Clipping:
LINES

and

POLYGONS

OUTPUT

Solving Simultaneous equations
using parametric form of aline:

P(t)=(1-t)P, +tP, Vertical Line:
X =K
where P(0)=P,; P(1)=P,
Horizontal Line:

Solve with respective pairs: Y = K,.

INn general, solve for two sets of
simultaneous equations for the
parameters:

t and t;, .

edge

Check iIf they fall within range
[O - 1].

I.e. Rewrite P(t) — Po +t(P1 _ Po)

and Solve:

tl(Pl_ Po)_tz(Pll - I:)o')= Po o I:)0

Cyrus-Beck

Line Clipping

CYRUS-BECK formulation

P(t)=P, +t(P. - P) Define.

where, P(0)=P; P(1)=P ZGH:01=
N.[P(t) — Pl

Solve for t using: > P(D),- Pe

P,

N.[P(t) — Pe] = O;

Tk F(N,P.)<O

F(N,Pg)=0 F(N,P.)=0

Po

N.[P,+(P -P)t—P.]=0

Substitute, D=P -P,;

N.[P,—P.]
—N.D

Solve for t using:

N.[P(t) — P.] = O:
LP() = Pel To Obtain: t=

To ensure valid value of t, denominator must
be non-zero.

Assuming, that D, N <> 0O, check if:
N.D <> 0. I.e. edge and line are not parallel.

If they are parallel ?

Use the above expression of t to obtain all
the four intersections:

e Select a point on each of the four edges of
the clip rectangle.

e Obtain four values of t.

e FINnd valid intersections

How to implement the last step ?

Consider this example

F)
PE e =
L, t
o PL PL PL
° Ly PL
PE
P, B
PE PE

Steps:

e |f any value of t Is outside the range [0 — 1]}
reject It.

e Else, sort with increasing values of t.

This solves L,, but not lines L, and L.

Criteria to choose intersection points,
PE or PL.:

Move from point Py to P,.

If you are entering edge’s inside half-plane,
then that intersection point is marked PE;

else, If you are leaving it is marked as PL.

Check the angle of D and N vectors, for
each edge separately.

If angle between D and N Is:

=90 deg., N.D < O, mark the point as PE,
store t- (1) =t

<90 deg., N.D = O, mark the point as PL,
store t (1) =t

Find the maximum value of tz and
minimum value of t, for a line.

If t- < t, choose pair of parameters as
valid intersections on the line. Else NULL.

PL

Calculations for parametric line Clipping

' Normal N.[P—-P
Cllp PE§ PO _ PE t: [0 E]
Edge N —ND
LEft X — X iny WD XO _Xmin

(_1’ O) (Xmin,Y) (0 min ()
X=X . | (X =X,)
Right: Xa— X,
1 10) (K)o e
X = Xmax YO o Y)
BOttom (X — X1 B (YO _Ymin)
— (01 '1) (X1Ymin) ° (Y, =Y,)
Y = Ymin YO o Ymin) 1 g
Top: 0.1) (XY..) Xo =X, L,
Y=Y, ’ S e - (YL Y)

8§ - Exact coordinates for P is irrelevant.

Cohen-Sutherland

Line Clipping

Region Outcodes:

1001 | 1000 | 1010

ym axXx
0001 | 0000 | 0010

0101 : 0100 : 0110

Xm'n Xm

min ““IMaxXx

yﬁﬁn

Bit

Number

FIRST
(MSB)

SECOND

THIRD

FOURTH

(LSB)

1

Above
Top edge
Y = Ymax

Below

Bottom edge
Y<Y

min

Right of
Right edge
X = Xmax
Left of
Left edge
X < Xin

O

Below Top edge
Y < Ymax

Above Bottom edge
Y = Ymin

Left of Right edge
X < Xmax

Right of Left edge
X = Xmin

First Step: Determine the bit values of the two

end-points of the line to be clipped.

To determine the bit value of any point, use:
bl — Sgn(Ymax - Y); b2 — Sgn(Y » Ymin);
b3 — Sgn(xmax_ X); b4 — Sgn(x - Xmin);

Use these end-point codes to locate the line.
Various possibilities:

e If both endpoint codes are [0O000], the line lies
completely inside the box, no need to clip. This is
the simplest case (e.g. L,).

a b . . - a " - I_ 1

- /—\ny line has 1 In the same bi POSITIONS of
the endpoints, It Is guaranteed to lie outside the
box completely (e.g. L, and L3).

1001 ! 1000 ! 1010

- — — = Ymax
0001 0000 0010

0101 | 0100

e Neither completely L,
reject nor inside the box:

Lines: L,and L., - needs \
more processing.

e What about Line Lg ? Le - Ls

Processing of lines, neither Completely
IN or OUT; e.g.Lines: L, L;and L.

Basic idea:
Clip parts of the line In any order (consider

from top or bottom).

Algorithm Steps:
e Compute outcodes of both endpoints to
check for trivial acceptance or rejection

(AND logic).
e If not so, obtain an endpoint that lies outside
the box (at least one will ?).

e Using the outcode, obtain the edge that is
crossed first.

1001 ! 1000 ! 1010

- - ymax
0001 | 0000 | 0010

0101 | 0100

Coordinates for Intersection, for clipping
w.r.t edge:

Inputs: Endpoint coordinates:
(X0, Yo) and (X;, Y,)

OUTPUT:
Edge for clipping (obtained using

outcode of current endpoint).

Obtain corresponding
Intersection points

e CLIP (replace the endpoint by the
Intersection point) w.r.t. the edge.

e Compute the outcode for the updated
endpoint and repeat the iteration, till

It 1Is 0O00O0.
- Repeat the above steps, If the other
endpoint is also outside the area.

e.g. Take Line L; (endpoints - E and I):
E has outcode 0100 (to be clipped w.r.t. bottom
edge);

So El i1s clipped to FI;

Outcode of F I1s 0000; D "¢

But outcode of I is 1010; L, |
Clip (w.r.t. top edge)

to get FH. B N H
Outcode of H is 0010; G
Clip (w.r.t. right edge) L.

to get FG; N

i~~~ AA ~AF M 4
OIIIL,C Outcoade o1 U o

is 0000, display the Le £
final result as EG. N

Formulas for clipping w.r.t. edge, In cases of:

Top Edge X=X +(X1 X)*((Y—_YY))

Bottom Edge: HE=H'¢ +(X _ X)*(min
(Y, Y)

(Xmax _XO)
(X1 =Xo)

Right Edge:
Y=Y (YY)

Left edge:

Let’s compare with Cyrus-Beck formulation -

Calculations for parametric line Clipping

' Normal N.[P—-P
Cllp PE§ PO _ PE t: [0 E]
Edge N —ND
LEft X — X iny WD XO _Xmin

(_1’ O) (Xmin,Y) (0 min ()
X=X . | (X =X,)
Right: Xa— X,
1 10) (K)o e
X = Xmax YO o Y)
BOttom (X — X1 B (YO _Ymin)
— (01 '1) (X1Ymin) ° (Y, =Y,)
Y = Ymin YO o Ymin) 1 g
Top: 0.1) (XY..) Xo =X, L,
Y=Y, ’ S e - (YL Y)

8§ - Exact coordinates for P is irrelevant.

Liang-Barsky

Line Clipping

Consider parametric equation of a line segment:

X =X, +UAX;Y =Y, +UAY,0<u<l.
where,

AX = X, - X,; AY =Y, =Y,

A point is considered to be within a
rectangle, Iiff

XW

min

IN

X, +tUAX < XW_;

YW, < Y,4+UAY < YW

max *

Each of these four inequalities, can be

expressed as: n pk — qk; k =]_,2,3,4

where, the parameters are defined as:

P, = _AX’ 0, = Xl - XWmin
p2=AX’ q2=XWmax_X1

p;=—AY, Q;=Y,—YW_,

Py = AY1 4, =‘Y"\/Vmax _Yl

Based on these four inequalities, we can
find the following conditions of line clipping:

e If p, =0, the line is parallel K =1 > |eft
to the corresponding clipping K =2 > Right

boundary: K =3 =2 Bottom
K=4 - Top

e If for any k, for which p, = O:

- g < 0O, the line is completely outside
the boundary

- .= O, the line is inside the parallel
clipping boundary.

e If p, <O, the line proceeds from the outside
to the inside of the particular clipping boundary
(visualize infinite extensions in both).

 If p.> 0O, the line proceeds from the inside to
the outside of the particular clipping boundary
(visualize infinite extensions in both).

INn both these cases, the intersection
parameter iIs calculated as:

u=aq,/p,

The Algorithm:

e Initialize line intersection parameters to.:
u, = 0; u, = 1;

e Obtain p;, q;; fori =1, 2, 3, 4.

e Using p;, g; - find if the line can be rejected or
the Intersection parameters must be adjusted.

e If p. <O, update u, as:

mex[0,(q, / p)], k=1-4

e If p. = 0O, update u, as:

min{ 1 (q, / pl, k =14

e After update, if u, > u, : reject the line.

p. <0:u, =max[O,(q,/ pk)],k:1—4‘

p>0:u,=mn[1,(q,/ p)], k=1-4

K=1 = Left; K=2 - Right -2

K=3 =2 Bottom; K=4 -2 Top L, Le
p,=—-AX, q=X;—XW,, \

P, =AX, 0, = ><ermx _Xl Le = LE

p3=—AY, q3:Y1_YVVrrin
P, =AY, q,=YW__ -Y,

max

L,: (O, 1); /*Analyze the line in both directions.
Do for L,: [max(0, -d,, -ds) min(1, -d,, d,(<1))]
L. L. & L. = (O, -d;) — hence reject.
S 7> T8 1L, [max(0, -d,, -dg) min(d, dy, d,)]
= (0, dy) (why ?) — so accept and clip

What about Circle/ZEllipse clipping

or for curves ??

INPUT OUTPUT

Can you do a inside-outside test,
for the object vs. rectangle ?

POLYGON

CLIPPING

Methodology: CHANGE position of
vertices for each edge by line clipping

May have to add new vertices to the list.

Processing of Polygon
vertices against boundary

both OUT

Output: Null.

S G S (No output)
Polygon :cjip
being ipoundary

Processing of Polygon
vertices against boundary

IN OUT g
S OUT;
P IN;
1and P
P: second OWTITE [Ee
output
it first
__.,,;,;,/Iflllflllfllf’/ 774 NnlLirni 1t
prrr st = ALt

Processing of Polygon
vertices against boundary

|

|

|

- W

N
a7~

S r{////////f/,,,i ’"E S an d P bOth IN

Output: P.

Polygon
being
clipped

: Clip
P: Output boundary

Processing of Polygon
vertices against boundary

S IN; P OUT

Output: |

| output

Problems with multiple components

e o
.y

Problems with multiple components

Al

- .
_ B

Now output is as above Desired Output

Any ldea ??

— the modified
Weller-Atherton algorithm

Solution for multiple
components

>

For say, clockwise processing of polygons,
follow:

e For OUT -= IN pair, follow the polygon
boundary

e For IN -= OUT pair, follow Window boundary
INn clockwise direction

For say, clockwise processing of polygons,
follow:

e For OUT -= IN pair, follow the polygon
boundary

e For IN -= OUT pair, follow Window boundary

IN clockwise direction

