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A.1 Analytical Solution (solution given in Equation (7) for the stabilization
function in Equation (6))

An optimization function has been proposed for stabilization for each block. The estimated
Frechet mean and the stabilized Frechet mean are represented as Fm and Fs

m respectively. For
row r and column c (c=1,2), let Fm(r,c) and Fs

m(r,c) represent the elements of Fm and Fs
m

matrices respectively. The stabilization is done on x and y components of the Frechet mean
individually (separately).

For the first block (from Equation (6)),

F̂s
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m(||F
s
m−Fm||2 +λ

N

∑
i=1
||Fs

m(i, :)− F̃s
m)

2||2) (A.1.1)

where, F̃m = 1
N

N
∑
j=1

Fs
m( j, :)

Solving using the Jacobi iteration method [3] for each column vector of the Frechet mean
(Fm(:,c)) of the background trajectories, as:

∂ (F{Fs
m})

∂ (Fm(r,c))
= 0

We get:

2(Fs
m(r,c)−Fm(r,c))+2λ

N
∑

i=1,i6=r
(Fs

m(i,c)− F̃m(c))(− 1
N )+2λ (Fs

m(r,c)− F̃m(c))(1− 1
N ) = 0

Fs
m(r,c)−Fm(r,c)− λ

N

N
∑

i=1,i6=r
Fs

m(i,c)+(λ − λ

N )F
s
m(r,c)+

λ

N

N
∑

i=1,i6=r
F̃m(c)− (λ − λ

N )F̃m(c) = 0

(Fs
m(r,c)−Fm(r,c))− λ

N

N
∑

i=1,i 6=r
Fs

m(i,c)+λFs
m(r,c)− λ

N Fs
m(r,c) = 0

Fs
m(r,c)(1+λ − λ

N ) = Fm(r,c)+ λ

N

N
∑

i=1,i 6=r
Fs

m(i,c)

Fs
m(r,c) = αFm(r,c)+β

N
∑

i=1,i6=r
Fs

m(i,c)

Thus, the solution for eqn (A.1.1) as an iterative solution is,

(F̂s
m(r,c))

t+1 = αFm(r,c)+β

N

∑
i=1,i6=r

(F̂s
m(i,c))

t (A.1.2)

Obtaining the solution for both x and y components, Equation A.1.2 can be written as:

(F̂s
m(r, :))

t+1 = αFm(r, :)+β

N

∑
i=1,i6=r

(F̂s
m(i, :))

t (A.1.3)

where, α = N
N+λN−λ

, β = λ

N ∗α and t is the iteration index.

Thus the equation in A.1.3 provides the solution in Equation 7, in main document.
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A.2 Quantitative results of 20 real-world natural jittery videos

The quantitative results of foreground (moving) object segmentation for 20 real-world natu-
ral jittery videos are given in table A.2.1 below:

IoU scores of competing methods
Video sam-
ples

[12] [9] [8] [4] [11] Proposed

Walk1 0.401 0.135 0.02 0.715 0.139 0.720
Walk2 0.009 0.123 0 0.480 0.151 0.841
Cheery_Girl 0.745 0.201 0.09 0.587 0.573 0.756
Doll 0.139 0.926 0.819 0.350 0.078 0.933
Baby 0.116 0.671 0.007 0.360 0.222 0.847
Skating1 0.033 0.248 0.318 0.627 0.523 0.713
Skating2 - 0.106 0.327 0.531 0.536 0.596
Car 0.029 0.06 0.058 0 0 0.233
Climb1 0.54 0.764 0.03 0.844 0.476 0.810
Climb2 0.591 0.024 0.418 0.443 0.416 0.505
Drone1 0.715 0.755 0.658 0.703 0.689 0.770
Drone2 0.487 0.436 0.549 0.325 0.348 0.588
Drone3 0.41 0.531 0.561 0.601 0.630 0.661
Dog 0.736 0.733 0.559 0.758 0.775 0.785
Train 0.211 0.37 0.535 0.837 0.831 0.850
Cycling1 0.558 0.359 0.610 0.462 0.342 0.613
Cycling2 0.654 0.649 0.462 0.831 0.689 0.833
Cycling3 0.701 0.342 0.305 0.490 0.401 0.723
Staircase1 0.726 0.296 0.713 0.651 0.488 0.782
Staircase2 0.875 0.889 0.801 0.001 0.103 0.901
Average 0.456 0.431 0.392 0.529 0.421 0.723

Table A.2.1: Performance analysis of segmentation on 20 real-world jittery videos in terms
of IoU score (higher, the better).

Our method performs the best for all the methods, except in two cases, where ours is a
close second in both. On an average over all the 20 videos (see bottom row in table A.2.1),
our method outperforms the other methods by a large margin. The methods [8, 9, 11, 12]
depend on the local motion of the pixels in the frames for distinguishing between the fore-
ground and the background, which fail in case of jittery videos. The method [4] (second
ranked, based on average IoU score) performs a nearest neighbor search with visual cues
along with the motion cues. Hence, this method performs the best after ours, although the
gap is appreciable.

The qualitative results of the videos are uploaded along with this document.

A.3 Artificial Jitter Simulation

For performance analysis of the proposed method on jittery videos, jitter is simulated and
introduced into stable videos of the standard segmentation dataset, SegTrackv2 [2]. For this

2

Citation
Citation
{Zhang, Javed, and Shah} 2013

Citation
Citation
{Papazoglou and Ferrari} 2013

Citation
Citation
{Ochs, Malik, and Brox} 2014

Citation
Citation
{Faktor and Irani} 2014

Citation
Citation
{Wang, Shen, and Porikli} 2015

Citation
Citation
{Ochs, Malik, and Brox} 2014

Citation
Citation
{Papazoglou and Ferrari} 2013

Citation
Citation
{Wang, Shen, and Porikli} 2015

Citation
Citation
{Zhang, Javed, and Shah} 2013

Citation
Citation
{Faktor and Irani} 2014

Citation
Citation
{seg} 



purpose, a jitter pattern is captured from a real world jittery video, using homography [6]
estimation. This entire process is described below:

The stabilization technique in [7] is first performed on an unstable video to get the sta-
bilized video. For both unstable and stabilized videos, average homography is estimated
using RANSAC (RANdom SAmple Consensus) [5] for each pair of successive frames. For
estimating the homographies, we used the point trajectories described in [10]. Let {Ht} be
the set of homographies of the jittery video and {Hs

t } be the set of homographies of the cor-
responding stable video, where t is the frame (or time) index. Let, the homography between
the unstable frame and corresponding stable frame be Jt . This homography, Jt (termed jitter
matrix), follows a model:

Jt =
1

∏
i=t−1

Hi(
1

∏
i=t−1

Hs
i )
−1,∀t (A.3.1)

Any set of stable video frames can now be warped with the jitter matrices (Jt ,∀t), using
eqn (A.3.1) to synthetically produce the jittery (unstable) frames. Let St be a stable frame
and SJ

t be the synthetically produced jittery frame of St . The frame SJ
t is obtained by warping

the stable frame with the jitter matrix (Jt ), i.e SJ
t = JtSt .

The method of jitter simulation provides a control of the different levels of jitter intro-
duced. Parameters are extracted from jitter matrices, estimated frame-wise using eqn (A.3.1).
The jitter matrix (Jt ) is assumed to be an affine matrix and is decomposed into translation,
rotation, shear and scale matrices [1]. The parameters of only the translation, rotation and
shear matrices are then perturbed to fuse jitter. For each frame, the parameters of the matri-
ces are randomly perturbed by adding small random values (Gaussian distributed iid, with
standard deviation σ ). Let Pt be a parameter of Jt , and Pσ

t be the perturbed transformation
parameter. Perturbation is done by adding a random value Xσ

t for frame t, to obtain the
altered transformation parameters as:

Pσ
t = Pt(1+ ct ∗Xσ

t ),∀t (A.3.2)

where, ct is a scale factor, which is proportional to the range of parameter values of Jt for
the video. Altered parameters Pσ

t are used to form Jσ
t , with parameter σ controlling the

degree of randomness added. This alteration is done for all the transformation parameters
(translation, rotation and shear) of Jt , using random values. The levels of σ (for Gaussian
iid) are chosen as follows:

(i) Low level of jitter with σ = 0.05,

(ii) Medium level of jitter with σ = 0.15, and

(iii) High level of jitter with σ = 0.25

The perturbed jitter matrix (Jσ
t ) is used to warp the stable frame, St , to get the jittery frame,

SJ
t , i.e SJ

t = Jσ
t St ,∀t. This in effect alters the homography to a small degree, introducing

frame-wise jitter on smooth transitions of a stabilized video. With increasing levels (σ ) of
jitter added to stable frames, we obtain three levels of synthetic jitters with varying distur-
bances, and then evaluate the performance.

As a part of experimentation, for three levels of jitter (σ = 0.05,0.15,0.25), three sets
of jitter matrices (from three unstable-stable pair of real-world natural jittery videos) were
formed and fused into 8 stable videos of SegTrack2 [2] to generate 72 (8*3*3) synthetic
jittery videos. The randomness of perturbation is caused by the parameter σ (see eqn A.3.2).
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The average of the segmentation results on each level of jitter (24 videos for each jitter level)
is given in the table below:

IoU scores of competing methods
Jitter Level (σ ) [12] [9] [8] [4] [11] Proposed
Low (σ = 0.05) 0.586 0.637 0.327 0.692 0.535 0.695
Medium (σ = 0.15) 0.551 0.575 0.525 0.686 0.506 0.690
High (σ = 0.25) 0.543 0.585 0.479 0.654 0.470 0.688

Table A.3.1: Comparison of the average (over 72 videos) segmentation performances for
low,medium and high levels of jitter, fused into stable videos (8) of SegTrack2 dataset [2]
(higher, the better).

As in table A.3.1, on an average for each of the jitter level fused, our method performs the
best. The method [4] in this case performs the second best, but with a degraded performance
compared to our proposed approach. Qualitative results for the highest jitter level is uploaded
along with this document.
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