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ABSTRACT
Video Stabilization algorithms are often necessary at the
pre-processing stage for many applications in video analyt-
ics. The major challenges in video stabilization are the pres-
ence of jittery motion paths of a camera, large foreground
moving objects with arbitrary motion and occlusions. In this
paper, a simple, yet powerful video stabilization algorithm
is proposed, by eliminating the trajectories with higher dy-
namism appearing due to jitter. A block-wise stabilization
of the camera motion is performed, by analyzing the trajec-
tories in Kendall’s shape space. A 3-stage iterative process
is proposed for each block of frames. At the first stage of
the iterative process, the trajectories with relatively higher
dynamism (estimated using optical flow) are eliminated. At
the second stage, a Procrustes alignment is performed on the
remaining trajectories and Frechet mean of the aligned tra-
jectories is estimated. Finally, the Frechet mean is stabilized
and a transformation of the stabilized Frechet mean to the
original space (of the trajectories) yields the stabilized tra-
jectories. A global optimization function has been designed
for stabilization, thus minimizing wobbles and distortions in
the frames. As the motion paths of the higher and lower dy-
namic regions become more distinct after stabilization, this
iterative process helps in the identification of the stabilized
background trajectories (with lower dynamism), which are
used to warp the frames for rendering the stabilized frames.
Experiments are done with varying levels of jitter introduced
on stable videos, apart from a few benchmarked natural jit-
tery videos. In cases, where synthetic jitter is fused on sta-
ble videos, an error norm comparing the groundtruth scores
(scores of the stable videos) to the scores of the stabilized
videos, is used for comparative study of performance. The
results show the superiority of our proposed method over
other state-of-the-art methods.
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Figure 1: A schematic representation of the pro-
posed video stabilization process. (a) Point tra-
jectories from the regions with lower dynamism
(background) are extracted across frames, (b) These
are modelled in Kendall’s shape space. The
blue/red/green curves indicate the trajectories, the
Frechet mean of the trajectories, the stabilized
Frechet mean, respectively. (c) The stabilized
Frechet mean is aligned to the original trajectory
space to get the stabilized trajectories.
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1. INTRODUCTION
With the advancement of the digital devices, videos taken

by handheld cameras (e.g: portable camcorders and cell-
phones) are increasing day by day. Such videos are remark-
ably shaky (jittery) and unpleasant to the human eye. Video
Stabilization is a technique of processing jittery videos cap-
tured using a non-stationary (e.g: handheld) camera to ob-
tain smooth camera motion. Given a shaky video, the pro-
cess of video stabilization renders a smooth video which is
pleasant to the human eye. Many video stabilization soft-
wares, like ’Youtube Stabilizer’ and ’Warp Stabilizer’ are
available in the market to remove unwanted camera motion
from these jittery videos. Inspite of some work done in this
field of video stabilization, including commercial products,
stabilizing videos with very high level of jitter, and stabiliza-
tion of those videos with large moving foreground and occlu-
sions, is still an open problem. When videos have moving
objects and large depth variations, the motion estimation



becomes challenging. When the trajectories belonging to
the regions of moving objects are also used to estimate the
camera motion as in [14] and [11], wobbles and distortions
are generated. Thus, to reduce this effect, it is better to elim-
inate the trajectories belonging to the moving objects, re-
gions near to the camera and strong depth edges (i.e regions
with higher dynamism). In [18], the trajectories are opti-
mized to be consistent with each other. This approach fails
when there are many trajectories with higher dynamism.
Also, in [5], user assistance is required for pruning the tra-
jectories belonging to moving objects. Our method follows
an iterative and automatic approach, where the trajectories
with higher dynamism are eliminated in each iteration. As
per our observation, stabilization increases the separability
between trajectories with higher and lower dynamism.

In this paper, we propose a simple, yet powerful 2D video
stabilization approach. The major steps in any video stabi-
lization algorithm are motion estimation, motion smoothing
and motion compensation. Our method focuses on the mo-
tion estimation and motion smoothing part. An illustration
of the process is provided in Figure 1. We utilize point
trajectories [6] to estimate motion of the video. These tra-
jectories are long, dense and robust. The method models
the extracted trajectories in Kendall’s shape space [9]. A
Procrustes analysis [9] on the trajectories is performed such
that the trajectories are aligned to each other and smoothing
is performed on the mean of the aligned trajectories, popu-
larly known as the Frechet mean [9]. The stabilized Frechet
mean can be utilized to obtain the stabilized trajectories.
The advantage of this method is that a global stabilization
is applied to every trajectory. Our method differs from other
popular methods in that it stabilizes only the Frechet mean
of the trajectories, whereas other methods perform stabi-
lization or smoothing of every trajectory.

The contributions of this work are: 1) modelling the tra-
jectories in Kendall’s shape space so as to estimate the mo-
tion of the camera, 2) application of a global stabilization on
the Frechet mean of the trajectories with lower dynamism
instead of individually smoothing every trajectory, caus-
ing a significant reduction in wobbles and distortions and
3) experimentation on different levels of jitter applied to
videos apart from the experiments on natural jittery videos,
thereby analyzing the scalability of the method. The su-
periority of the proposed method is shown over two types
of datasets: natural jittery videos and videos incorporated
with different levels of synthetic jitter.

The rest of the paper is organized as follows. Section
2 discusses about the related works, section 3 gives a de-
tailed explanation about the proposed framework. Section
4 discusses about the experiments conducted and the results
obtained. Finally, section 5 concludes the paper.

2. RELATED WORKS
Based on the motion model and techniques used for the

solution of the problem, a brief review of related video sta-
bilization techniques is presented below, in three separate
categories.

3D methods: The 3D methods estimate the 3D camera
motion for stabilization. Given a 3D shaky camera path,
the task of the stabilization process is to generate the cor-
responding virtual smooth 3D path. The stabilized video is
obtained by rendering the video along the virtual path as if
the video was shot through this virtual path. This rendering

is often termed as view synthesis. Beuhler et al. [7] proposed
a 3D video stabilization technique which performs a projec-
tive reconstruction of the video sequence. The stabilized
projection matrices are computed by a nonlinear optimiza-
tion on the reprojection error of the structure points. The
method proposed in [20] minimizes the acceleration of the
feature points in terms of relative pose sequences. The above
methods take a set of shaky images from multiple viewpoints
captured by a camera array, as input, and produces a single
stable video as output. Liu et al. [13] proposes a novel view
synthesis known as the Content Preserving Warps (CPW).
This method generates 3D camera paths using a structure-
from-motion (SFM) system, automatically fits the camera
path to a user-specified path and then generates a spatially-
varying warp from each input frame to obtain the stabilized
frame. The work described in [22] extends the CPW to re-
duce the error in warping in textureless regions. The method
ensures that planar regions have same homography. Depth
sensors are utilized in [16] to get the depth image along with
the shaky video. The 3D camera path is estimated from the
color and depth images, smoothed and warped using CPW.
In our work, we use CPW for rendering the frames after
stabilization of trajectories.

2D methods - filtering and curve fitting: 2D meth-
ods of video stabilization utilize a series of 2D transforma-
tions or trajectories to represent the camera motion. Low
pass filtering is a common method for smoothing the trajec-
tories or transformations so as to obtain the desired camera
path. Matsushita et al. [19] performs Gaussian smoothing
of a series of neighboring transformations to obtain the de-
sired set of transformations of the stabilized video. Also, [8]
generates the smooth path by fitting a poly-line on the cam-
era path. Gleicher and Liu [10] broke the trajectories into
smaller segments and transformed each frame such that the
video follows cimematic conventions. All the above 2D mod-
els are invalid when there is much variation of depths in the
scene. The work of Liu et al. [14] smoothed trajectories by a
simple low-pass filtering, automatic polynomial path fitting,
and interactive spline fitting of some basis trajectories of the
subspace, extracted from the feature tracks. This method
has been transfered to Adobe After Effects [1] as a video
stabilization function named ’Warp Stabilizer’. Recently,
Liu et al. [15] extended the subspace method to deal with
stereoscopic videos.

2D methods - variational methods: Several works
pose the problem of 2D video stabilization as an optimiza-
tion function. The method proposed by Grundmann et
al. [11] obtains the desired camera path by posing a Lin-
ear Programming Problem (LPP). The LPP satisfies three
constraints: Inclusive constraint, Proximity Constraint and
Saliency Constraint. This method is integrated in the video
enhancement functionality of Youtube. The method pro-
posed in [21] models the trajectories as Bezier curves and
performs a spatio-temporal optimization that finds smooth
feature trajectories. Liu et al. [18] proposes a bundled path
model, which parametrizes multiple, spatially-variant cam-
era paths (a series of homography matrices across frames)
that can deal with parallax and rolling shutter effects. Also,
the authors extend the work to adapt the optimization func-
tion using optical flow [17]. There are several issues associ-
ated with video stabilization which need to be considered.
Occlusion, motion blur, rolling shutter effects are some of
them. To address the occlusion issue, Lee et al. [12] se-



Figure 2: The detailed framework of the system for video stabilization for each block, by the Procrustes
analysis of iteratively estimated background trajectories in Kendall’s shape space.

lected robust feature trajectories and optimization of the
set of transformations to smooth the trajectories. When the
frames predominately contain the moving foreground object,
all these methods fail [17]. The methods will not be able to
estimate the camera motion of the background region be-
cause of the moving objects.

Here lies the motivation of our work to overcome these
shortcomings. Our method is a 2D variational method,
where we do not require the information on camera poses
and depths as in many of the 3D methods. We aim at rep-
resenting the camera motion by a series of transformations
obtained from trajectories belonging only to the background
regions. The stabilization is posed as an optimization prob-
lem, which reduces the variance of the trajectories across
the frames. The novelty of the proposed method lies in the
use of Kendall’s shape space for trajectory representation,
followed by Procrustes analysis for stabilization using an op-
timization function formulated specifically for this purpose.

3. PROPOSED FRAMEWORK
The proposed framework, as shown in figure 2, exhibits

the stages of a novel method for performing video stabiliza-
tion. The various stages of obtaining a smooth video from
a shaky/jittery video are discussed below.

3.1 Block-wise partition of point trajectories
Given a jittery video as input, we extract point trajecto-

ries as introduced in [6] from a sequence of frames. Each
point trajectory is represented by a sequence of coordinates.
The entire video is divided into blocks based on the speed of
camera movement. Observing the results on different cate-
gories of the videos analyzed, we have empirically obtained
the block size. For videos with quick rotation or panning,
we consider the number of frames in a block as 50. Other-
wise, we take the size as 100. Also, the blocks overlap with a
10% extent of the size of the block. Only those trajectories
which span the entire block are used for analysis. Consider
the number of frames and the number of trajectories in a
block to be N and K respectively. The kth trajectory can be
represented in the matrix form as:

Xk =

[
xk1 xk2 . . . xkN
yk1 yk2 . . . ykN

]T
Here, Xk is the trajectory matrix, xki and yki represents

the x and y coordinates of the kth trajectory in ith frame of
the block.

The block-wise partition of frames ensure that enough
point trajectories are obtained for the analysis, even though
there are occlusions or fast movements of camera.

3.2 Trajectories as Kendall’s pre-shapes
The trajectories are analyzed in Kendall’s shape space [9].

A shape is defined as the geometrical information of a se-
quence or an object that is invariant under translation, scale
and rotation transformations. The trajectory matrix of size
N × 2 is also known as a ’configuration’ matrix. First, the
centered pre-shape of the configuration is obtained. The
centered pre-shape of the trajectory Xk is given as:

Zk =
C.Xk

||C.Xk||F
, (1)

where ’.’ is the matrix multiplication function, Zk is the
pre-shape of the kth configuration and C = IN − 1

N
1N1TN .

IN is the N ×N identity matrix and 1N is the N × 1 vector
of ones. Pre-shape representation removes the location and
scale information from the original configuration. A pre-
shape space is the set of all possible pre-shapes. Thus, the
trajectories are modelled in the pre-shape space, where they
are centered with respect to the origin and are of unit length.
The pre-shape space can be considered to be a unit hyper-
sphere of 2(N-1) dimensions (for details and other proper-
ties, see [9]). The advantage of converting the trajectories
to the pre-shape space is that, a plot of the coordinates of
the pre-shapes gives a unified geometrical view of the shape
of the original configurations (Xk) aligned with respect to
a common frame of reference and location, the process of
transformation, as given in Equation 1 for alignment, helps
in comparing and analyzing different trajectories.

3.3 Estimate Background Trajectories
The trajectories that are extracted belong to different ar-

eas in the jittery video, namely moving objects, the areas
belonging to the strong depth edges, and planar regions.
It is observed that the trajectories belonging to the strong
depth edges and the moving object have higher motion ve-
locity, when compared to that of the background. Our aim
is to estimate the jittery motion of the camera, which is as-
sumed to provide trajectories moving with a lower motion
velocity (or dynamism). We consider the trajectories with
high motion velocity as trajectories with higher dynamism,
and the others as those with lower dynamism (background
trajectories). For a stable video, the motion of the trajecto-
ries in the regions with higher dynamism will be distinct and
greater than that of the background. The moving objects
will have a combined motion of both the camera as well as
that for itself.

Identification of the background trajectories is done by
an iterative process. Initially, a rough estimate of the back-
ground trajectories is done. Consider the accumulated mo-
tion vector of a trajectory k to be ck =

∑N
i=1 v

k
i , where



vki is the velocity vector of the trajectory k at frame i. In
the first iteration, the velocity vectors of the trajectory is
estimated, and in later iterations, velocity vectors of the
stabilized trajectories are taken. An indicator function F
defining whether a trajectory belongs to the background or
otherwise is given as:

Fk =

{
1, if ||ck − 1

K

∑K
j=1 c

j ||2 < ε

0, otherwise
(2)

The indicator function value Fk, of the trajectory k is 1
when it belongs to the background and 0, otherwise. The
indicator function identifies the trajectory as background if
the the accumulated motion of the trajectory is much lower
than the average accumulated motion of all trajectories. The
threshold ε is adaptive and it varies with increasing iteration
as ε = 0.3

n
, where n is the iteration number.

The estimation of background trajectories is an iterative
process, which is done after stabilization (described in Sec-
tion 3.5) of the trajectories. It was observed in most of the
cases that the system underperforms when ε < 0.1, due to
the lack of sufficient trajectories for motion estimation. The
terminating condition for the number of iterations is when
ε = 0.1. Since we start with ε = 0.3, we reach the termi-
nation condition in n=3 iterations (see Section 3.6 for more
details and illustration).

3.4 Procrustes Alignment of Trajectories and
Estimation of Frechet Mean

This module aims at estimating the shape of the mean of
the background trajectories. A General Procrustes Analysis
(GPA) [9] method is used for this purpose. GPA involves
translating, rescaling and rotating the configurations rela-
tive to each other such that they align together. This is
equivalent to minimizing a quantity proportional to the sum
of squared norms of the pairwise differences of the configu-
rations in the shape space. Modelling the original configu-
rations in Kendall’s pre-shape ensures that the translation
and scale variations are removed. Let K be the number of
background trajectories, i.e K =

∑K
i=1 Fi. Optimum rota-

tions required for aligning the configurations are estimated
using the following optimization function:

{Γi} = argminΓi∈SO(2)
1

K

K∑
i=1

K∑
j=i+1

FiFj ||ZiΓi − ZjΓj ||2

= argminΓi∈SO(2)

K∑
i=1

Fi||ZiΓi −
1

K

K∑
j=1

FjZ
jΓj ||2

(3)

where, the factor [ 1
K
∑K
j=1 FjZ

jΓj ] is the Procrustes esti-
mate of the mean of the background trajectories, also known
as the Frechet mean (µ), and SO(2) is the Special Orthog-
onal group (of dimension 2), a subgroup of the Orthogonal
group O(2) containing orthogonal matrices of determinant
value 1. The solution to the function in Equation 3 is ob-
tained using iterative least squares method. For more de-
tails, refer [9]. {Γi} provides the rotation to be applied to
the pre-shape configuration Zi, to align itself to the mean
shape µ. Any pre-shape Zi is represented in shape space as
ZiΓi.

The Frechet mean is the mean of all the configurations
in Kendall’s shape space. Here, Frechet mean gives an es-

timate of the mean of the trajectories in the background.
In other words, it is an estimate of the camera motion. We
aim to reduce the unwanted shakiness in the camera motion
globally, such that dynamic and non-dynamic regions are
uniformly registered in the stabilized frame, thus reducing
wobbles and distortions.

3.5 Stabilization using Frechet Mean of Tra-
jectories

The Frechet mean acts as a representative trajectory of
the camera motion. Hence, for obtaining stabilized trajec-
tories in the shape space, stabilizing the Frechet mean would
give the desired result.

For every block, we estimate the Frechet mean µm,m =
1, 2...M , where M is the number of blocks. Also, each
Frechet mean µm is stabilized using the optimization func-
tions defined below in Equations 4 and 5. The stabilized
Frechet mean µ̂1

s for the first block of frames is obtained
using the following optimization function:

µ̂1
s = argminµ1

s
(||µ1

s − µ1||2 + λ1

N∑
i=1

||µ1
s(i, :)− µ̃1||2) (4)

The first term of the Equation 4 keeps the desired shape µ̂1
s

similar to the input shape µ1 and the second term minimizes
the variance of the shape across the frames. For the rest of
the blocks, the stabilized Frechet mean is obtained from the
optimization function in Equation 5, given below

µ̂ms = argminµm
s

(||µms − µm||2 + λ1

N∑
i=1

||(µms (i, :)− µ̃m)||2

+
λ2

O

O∑
j=1

||(µms (j, :)− µ̂m−1
s (N −O + j, :))||2)

(5)

where, µ̃m = 1
N

∑N
j=1 µ

m
s (j, :), O is the number of overlap-

ping frames and λ1 and λ2 are two lagrangian multipliers
which control the amount of smoothness of the trajectories
and their consistency with the previous frame respectively.
For Equation 5, a third term is added to the function in
Equation 4, which ensures that the stabilized Frechet mean
of the current block is consistent to the one in the overlapped
frames of the previous block. This ensures that the stability
is preserved across the block and there is no shakiness in the
frames while rendering frames in the next block.

These optimization functions are solved using a jacobi it-
erative solver, by differentiating the optimization functions
to provide a closed form solution. The closed form solution
for the first block, as a solution to Equation 4, is as follows
(t indicates the iteration index, taken as 20):

(µ1
s(r, :))

t+1 = αµ1(r, :) + η

N∑
i=1,i6=r

(µ1
s(i, :))

t (6)

where, α = (1 + λ1 − λ1
N

)−1 and η = λ1
N
α

Similarly, the solution to the second function is

(µms (r, :))t+1 = γµm(r, :) + δ

N∑
i=1,i6=r

(µms (i, :))t + ρµ̂m−1
s (i, :)

(7)
where, γ = (1 + λ1 − λ1

N
+ λ2)−1, δ = λ1

N
γ and ρ = λ2

O
γ

for the overlapping frames. For the non-overlapping frames,



Figure 3: Iterative estimation of background trajec-
tories. (a) Plot of coordinates of trajectories with
higher dynamism (blue points) and lower dynamism
(background trajectories, red points) for three itera-
tions. (b) Output frame in each iteration, obtained
with the background trajectories estimated in (a).
(c) Trajectory plots of mean of background trajec-
tories and that of trajectories with relatively higher
dynamism. The means are mostly separable at the
third iteration.

γ = α, δ = η and ρ = 0. Thus at the end of the iterative
process of applying Equations 4 and 5 to the Frechet mean,
we obtain the stabilized Frechet mean µ̂ms , ∀m.

3.6 Stabilized Trajectories and Content Pre-
serving Warps

To obtain the stabilized trajectories, the stabilized Frechet
mean is transformed back to the original space of each tra-
jectory. Let {Zk} be the set of configurations in block m. As
obtained from Equation 3, for a pre-shape configuration Zk,
Γk represents the rotation matrix applied to align the pre-
shape with the Frechet mean µm, i.e the Frechet mean can
be transformed to the pre-shape as Zk = µmΓTk . Similarly,
the stabilized Frechet mean can be transformed to pre-shape
of the trajectory, Zk, to obtain its corresponding stabilized
pre-shape Z̃k, i.e Z̃k = µ̂ms ΓTk . Later, the pre-shapes are
transformed back to the original space and thus, we get a
set of stabilized trajectories {X̃k} for each block of frames

using the expression X̃k = Z̃k( ||C.X
k||F
C

).

Given the original {Xk} and stabilized trajectories {X̃k}
and their coordinates, a spatially varying warp is applied
to the frames, popularly known as ”as-similar-as-possible”
warping or Content Preserving Warps (CPW) [13]. The it-
erative process (see Figure 2) of estimating the background
trajectories helps in the identification of regions of higher dy-
namism, thereby generating stable and wobble-free output
frames. Figure 3 illustrates the process of iterative estima-
tion of background trajectories. In the top row of the figure,
the coordinates of the estimated trajectories with relatively
higher dynamism (blue points) and those of background (red
points) in a frame of the ’frog’ video, from SegTrackV2 [2],

are overlayed on the frames and shown for three iterations.
All the trajectories belonging to the moving object (frog),
having higher dynamism are identified as the background
trajectories at the end of the third iteration. The middle
row (Figure 3(b)) shows the output frames, obtained by an-
alyzing the background trajectories estimated using Equa-
tion 2 for every iteration. Observe that the first and the
second iterations generate frames with distortions/wobbles,
as trajectories from regions with higher dynamism are also
used for the analysis. The white spaces in the first two
columns of Figure 3(b) appear due to unassigned pixels in
the output frame, during the process of warping (CPW).
This disappears at the third iteration (last column), when
trajectories are stabilized. The third iteration generates the
stabilized frames. The bottom row (Figure 3) illustrates the
separability of the means of the background trajectories and
those with relatively higher dynamism, both stabilized us-
ing Equations 4 and 5 with increasing iterations. At the
left of the bottom row, the plot shows the means of the un-
stable trajectories, whereas the plots for second and third
iterations, show the stabilized means of the trajectories es-
timated. The two means are most separable in the third
iteration. Thus, at each iteration, the background trajec-
tories are refined and correspondingly, the distortions are
reduced. This is due to the fact that trajectories of the
unstable video with higher and lower dynamisms becomes
distinct after stabilization. The background trajectories es-
timated at the final iteration are used for further processing.

4. EXPERIMENTS AND RESULTS
The experiments were performed on two types of datasets:

natural jittery videos (used in [18]) and synthetic jitter added
to stable videos. Also, we extracted jitter from natural jit-
tery videos and fused them on a few stable videos taken
from SegTrackV2 dataset [2]. Different levels of jitter were
added to the videos and experimented. The advantage of
synthetic jitter fused into stable videos is that it helps in
accurate performance analysis, as the groundtruth for sta-
ble videos can be extracted easily, which is not the case for
natural jittery videos. Our method was compared with two
commercial stabilizers, ’Youtube Stabilizer’ and ’Warp Sta-
bilizer’ for the synthetic jitter based on the works reported
in [11] and [14]. ’Youtube Stabilizer’ is a parameter free
online tool which allows the users to upload the video and
download the stabilized video. ’Warp Stabilizer’ is a tool
that is interactive and allows the user to tune parameters.
For the experimentation purpose, we used default parameter
values. The results on natural jittery videos were also com-
pared with the recent method [18] (results available from
authors’ website) along with the commercial stabilizers. As
discussed in [18], the measures used for comparison are crop-
ping, distortion or wobble and stability scores. The details
on each score similarly, used in [18] for evaluating the per-
formance of stabilization algorithms, are discussed below:

(a) Cropping score: This score is a measure of the cropping
of frames while stabilizing. For natural jittery videos,
the scale component of the homography between the
input frame and the stabilized frame is extracted for
this purpose. The average of the scale components
over the frames is estimated. Ideally, the cropping
score should be near to 1, indicating a small amout
of cropping.



Figure 4: Performance analysis on video samples from the dataset [4]. The proposed method is compared
with the state-of-the-art methods [11, 14] and [18]. The error measures are cropping score (ideally, near to
1), distortion score (lower the better, with a minimum of 1) and stability score (higher the better)

(b) Distortion/wobble score: The distortion score is indi-
cated by the anisotropic scaling of the homographies
between the input and output frames, which is com-
puted as the ratio of the two eigenvalues of the affine
part of the homography. Each frame has a wobble
score, among which the worst one is taken as the final
wobble score. Lower score indicates lower wobble with
a minimum of 1 (no wobble).

(c) Stability score: To get the stability score, the feature
tracks are analyzed in the frequency domain. The per-
centage of energy occupied by the low frequency com-
ponents as a fraction of that over the entire frequency
domain is calculated. Larger value of concentration on
the lower frequency channels indicates higher stability.

For synthetic jittery videos, the groundtruth for stabilization
is known (from that of stable videos available in the dataset).
We measure the scores of the groundtruth and the stabilized
output. An error norm is introduced to indicate how close
is the stabilized output to the groundtruth.

4.1 Results on natural jittery videos
The experiments were done on 5 groups of challenging

natural jittery videos from the dataset [4], namely simple
(23 videos), zooming (23 videos), large parallax (20 videos),
crowd (22 videos) and running (20 videos). Samples of six
videos taken from this dataset are shown in the top row of
Figure 4. The cropping, distortion and stability scores [18] of
ours (proposed) and the state-of-the-art methods are shown
as colored bar charts. ’Youtube Stabilizer’ [11] and ’Warp

Stabilizer’ [14] are available for commercial use. We also
compare the performance with the ’Bundled Paths’ method
[18], for which the results of the samples are available.

As seen in Figure 4, our results when compared with [11,
14, 18], for all the six samples, are better or comparable with
the state-of-the-art methods. The first three videos have
small amount of jitter, whereas the fourth video has zooming
motion. The last two videos have large jittery motion of the
camera and hence, the performances of all methods are worse
when compared to that for the other videos. Our method
outperforms the others in the cropping score. Concerning
the distortion score, our method is comparable or better
than all the other methods, i.e there is minimal distortion.
Also, our method performs the best with the stability score
as a metric (bottom row of Figure 4).

Figure 5 shows the failure cases (one frame per video
shown) reported in works [14, 17], for which our method
works well. The first video (Figure 5(a)) is a failure case of
the method [14], where there is a prominent moving fore-
ground. Our method eliminates the trajectories belonging
to the moving foreground while performing Procrustes anal-
ysis, thereby minimizing wobbles and distortions. The sec-
ond, third and fourth videos (Figure 5 (b), (c) and (d)) are
failure cases of the method [17]. These videos have domi-
nant foreground and our method again performs well for the
videos (b) and (c) by considering only the background tra-
jectories. For the case in Figure 5 (d), the proposed method
performs well, but the stabilized video suffers from excessive
cropping. The results can be downloaded from [3].

A few other cases [4] where our proposed method performs
worse than the state-of-the-art are (Category (Id)): Large



Category Scores Warp Stabi-
lizer [14]

Youtube Stabi-
lizer [11]

Bundled
Paths [18]

Proposed

Simple
Cropping Score 0.825 0.783 0.856 0.871
Distortion Score 1.03 1.02 1.025 1.01
Stability Score 0.349 0.305 0.447 0.531

Running
Cropping Score 0.643 0.715 0.810 0.885
Distortion Score 1.32 1.73 1.13 1.08
Stability Score 0.190 0.231 0.438 0.517

Crowd
Cropping Score 0.7734 0.774 0.8556 0.852
Distortion Score 1.025 1.03 1.05 1.02
Stability Score 0.3598 0.289 0.3601 0.439

Large
parallax

Cropping Score 0.661 0.8361 0.864 0.854
Distortion Score 1.029 1.039 1.02 1.01
Stability Score 0.211 0.366 0.354 0.374

Zooming
Cropping Score 0.6067 0.8672 0.785 0.877
Distortion Score 1.012 1.09 1.02 1.011
Stability Score 0.156 0.346 0.432 0.536

Table 1: Comparison of the state-of-the-art methods [11, 14, 18] with the proposed method, using three score
metrics averaged for five different categories of natural jittery videos.

Figure 5: Failure cases of the methods (a) Subspace
Stabilization [14], (b), (c) and (d) Steadyflow Stabi-
lization [17]. Our method works for all these videos,
except that (d) suffers from excessive cropping.

Parallex (4), Crowd (14), Zooming (21). The videos listed
above have quick panning motion of the camera along with
occlusions of objects, large number of moving objects and
zooming along with quick panning of the camera. For such
videos, the reasons for the unsatisfactory performance are:

(a) The point trajectories extracted are short and sparse,
which produce wobbles in the stabilized video.

(b) The presence of a large number of moving objects lead
to the inaccurate estimation of a Frechet mean. This in
turn inaccurately represents the camera motion (Sec-
tion 3.4), leading to distortions and wobbles in the
stabilized frames.

The average scores for each category of natural jittery videos
[4] are shown in Table 1. Different challenges are associated
with each category. Videos belonging to the simple category
are relatively less complex to handle, even though there are
large depth variations. Videos belonging to crowd category
produce occlusions; Running category has high amount of

jitter with fast and varying camera motions; Parallax and
zooming effects are produced due to manipulations and con-
trol of camera view, pose and motion. For the categories,
’running’ and ’large parallex’, the block size (parameter) is
empirically set as 50, whereas for the rest of the categories,
it is set as 100. Also, the default values of the lagrange mul-
tipliers (Equations 4 and 5) λ1 and λ2 are set as 0.5, except
for the category ’running’, where the values are set as 0.7
and 0.3 respectively. As seen in Table 1, the stability and
distortion scores are the best for our proposed method in
all the cases. The cropping score of the proposed method
is better or comparable for all the cases. Thus, the results
show that our proposed method stabilizes videos better un-
der many different scenarios.

4.2 Results on synthetic jittery videos
As a part of evaluating the scalability of the methods with

varying shakiness in the videos, different levels of jitter were
fused into 3 stable videos. The stable videos were taken
from the SegTrackV2 [2]. The jitter pattern was extracted
from selected natural jittery videos [4]. Jitter synthesis is
done by a relative comparison of the homographies of an
unstable video to that of the corresponding stable video,
stabilized using [17]. We assume that the homography of the
unstable video is a product of the jitter component matrix
and the homography of the stable matrix. This jitter matrix
is extracted and warped with the input stable frames to get
the jittery frames.

For each video, there are 3 levels of jitter added, namely
JRL, JRM and JRH. JRL has lowest and JRH has the high-
est levels of jitter fused. For every frame, the rotation,
shear and translation parameters of the jitter matrices are
estimated and are perturbed by adding a random multiple
(Gaussian distributed iid, with standard deviation σ) of the
parameter values. The parameter σ controls the the level
of jitter in the synthetic video. The values for σ are cho-
sen as 0.05, 0.15 and 0.25 for the jitter levels JRL, JRM
and JRH respectively. Considering the stable video itself
as groundtruth, we estimate how close are the stabilized
frames to the groundtruth. We measure the scores of the



Video Jitter
Level

Warp Sta-
bilizer [14]

Youtube Sta-
bilizer [11]

Proposed

Frog
JRL 1.335 1.311 1.143
JRM 1.323 1.412 1.058
JRH 1.349 1.765 1.037

Worm
JRL 1.567 1.287 1.1205
JRM 1.581 1.455 1.163
JRH 2.033 1.549 1.112

Table 2: Stabilization Error E (lower, the better) of
the methods [11, 14] using the groundtruth (stable
video available in the dataset).

input as well as that of the stabilized frames with respect
to the groundtruth, for each method. The error measure for
each method is calculated as follows:

Let βI = [1 − cI , dI , sI ] be the score vector of the in-
put video, where cI , dI , sI indicate the cropping, distortion
and stability score of the input video with respect to the
groundtruth (stable video). Now, let βO = [cO, dO, sO] be
the output score vector of the stabilized video. For a good
stabilization algorithm, all three components of the absolute
difference of the two vectors should be as large as possible.
Then the error in the stabilization is given as E = 1

||βO−βI ||2
.

The metric E for the three methods are given in Table 2.
For each level of the jitter, the error of each method with
respect to the groundtruth is given. The videos [2] used
are frog and worm. We have compared our method with
’Youtube Stabilizer’ [11] and ’Warp Stabilizer’ [14]. Our
method performs the best for all the jitter levels, by a big
margin in many cases.

The algorithm takes 4-5 seconds per frame (of size 640 x
360), when averaged over 10 videos, on an i7, 2GHz machine.
Extraction of point trajectories and CPW take the majority
share of the time taken, while the Procrustes analysis need
negligible time.

5. CONCLUSION
An effective, simple and novel 2D method for video sta-

bilization has been proposed. The background trajectories
are modelled in Kendall’s shape space, and a Procrustes
alignment is performed to estimate the overall camera mo-
tion. Experiments were performed on natural jittery videos
as well as jitter incorporated stable videos. The novelty of
the proposed method lies in the formulation of an optimiza-
tion function for stabilization, applied iteratively using the
Frechet mean of the background trajectories. The method
outperforms the state-of-the-art methods especially at high
levels of jitter.
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