
Graphics Programming
using OpenGL

Why OpenGL?
• Device independence
• Platform independence

– SGI Irix, Linux, Windows

• Abstractions (GL, GLU, GLUT)
• Open source
• Hardware-independent software

interface
• Support of client-server protocol
• Other APIs

– OpenInventor (object-oriented toolkit)
– DirectX (Microsoft), Java3D (Sun)

Brief Overview of OpenGL

OpenGL is a software interface that allows the programmer to
create 2D and 3D graphics images. OpenGL is both a standard API and
the implementation of that API. You can call the functions that comprise
OpenGL from a program you write and expect to see the same results no
matter where your program is running.

OpenGL is independent of the hardware, operating, and
windowing systems in use. The fact that it is windowing-system
independent, makes it portable. OpenGL program must interface with the
windowing system of the platform where the graphics are to be displayed.
Therefore, a number of windowing toolkits have been developed for use
with OpenGL.

OpenGL functions in a client/server environment. That is, the
application program producing the graphics may run on a machine other
than the one on which the graphics are displayed.The server part of
OpenGL, which runs on the workstation where the graphics are displayed,
can access whatever physical graphics device or frame buffer is available
on that machine.

OpenGL's rendering commands, however are "primitive". You can tell the
program to draw points, lines, and polygons, and you have to build more complex
entities upon these. There are no special-purpose functions that you can call to
create graphs, contour plots, maps, or any of the other elements we are used to
getting from "old standby programs”. With OpenGL, you have to build these
things up yourself.

With OpenGL any commands that you execute are executed immediately.
That is, when you tell the program to draw something, it does it right away. You
also have the option of putting commands into display lists. A display list is a not-
editable list of OpenGL commands stored for later execution. You can execute the
same display list more than once. For example, you can use display lists to
redraw the graphics whenever the user resizes the window. You can use a display
list to draw the same shape more than once if it repeats as an element of the
picture.

OpenGL is hardware-independent. Many different vendors have written
implementations that run on different hardware. These implementations are all
written to the same OpenGL standard and are required to pass strict conformance
tests. Vendors with licenses include SGI, AT&T, DEC, Evans & Sutherland,
Hitachi, IBM, Intel, Intergraph, Kendall Square Research, Kubota Pacific,
Microsoft, NEC, and RasterOps. The RS/6000 version comes with X and Motif
extensions. However X is not required to run OpenGL since OpenGL also
runs with other windowing systems.

Features in OpenGL

• Others
- atmospheric fog, alpha blending,

motion blur

• 3D Transformations
- Rotations, scaling, translation, perspective

• Colour models
- Values: R, G, B, alpha.

• Lighting
- Flat shading, Gouraud shading, Phong

shading
• Rendering

-Texture mapping
• Modeling

- non-uniform rational B-spline (NURB)
curves, surfaces

OpenGL Operation
From OpenGL reference
manual “Blue book”

Comm-
ands

What is to be
drawn?

How it is to be
drawn?

Display
List

Eval-
uator

Per-
Vertex

Opns. &
primitive
assembly

Rasteri-
zation

Per-
fragment

opns.

Texture
memory

Pixel
opns.

Frame
buffer

OpenGL
Operation

From OpenGL
reference manual
“Blue book”

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex

Opns. &
primitive
assembly

Rasteri-
zation

Per-
frag-
ment
opns.

Pixel
opns.

Texture
memory

Frame
buffer

Can accumulate some
commands in a display list
for processing at a later
time (Batch mode). Or can
proceed immediately
through the pipeline

OpenGL
Operation

From OpenGL reference
manual “Blue book”

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex
opns. &

primitive
assembly

Raster-
ization

Per-
frag-
ment
opns.

Pixel
opns.

Texture
memory

Frame
buffer

Provides an efficient means
for approximating curve
and surface geometry by
evaluating polynomial
commands of input values

OpenGL
Operation

From OpenGL reference
manual “Blue book”

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex
opns. &

primitive
assembly

Raster-
ization

Per-
frag-
ment
opns.

Pixel
opns.

Texture
memory

Frame
buffer

Process geometric primitives -
points, line segments, and
polygons as vertices and are
transformed, lit, and clipped
to the viewport in preparation
for the next stage.

OpenGL
Operation

From OpenGL reference
manual “Blue book”

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex
opns &

primitive
assembly

Raster-
ization

Per-
frag-
ment
opns.

Pixel
opns.

Texture
memory

Frame
buffer

Produces a series of
frame buffer addresses
and associated values
using a two-dimensional
description of a point,
line segment, or polygon

OpenGL
Operation

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex
opns &

primitive
assembly

Raster-
ization

Per-
frag-
ment
opns.

Pixel
opns.

Texture
memory

Frame
buffer

From OpenGL
reference manual
“Blue book”

Z-buffering, and blending
of incoming pixel colors
with stored colors, and
masking and other logical
operations on pixel values

OpenGL
Operation

Comm-
ands

Display
Lists

Eval-
uator

Per-
Vertex
ops &

primitive
assembly

Raster-
ization

Per-
frag-
ment
opns

Pixel
opns

Texture
memory

Frame
buffer

From OpenGL
reference manual
“Blue book”

Input data can be in
the form of pixels
(image for texture
mapping) is processed
in the pixel operations
stage.

Geometric data (vertices, lines, and
polygons) follows the path through the row of
boxes that includes evaluators and per-vertex
operations, while pixel data (pixels, images,
and bitmaps) is treated differently for part of
the process.

Both types of data undergo the
rasterization and per-fragment operations
before the final pixel data is written into the
frame buffer.

OpenGL Operation

In the per-vertex operations stage of
processing, each vertex's spatial coordinates
are transformed by the modelview matrix, while
the normal vector is transformed by that
matrix's inverse and renormalized if specified.

The rasterization process produces
fragments (not pixels directly), which consists
of color, depth and a texture.

Tests and processing are performed on
fragments before they are written into the
frame buffer as pixel values.

Abstractions

GLU

• Primitives - points, line, polygons
• Shading and Colour
• Translation, rotation, scaling
• Viewing, Clipping, Texture
• Hidden surface removal

• Viewing –perspective/orthographic
• Image scaling, polygon tessellation
• Sphere, cylinders, quadratic surfaces

GLUT
• Windowing toolkit (key, mouse

handler, window events)

GL

OpenGL Drawing Primitives

OpenGL supports several basic primitive types, including points,
lines, quadrilaterals, and general polygons. All of these primitives are
specified using a sequence of vertices.

glVertex2i(Glint xi, Glint yi);
glVertex3f(Glfloat x, Glfloat y, Glfloat z);
Glfloat vertex[3];

glBegin(GL_LINES);
glVertex2f(x1, y1);
glVertex2f(x2, y2);

glEND();

Define a pair of points as:

glBegin(GL_POINTS);
glVertex2f(x1, y1);
glVertex2f(x2, y2);

glEND();

The numbers indicate the order in which the vertices have been specified.
Note that for the GL_LINES primitive only every second vertex causes a line
segment to be drawn. Similarly, for the GL_TRIANGLES primitive, every third vertex
causes a triangle to be drawn. Note that for the GL_TRIANGLE_STRIP and
GL_TRIANGLE_FAN primitives, a new triangle is produced for every additional
vertex. All of the closed primitives shown below are solid-filled, with the exception
of GL_LINE_LOOP, which only draws lines connecting the vertices.

The following code fragment illustrates an example of how the
primitive type is specified and how the sequence of vertices are
passed to OpenGL. It assumes that a window has already been opened
and that an appropriate 2D coordinate system has already been
established.

// draw several isolated points

GLfloat pt[2] = {3.0, 4.0};
glBegin(GL_POINTS);
glVertex2f(1.0, 2.0); // x=1, y=2
glVertex2f(2.0, 3.0); // x=2, y=3
glVertex2fv(pt); // x=3, y=4
glVertex2i(4,5); // x=4, y=5
glEnd();

The following code fragment specifies a 3D polygon to be drawn,
in this case a simple square. Note that in this case the same square could
have been drawn using the GL_QUADS and GL_QUAD_STRIP primitives.

GLfloat p1[3] = {0,0,1};
GLfloat p2[3] = {1,0,1};
GLfloat p3[3] = {1,1,1};
GLfloat p4[3] = {0,1,1};

glBegin(GL_POLYGON);
glVertex3fv(p1);
glVertex3fv(p2);
glVertex3fv(p3);
glVertex3fv(p4);
glEnd();

Coordinate Systems in the Graphics Pipeline

OCS - object coordinate system
WCS - world coordinate system
VCS - viewing coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device coordinate system

3D Viewing Pipeline

VM
v1,v2,…, vN

P clip
modelview

matrix
projection

matrix

world
coordinates

perspective
division

VP

viewport matrix

clip
coordinates

normalized device
coordinates

window
coordinates

object
coordinates

From F. S. Hill Jr., Computer Graphics using OpenGL

3D Viewing Pipeline

VM
v1,v2,…, vN

P clip
modelview

matrix
projection

matrix

world
coordinates

perspective
division

VP

viewport matrix

clip
coordinates

normalized device
coordinates

window
coordinates

object
coordinates

From F. S. Hill Jr., Computer Graphics using OpenGL

3D Viewing – ModelView Matrix

VM
v1,v2,
…, vN

P clip

modelview
matrix

projection
matrix

world co-
ordinates

perspective
division

VP

viewport
matrix

clip co-
ordinates

normalized
device co-
ordinates

window
coor-
dinates

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// viewing transform
gluLookAt(eyeX, eyeY, eyeZ,

lookAtX, lookAtY, lookAtZ, upX, upY, upZ);
// model transform

glTranslatef(delX, delY, delZ);
glRotatef(angle, i, j, k);
glScalef(multX,multY, multZ);

3D Viewing – Projection Matrix

VM
v1,v2,
…, vN

P clip
model
view

matrix

projection
matrix

world co-
ordinates

per-
spective
division

VP

view-
port

matrix

clip co-
ordinates

normalized
device
Coordinates

window
Coor-
dinates

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// perspective transform
gluPerspective(viewAngle, aspectRatio,nearZ,farZ);
// other commands for setting projection matrix
glFrustum(left, right, top, bottom);
glOrtho(left, right, top, bottom);
gluOrtho2D(left, right, top, bottom);

OpenGL functions for setting up transformations

modelling transformation
(modelview matrix)

glTranslatef()
glRotatef()
glScalef()

viewing transformation
(modelview matrix)

gluLookAt()

projection transformation
(projection matrix)

glFrustum()
gluPerspective()
glOrtho()
gluOrtho2D()

viewing transformation
glViewport()

Structure of a GLUT Program

int main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGB | GLUT_DEPTH);

glutCreateWindow("Interactive rotating
cube"); // with size & position

glutDisplayFunc(display);
// display callback, routines for drawing

glutKeyboardFunc(myKeyHandler);
// keyboard callback

glutMouseFunc(myMouseClickHandler);
// mouse callback

glutMotionFunc(myMouseMotionHandler);
// mouse move callback

init();

glutMainLoop();

}

void display() {...}

void myKeyHandler(unsigned char key, int x,
int y) {...}

void myMouseClickHandler(int button, int
state, int x, int y) {...}

void myMouseMotionHandler(int x, int y) {...}

glutInitDisplaymode()

Before opening a graphics window, we need to decide on the
`depth' of the buffers associated with the window. The following table
shows the types of parameters that can be stored on a per-pixel basis:

The various GLUT_* options are invoked together by OR-ing them
together, as illustrated in the example code, which creates a graphics
window which has only a single copy of all buffers (GLUT_SINGLE), does
not have an alpha buffer (GLUT_RGB), and has a depth buffer
(GLUT_DEPTH).

RGB Red, green and blue,
Typically 8 bits per pixel

GLUT_RGB

A Alpha or accumulation buffer,
Used for composting images

GLUT_RGBA

Z Depth value, used for
Z-buffer visibility tests

GLUT_DEPTH

Double buffer Extra copy of all buffers,
Used for smoothing animation

GLUT_DOUBLE

Stencil buffer Several extra bits,
Useful in composting images

GLUT_STENCIL

glutInitWindowPosition(), glutInitWindowSize(), glutCreateWindow()

These calls assign an initial position, size, and name to the window
and create the window itself.

glClearColor(), glMatrixMode(), glLoadIdentity(), glOrtho()

glClearColor() sets the colour to be used when clearing the window. The
remaining calls are used to define the type of camera projection. In this
case, an orthographic projection is specified using a call to
glOrtho(x1,x2,y1,y2,z1,z2). This defines the field of view of the camera, in
this case 0<=x<=10, 0<=y<=10, -1<=z<=1.

glutDisplayFunc(display), glutMainLoop()

This provides the name of the function you would like to have
called whenever glut thinks the window needs to be redrawn. Thus, when
the window is first created and whenever the window is uncovered or
moved, the user-defined display() function will be called.

glutDisplayFunc() registers the call-back function, while glutMainLoop()
hands execution control over to the glut library.

Viewing in 2D
void init(void) {

glClearColor(0.0, 0.0, 0.0, 0.0);
glColor3f(1.0f, 0.0f, 1.0f);
glPointSize(1.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluOrtho2D(
0.0, // left
screenWidth, // right
0.0, // bottom
screenHeight); // top

}

Drawing in 2D
glBegin(GL_POINTS);

glVertex2d(x1, y1);

glVertex2d(x2, y2);

.

.

.

glVertex2d(xn, yn);

glEnd();

GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_POLYGON

Drawing a square in OpenGL

The following code fragment demonstrates a very simple OpenGL
program which opens a graphics window and draws a square. It also
prints 'helllo world' in the console window. The code is illustrative of the
use of the glut library in opening the graphics window and managing the
display loop.

glutInit()

Following the initial print statement, the glutInit() call initializes the
GLUT library and also processes any command line options related to
glut. These command line options are window-system dependent.

display()

The display() call-back function clears the screen, sets the
current colour to red and draws a square polygon. The last call, glFlush(),
forces previously issued OpenGL commands to begin execution.

#include <stdio.h>
#include <GL/glut.h>

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 1.0, 0.0);
glBegin(GL_POLYGON);
glVertex3f(2.0, 4.0, 0.0);
glVertex3f(8.0, 4.0, 0.0);
glVertex3f(8.0, 6.0, 0.0);
glVertex3f(2.0, 6.0, 0.0);

glEnd();
glFlush();
}

int main(int argc, char **argv)
{
printf("hello world\n");
glutInit(&argc, argv);
glutInitDisplayMode

(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowPosition(100,100);
glutInitWindowSize(300,300);
glutCreateWindow ("square");

glClearColor(0.0, 0.0, 0.0, 0.0);
// black background

glMatrixMode(GL_PROJECTION);
// setup viewing projection

glLoadIdentity();
// start with identity matrix

glOrtho(0.0, 10.0, 0.0, 10.0, -1.0, 1.0);
// setup a 10x10x2 viewing world

glutDisplayFunc(display);
glutMainLoop();

return 0;
}

Assigning Colours

OpenGL maintains a current drawing colour as part of
its state information.

The glColor() function calls are used to change the
current drawing colour - assigned using the glColor function
call.

Like glVertex(), this function exists in various
instantiations. Colour components are specified in the order of
red, green, blue. Colour component values are in the range
[0...1], where 1 corresponds to maximum intensity.

For unsigned bytes, the range corresponds to [0...255].
All primitives following the fragment of code given below
would be drawn in green, assuming no additional glColor()
function calls are used.

Color Flashing

Applications that use colors deal with them in one of two ways:

• RGB, also called TrueColor -- Every pixel has a red, green, and a blue
value associated with it.
• via a Color LookUp Table (CLUT), also called color index mode --
Every pixel has a color index associated with it. The color index is a
pointer into the color lookup table where the real RGB values reside.

The use of a color lookup table takes significantly less memory
but provides for fewer colors. Most 3D applications, and OpenGL in
particular, operate using RGB colors because it is the natural color
space for colors and lighting and shading. Color flashing will occur
when you run OpenGL. When the focus shifts to an OpenGL window,
either by clicking on it or by moving the mouse pointer to it, the way
you have instructed X to change focus, the colors of the rest of the
windows will change dramatically. When a non-OpenGL window is in
focus, the colors in the OpenGL window will change.

GLfloat myColour[3] = {0, 0, 1}; // blue

glColor3fv(myColour); // using vector of
floats

glColor3f(1.0, 0.0, 0.0); // red using floats

glColor3ub(0, 255, 0); // green using
unsigned bytes

Assigning Colours
Current drawing colour maintained as a

state.

Colour components - red, green, blue in
range [0...1] as float or [0…255] as unsigned
byte

Colour Interpolation

If desired, a polygon can be
smoothly shaded to interpolate colours
between vertices.

This is accomplished by using the
GL_SMOOTH shading mode (the
OpenGL default) and by assigning a
desired colour to each vertex.

glShadeModel(GL_SMOOTH);
// as opposed to GL_FLAT

glBegin(GL_POLYGON);
glColor3f(1.0, 0, 0); // red
glVertex2d(0, 0);
glColor3f(0, 0, 1.0); // blue
glVertex2d(1, 0);
glColor3f(0, 1.0, 0); // green
glVertex2d(1, 1);
glColor3f(1.0, 1.0, 1.0); // white
glVertex2d(0, 1);

glEnd();

A fourth value called alpha is often appended to the colour
vector. This can be used assign a desired level of transparency to a
primitive and finds uses in compositing multiple images together. An
alpha value of 0.0 defines an opaque colour, while an alpha value of 1.0
corresponds to complete transparency.

The screen can be cleared to a particular colour as follows:

glClearcolor(1.0, 1.0, 1.0, 0.0); // sets the clear colour to
white and opaque

glClear(GL_COLOR_BUFFER_BIT); // clears the colour
frame buffer

Lighting up the 3D World

Ambient light

(source at infinity)

Diffuse light

(from a point
source)

X

Y

Z

X

Y

Z

// Enable light
glEnable(GL_LIGHT0); // can have other lights
glEnable(GL_LIGHTING);
glShadeModel(GL_SMOOTH);

GLfloat light0_colour[] = {1, 1.0, 1, 1.0};
GLfloat light0_position[] = {0.0, 1.0, 0.0, 0.0};

// Setting up light type and position
glLightfv(GL_LIGHT0, GL_AMBIENT,
light0_colour); // use GL_DIFFUSE for diffuse

glLightfv(GL_LIGHT0, GL_POSITION,
light0_position);

Demo – 2D Curves

Demo – 2D Polygon Drawing

Polyline test Polygon test

Demo – Colour Interpolation

References
• OpenGL Architecture Review Board, Dave

Shreiner, Mason Woo, Jackie Neider, Tom
Davis, OpenGL Architecture Review Board, The
OpenGL Programming Guide – The Red book,
4th edition, Addison-Wesley.

(http://www.glprogramming.com/red/
index.html)

• OpenGL Architecture Review Board, Dave
Shreiner, The OpenGL Reference Manual-
The Blue book, 4th edition, Addison-Wesley.

(http://rush3d.com/reference/opengl-
bluebook-1.0)

• F. S. Hill Jr., Computer Graphics using OpenGL,
Pearson Education, 2003.

End of Lectures on
Graphics Programming

using OpenGL

