, we have taken two steps: (a) requested experts with vast
experience in software engineering to analyze and used their inputs; (b) complete list of identified
opportunities and the tool aremade available [Vedurada andNandivada 2018] for cross-checking and
experiment repeating. (2) The real developers were not involved and therefore whether developers
use SC/ST refactoring in practice is not concluded. In general, due to their busy schedule, developers
of unknown open-source projects do not participate in such experiments - a known issue. For
example, only the developers of jOcular responded; they have opened a ticket to refactor. To mitigate
this threat, as done by the prior researchers [Christopoulou et al. 2012; Tsantalis and Chatzigeorgiou
2010], we used independent experts as a substitute. (3) The experts had insufficient knowledge
of the applications when analyzing the identified refactoring opportunities, and consequently
may have erred in their judgment. We tried to mitigate this threat by using the feedback from
two experts (instead of just one) and studied the inter-rater agreement. (4) The experts were only
used to verify the identified refactoring opportunities, but not the missed opportunities. Such a
threat-to-validity is unavoidable, as otherwise, it would require manual analysis of large unfamiliar

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:25

applications (11K-31K LOC); nearly impractical for independent experts. (5) For computing recall,
a statistically significant subset of 400 random samples was chosen from a limited subset of 980
łpotentialž candidates instead of from considering all the 253,167 conditional-statements (on fields,
locals, and array-elements) as expressions containing potential-opportunities. Such a threat-to-
validity is unavoidable: randomly choosing 400 samples from all the conditional-statements in
the program will lead to a situation where most of them are not real opportunities (very small
#total-refactorable-opportunities); this would have led to an unreliable recall-value.

5.4 A Brief Note on Auto-SCST-R

In Fig. 13, column 15 lists the counts of the control-fields (MCFs) that can be refactored by
Auto-SCST-R; these MCFs are identified using the procedure discussed in Section 3.4. Column 16
shows that on (geo) average 77.3% of the CFs are automatically refactorable by the current version
of Auto-SCST-R. On analysis of the remaining opportunities, we found that among the conditions
(C1-C4) discussed in Section 3.4, 17.8% of them were not marked because of C1, 34.3% due to C2,
2.7% due to C3, 37% due to C4, and 8.2% due to multiple conditions (C1-C4) affecting together. We
are working on improving the scope of Auto-SCST-R to handle the remaining opportunities.

6 RELATED WORK

There have been many works that try to (semi-) automatically identify different types of refactoring
opportunities: abstract factory refactoring [Jeon et al. 2002], composite pattern refactoring [Jebe-
lean et al. 2010], move method refactoring [Tsantalis and Chatzigeorgiou 2009], extract superclass
refactoring [Opdyke and Johnson 1993], strategy pattern refactoring [Christopoulou et al. 2012],
subclass/state pattern refactoring [Tsantalis and Chatzigeorgiou 2010], introduce null object refactor-
ing [Gaitani et al. 2015], and so on. We present an approach to automatically identify opportunities
for both subclass (SC) and state (ST) pattern, as part of RCP refactoring.

Opdyke [1992] introduced RCP refactoring as łrefactoring to specialize: subclassing, and simpli-
fying conditionals" in his largely cited thesis. Further explanation and mechanisms for performing
RCP-refactoring are given by later works [Demeyer et al. 2002; Fowler 1999; Kerievsky 2005]. Our
work is inspired by these refactoring mechanisms, and mainly focuses on the identification of
SC/ST refactoring opportunities.

The popular Eclipse plug-in JDeodorant [Tsantalis and Chatzigeorgiou 2010] identifies individual
conditional-statements that can be replaced by polymorphic calls; these include a few of the SC/ST
refactoring opportunities. They identify SC opportunities only in conditional-statements involving
RTTI (RunTime Type Identification). In case of ST pattern, they propose grouping of refactoring
opportunities based on the values of the named-constants (can lead to grouping of seemingly
unrelated pieces of code). In contrast, we identify SC and ST patterns precisely based on the
identification of control-fields. Further, JDeodorant focuses mainly on the methods that contain
the conditional-statements (intra-procedural) and misses the possible flow of information from
other classes and methods via the heap.

Christopoulou et al. [2012] also identify the importance of class instance fields (instead of simply
named constants) and give steps to identify opportunities to refactor using ‘replace type code with
Strategy’ pattern (has similarities to ST refactoring). However, their proposed scheme is restrictive
for our purpose: it does not handle the flow of data via local variables or ‘get’ methods, updating of
the state fields in the class, or possible data-flow via heap updates in other parts of the application.
In contrast, we formally define a control-field and present an efficient algorithm (based on data
flow analysis) to identify the precise control-fields. Further, after identifying the opportunities
for SC/ST-refactoring, we use a novel data flow analysis to precisely classify them as SC- or ST
opportunity.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

138:26 Jyothi Vedurada and V. Krishna Nandivada

Kataoka et al. [2001] use a dynamic invariant detection tool called Daikon to automatically
detect refactoring opportunities for several refactorings such as eliminate useless return value,
encapsulate downcast, separate query from modifier, and so on. Streckenbach and Snelting [2004]
present a tool (KABA) that automates the refactoring of Java class hierarchies. KABA is based on
dynamic as well as static analysis. In contrast, ours is a static analysis based tool and it aims at the
automatic identification of SC/ST opportunities.

Prior works have used notions similar to that of control-fields. Komondoor et al. [2012] identify
tag fields (that directly control independent pieces of code) using the techniques presented by
Komondoor and Ramalingam [2007] to identify services in Cobol programs. Komondoor and
Ramalingam recover data models from weakly typed languages, using guarded dependencies to
identify the flow of dependencies from input statements and based on that, identify the conditionally
executed independent pieces of code and data to generate class hierarchies. Control fields are more
general in nature and we use them to identify opportunities for SC/ST-refactoring.
Many refactoring tools have been developed for popular OO languages [Bavota et al. 2014;

Tokuda and Batory 2001; Tsantalis and Chatzigeorgiou 2009, 2010]. However, none of these focus on
SC- and ST-refactorings. In contrast, Auto-SCST helps perform RCP refactoring, by automatically
identifying SC and ST refactoring opportunities.

7 CONCLUSION

RCP refactoring is a popular way to improve code with conditional-state-checking statements.
Effective RCP refactoring depends on systematically performing łReplace Type Code with Sub-
class" (SC) and łReplace Type Code with State" (ST) refactorings. In this paper, we present an
approach to identify SC and ST refactoring opportunities. We define control-fields, and present a
static analysis to identify the same. The control-fields form the basis of our refactoring-opportunity
identification steps. We present a novel flow-sensitive context-sensitive analysis to classify these op-
portunities into SC and ST. We have implemented our proposed approach as an Eclipse refactoring
plug-in (Auto-SCST) to identify SC/ST refactoring opportunities and perform refactoring. We have
used Auto-SCST to evaluate our approach on eight open-source Java applications. Based on the
results, we conclude that Auto-SCST successfully identifies relevant and refactorable refactoring
opportunities from large code-bases (otherwise, a non-trivial task to do manually). We believe that
the precision and scalability of Auto-SCST makes it a practical and valuable asset in the context of
maintaining large legacy code.

A APPENDIX

A.1 Details of the Function computeRelavantFields

We detail the working of the function computeRelevantFields (Fig. 18) here. It uses a set CFiv
(initialized to the empty set) to hold the potential control-fields for the variable v , at conditional-
point i . It also maintains a relevant-variable-set R for each node in the CFG; all initialized to the
empty set. The relevant-variable-set of a node represents the variables that are relevant to input
variablev , or in other words, the variables whose values may flow tov . The procedure is an iterative
worklist-based backward data-flow algorithm;WL is initialized to the predecessor set of i .

For each CFG node n in theWL, computeRelevantFields first adds all the relevant variables of
the successors to the relevant-variable-set of n. We process the node n only if the variable defined
in n is part of the current relevant-variable-set, and n is a sCopy statement. If RHS (n) is a local
variable then it is added to R (n) (Line 12). Otherwise, we add the potential control-fields returned by
PFInfo(x) to CFiv (Line 13). Whenever the relevant-variable-set of a node changes, the procedure
adds all the corresponding predecessor nodes to the worklist (Line 14).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

Identifying Refactoring Opportunities for Replacing Type Code with Subclass and State 138:27

1 Function computeRelevantFields(G, i,v)// Returns control-fields that may reach v at node i .

2 CFiv := ∅; // local variable

3 foreach n′ ∈ G do R (n′) := ∅;

4 R (i) := {v};WL := pred (i);

5 while WL , ∅ do

6 n := remove (WL); Rold (n) := R (n);

7 foreachm ∈ succ (n) do R (n) := R (n) ∪ R (m);

8 if (def (n) ∩ R (n)) , ∅ then

9 R (n) := R (n) − def (n); // remove def

10 if ¬sCopyStmt (n) then return ∅;

11 x := RHS (n); // Right Hand Side

12 if isVar (x) then R (n) := R (n) ∪ {x }; // add use

13 else CFiv := CFiv ∪ PFInfo(x); // possible field deref

14 if Rold (n) , R (n) then WL := WL ∪ pred (n);

15 return CFiv ;

Fig. 18. Algorithm to detect potential control-fields that satisfy CF-Property 2

ACKNOWLEDGMENTS

We thank all the anonymous reviewers for their insightful comments and suggestions. We thank
Nikolaos Tsantalis and Danny Dig for their valuable feedback and suggestions that helped in
improving the evaluation of the paper. We thank the two experts for their participation in the
experimental evaluation and also for providing insightful comments. Jyothi Vedurada is supported
by the TCS Research Scholarship Program for her doctoral studies.

REFERENCES

Gabriele Bavota, Andrea Lucia, AndrianMarcus, and RoccoOliveto. 2014. Automating Extract Class Refactoring: An Improved

Method and Its Evaluation. Empirical Softw. Engg. 19, 6 (Dec. 2014), 1617ś1664. https://doi.org/10.1007/s10664-013-9256-x

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von

Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In

OOPSLA ’06. ACM Press, New York, NY, USA, 169ś190. https://doi.org/10.1145/1167473.1167488

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. 1999. Relevant Context Inference. In Proceedings of the

26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). ACM, New York, NY, USA,

133ś146. https://doi.org/10.1145/292540.292554

Aikaterini Christopoulou, E. A. Giakoumakis, Vassilis E. Zafeiris, and Vasiliki Soukara. 2012. Automated Refactoring to the

Strategy Design Pattern. Inf. Softw. Technol. 54, 11 (Nov. 2012), 1202ś1214. https://doi.org/10.1016/j.infsof.2012.05.004

Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-Oriented Programs Using Static Class

Hierarchy Analysis. In Proceedings of the 9th European Conference on Object-Oriented Programming (ECOOP ’95). Springer-

Verlag, London, UK, UK, 77ś101. http://dl.acm.org/citation.cfm?id=646153.679523

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. 2002. Object-oriented reengineering patterns. Elsevier.

Eclipse. 2017. Eclipse: A Java Integrated Development Environment (IDE). https://eclipse.org/

M. Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

Maria Anna G. Gaitani, Vassilis E. Zafeiris, N.A. Diamantidis, and E.A. Giakoumakis. 2015. Automated Refactoring to the

Null Object Design Pattern. Inf. Softw. Technol. 59, C (March 2015), 33ś52. https://doi.org/10.1016/j.infsof.2014.10.010

William H. Harrison. 1977. Compiler Analysis of the Value Ranges for Variables. IEEE Transactions on Software Engineering

SE-13, 3 (May 1977).

C. Jebelean, C.B. Chirila, and V Cretu. 2010. A logic based approach to locate composite refactoring opportunities in

object-oriented code. In Automation Quality and Testing Robotics. IEEE, 1ś6.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

https://doi.org/10.1007/s10664-013-9256-x
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/292540.292554
https://doi.org/10.1016/j.infsof.2012.05.004
http://dl.acm.org/citation.cfm?id=646153.679523
https://eclipse.org/
https://doi.org/10.1016/j.infsof.2014.10.010

138:28 Jyothi Vedurada and V. Krishna Nandivada

Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. 2002. An Automated Refactoring Approach to Design Pattern-Based

Program Transformations in Java Programs. In Proceedings of the Ninth Asia-Pacific Software Engineering Conference

(APSEC ’02). IEEE Computer Society, Washington, DC, USA, 337ś. http://dl.acm.org/citation.cfm?id=785409.785835

Sandeepa Harshanganie Kannangara and Janaka Wijayanayake. 2014. An Empirical Exploration of Refactoring effect on

Software Quality using External Quality Factors. The International Journal on Advances in ICT for Emerging Regions

(ICTer) 7, 2 (2014).

Yoshio Kataoka, David Notkin, Michael D Ernst, and William G Griswold. 2001. Automated support for program refactoring

using invariants. In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01). IEEE Computer

Society, 736.

Joshua Kerievsky. 2005. Refactoring to patterns. Pearson Deutschland GmbH.

Jongwook Kim, Don Batory, and Danny Dig. 2015. Scripting Parametric Refactorings in Java to Retrofit Design Patterns. In

Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME) (ICSME ’15). IEEE

Computer Society, Washington, DC, USA, 211ś220. https://doi.org/10.1109/ICSM.2015.7332467

Raghavan Komondoor, V. Krishna Nandivada, Saurabh Sinha, and John Field. 2012. Identifying Services from Legacy Batch

Applications. In Proceedings of the 5th India Software Engineering Conference (ISEC ’12). ACM, New York, NY, USA, 13ś22.

https://doi.org/10.1145/2134254.2134257

Raghavan Komondoor and G. Ramalingam. 2007. Recovering Data Models via Guarded Dependences. In Proceedings of the

14th Working Conference on Reverse Engineering (WCRE ’07). IEEE Computer Society, Washington, DC, USA, 110ś119.

https://doi.org/10.1109/WCRE.2007.40

Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using Spark. In Compiler Construction, Görel

Hedin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 153ś169.

T. J. McCabe. 1976. A Complexity Measure. IEEE Trans. Softw. Eng. 2, 4 (July 1976), 308ś320. https://doi.org/10.1109/TSE.

1976.233837

William F. Opdyke. 1992. Refactoring Object-oriented Frameworks. Ph.D. Dissertation. University of Illinois at Urbana-

Champaign, Champaign, IL, USA. UMI Order No. GAX93-05645.

William F. Opdyke and Ralph E. Johnson. 1993. Creating Abstract Superclasses by Refactoring. In Proceedings of the 1993

ACM Conference on Computer Science (CSC ’93). ACM, New York, NY, USA, 66ś73. https://doi.org/10.1145/170791.170804

Alexandru D. Salcianu. 2006. Pointer Analysis for Java Programs: Novel Techniques and Applications. Ph.D. Dissertation.

Cambridge, MA, USA. Advisor(s) Rinard, Martin C. AAI0818179.

Sourceforge. 2016. SoureForge. https://sourceforge.net/

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP 2016,

July 18-22, 2016, Rome, Italy. 22:1ś22:26. https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

Mirko Streckenbach and Gregor Snelting. 2004. Refactoring Class Hierarchies with KABA. In Proceedings of the 19th Annual

ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’04). ACM,

New York, NY, USA, 315ś330. https://doi.org/10.1145/1028976.1029003

Lance Tokuda and Don Batory. 2001. Evolving Object-Oriented Designs with Refactorings. Automated Software Engg. 8, 1

(Jan. 2001), 89ś120. https://doi.org/10.1023/A:1008715808855

Nikolaos Tsantalis. 2018. https://users.encs.concordia.ca/~nikolaos/stats.html.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move method refactoring opportunities. IEEE

Transactions on Software Engineering 35, 3 (2009), 347ś367.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2010. Identification of refactoring opportunities introducing polymor-

phism. Journal of Systems and Software 83, 3 (2010), 391ś404.

Jyothi Vedurada and V Krishna Nandivada. 2017. Refactoring Opportunities for Replacing Type Code with State and

Subclass. In Proceedings of the 39th International Conference on Software Engineering Companion (ICSE-C ’17). IEEE Press,

Piscataway, NJ, USA, 305ś307. https://doi.org/10.1109/ICSE-C.2017.97

Jyothi Vedurada and V. Krishna Nandivada. 2018. Supplementary Material. https://github.com/anony-user/Auto-SCST.

John Whaley and Martin Rinard. 1999. Compositional Pointer and Escape Analysis for Java Programs. In Proceedings of the

14th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’99).

ACM, New York, NY, USA, 187ś206. https://doi.org/10.1145/320384.320400

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 138. Publication date: November 2018.

http://dl.acm.org/citation.cfm?id=785409.785835
https://doi.org/10.1109/ICSM.2015.7332467
https://doi.org/10.1145/2134254.2134257
https://doi.org/10.1109/WCRE.2007.40
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/170791.170804
https://sourceforge.net/
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1028976.1029003
https://doi.org/10.1023/A:1008715808855
https://users.encs.concordia.ca/~nikolaos/stats.html
https://doi.org/10.1109/ICSE-C.2017.97
https://github.com/anony-user/Auto-SCST
https://doi.org/10.1145/320384.320400

	Abstract
	1 Introduction
	2 Background
	3 Identifying SC and ST Refactoring Candidates
	3.1 Identifying Control Fields
	3.2 Analyzing Conditionals
	3.3 Classification: Subclass vs State Pattern
	3.4 Automatic Refactoring Using Auto-SCST-R

	4 Discussion
	5 Implementation and Evaluation
	5.1 Effectiveness of Auto-SCST
	5.2 Comparison with Related Work
	5.3 Threats to Validity
	5.4 A Brief Note on Auto-SCST-R

	6 Related Work
	7 Conclusion
	A Appendix
	A.1 Details of the Function computeRelavantFields

	Acknowledgments
	References

