POLYFILL -

SCAN CONVERSION
of a POLYGON




Pixels are not at the center of the grid,
but at the intersection of two orthogonal
scan lines (on the grid intersection points).




SCAN CONVERSION - POLYFILL




SCANLINE POLYFILL ALGORITHM

Steps (conceptual):

 FiInd minimum enclosed rectangle

e No. of scanlines =Y, — Yin + 1

m

e For each scanline do

e Obtain intersection points of scanline
with polygon edges.

e Sort intersections from left to right




e Form pairs of intersections from the lists

e Fill within pairs

e Intersection points are updated for each
scanline

e Stop when scanline has reached Y

maxXx

8 - Intersections a
special handling




Check if a point is
within a Polygon?

Look left or right, and
count the number of
Intersection points of the
scanline with the edges of

the Polygon.

If the number is ODD,
point is Inside

else Outside




Two different cases of
scanlines passing through
the vertex of a polygon

Case - |

< Add one more
Intersection:

\ A 4

3 -=>4




Case - 11
Add one more
INtersection:

L A
alih 4

5->6;

Do not add
Intersection,
keep 4,

HOW 7?7




What i1s the difference between the intersection
of the scanlines Y and Y’, with the vertices?

‘Y

Y1

For Y, the edges at the vertex are on the
same side of the scanline.

7 — e — =] = "

VVﬂBFEdS T()r Y [ﬂe euge Fre Or
either/both sides of the vertex.

INn this case, we require additional processing.




Vertex counting in a scanline

- Traverse along the polygon boundary
clockwise (or counter- clockwise) and

- Observe the relative change in Y-value of
the edges on either side of the vertex (i.e. as
we move from one edge to another).




Vertex counting
IN a scanline

A A
G

Check the condition:

If end-point Y values of two consecutive
edges monotonically increase or decrease,
count the middle vertex as a single intersection
point for the scanline passing through It.

Else the shared vertex represents a local
maximum (or minimum) on the polygon
boundary. Increment the intersection count.




If the vertex iIs a local extrema, consider
(or add) two intersections for the scan line
corresponding to such a shared vertex.

Must avoid this
to happen in cases,
such as:




To implement the above:

While processing non-horizontal edges
(generally) along a polygon boundary in any
order, check to determine the condition of

monotonically changing (increasing or
decreasing) endpoint Y values.
I so:
Before
processing N Before ATter

processing Processing

processing




To implement the above:

Shorten the lower edge to ensure only one
INntersection point at the vertex.

Before
processing After Before After

Iﬂlﬁ’\h’\ﬁﬂlnf\l

processmg prOCeSSIng Processirig




Scanline PolyFill Algorithm
(revisited, In brief)

Intersect scanline with polygon edges.

Fill between pairs of intersections

Basic Structure:
Fory =Y ., tO Y ..
1) intersect scanline with each edge

2) sort intersections by increasing X

3) fill pairwise (intO -= Intl, INnt2 -> INt3, ...)

4) Update intersections for next scanline




This Is the basic structure, but we are
going to handle some special cases to make
sure It works correctly and fast.

Two important features of scanline-based
polygon filling are:

e scanline coherence - values don't change
much from one scanline to the next - the
coverage (or visibility) of a face on one
scanline typically differs little from the
previous one.

e edge coherence - edges intersected by
scanline “I”’ are typically intersected by
scanline “i1+1".




(Xk+1’ Yk+1)
(Y
L

(Vi1 = Y + 1)

o (Y Slope of the line L
(Xi» Yi) (polygon edge) is:

Thus the Intersection for the next scanline

1 ~IhtFAasrmmaAaAdA A~
1S UbLalliICTuUu Ao.

Xii1 = round (X, + 1/7m), where m = AY/AX.




How to implement this using integer arithmetic ?
Take an example: m = AY/AX = 7/3.

Set Counter, CcC=0

and counter-increment, AC = AX = 3;

For the next scan lines,
successive values of C are : 3, 6, 9.

Thus only at scanline C =>= AY.

Then, X, is incremented by 1 only at 3"
scanline andsetas: C< C—-—AY =9 -7 = 2.

Repeat the above step(s) till Y, reaches Y

max -

After more scanlines: 2 +3+3=8; 8—-7 =1;
After more scanlines: 1 +3 + 3 = 7;




Data Structure Used (typical example):

SET (Sorted Edge table):
Contains all information necessary to
process the scanlines efficiently.

SET iIs typically built using a bucket sort,
with a many buckets as there are scan lines.

All edges are sorted by their Y .,
coordinate, with a separate Y bucket for each
scanline.

Within each bucket, edges sorted by

ing X of Y,,, point.

Only non-horizontal edges are stored. Store
these edges at the scanline position in the SET.




Edge structure
(sample record for each scanline):

(Y o Ximin» AXZAY, pointer to next edge)

AEL (Active edge List):

Contains all edges crossed by a scanline
at the current stage of iteration.

This i1s a list of edges that are active for

this scanline, sorted Dby Increasing X
Intersections.

Also called: Active Edge Table (AET).




10 12




Bucket-sorted Edge Table
for Polygon

EF DE
-5
°/7]3|e
CD

lll e

ymax min m




-5
s = o llll EIEED

Set Counter,
counter-increment, AC = min (AX, AY) = 2 (= AY);
Update for AB (-ve m), when Y, = 2; Y = 1:

For the next three left (-ve) vertical (Y) scan lines,
successive valuesofCare: 2,4,6; X=7-3 =4,

Thus only at 3" iteration: C >= AX.

Then, Y is incremented by 1 only at 3" scanline
andset: C€C—-—AX=6-5=1; Y=1+1=2;

2
AB




BC: 5
v = <4/6> llll .l.l

Set Counter ,
counter-increment, AC = min (AX, AY) = 4 (= AY);

Update for BC (+ve m), when Y, = 2; Y = 1:
For the next two right vertical (Y) scan lines,
successive valuesofCare :4,8; X=7+2=09;

Thus only at 2" jteration: C >= AX.

Then, Y is incremented by 1 only at 2"d scanline
andset:C<€ C—-—AX=8-6=2; Y=1+1=2;

Stop as Y = Y. z
" > S0HE
BC 4
OEEE DEED

2




Do you need all this ??




BC: 5
AV = alD) llll .E.l

Counter (from earlier iteration) , C=2; an
counter-increment, AC = min (AX, AY) = 4 (= AY);

Update for BC (+ve m), when Y, = 3; Y = 2:
For the next right vertical (Y) scan line, the
successive valueofCis:6; X =9+ 1 = 10;

Thus only at 1st iteration: C =>= AX.
Then, Y is incremented by 1 only at 1St scanline

andset:C€E€C—-—AX=6-6 - Y=2+1=3;

StopasyY =Y, = ?7?. o~ I..I
- BC 10
BC
—5
10 << - Is this OK 77

3




After post-processing (update from SET) at 3" scanline:

FA BC
o20]

Complete the next two sets of iterations

yourself, till you get :
FA BC
6
020~

= 10 + 3 = , why 7?7

After post-processing (update from SET) at 5% scanline:

3

Home task:

S5

5

FA CD
0120 +[f11]12 0 &




10 12




Status of AET at Scanline 8

AET
Pointer

= Hlﬂl DREIE

ymax

DE CD
6
NORE - DEED




AET Status of AET at Scanline 9

Pointer

= Hlﬂl DEEIE

Ymax X
DE CD
6
DEEE. DEan
'N=up Status of AET at Scanline 10
Pointer

G DEEC, DD




Precautions:
Intersection has an integer Y coordinate

If this point is the Y,,;, of the edge’s
endpoints, count It.

If the edge iIs horizontal and on the
scanline, don't count Iit.

During iteration process with each
scanline, the AET iIs updated.

For each scanline the AET keeps track of
the set of edges It has to intersect and stores
the Intersection points In 1t. The sorting of the
entries is w.r.t the X-intersection values.

Have a re-look at It.




Processing Steps:

e SetY tosmallest Y In SET entry (first non-
empty bucket)

e Initialize AET to be empty

e Repeat until both AET and SET are empty

(1) Move from SET bucket Y to AET, those
edges whose Y ., = Y.

(i) Sort AET on X (simple, as SET Is
pre-sorted anyway).




(i) Fill pixels in scanline Y using pairs of X-
coordns. from AET.

(iv) Increment scanline by 1.

(v) Remove from AET those entries for which
Y = Y, .« (edges not involved).

(vi) For each non-vertical edge in AET, update
X for new Y.

N
|

m ! AAND
LJ-LUUFF

—
i




The algorithm:
scan-fill(polygon)

Construct the Edge table (ET)
Y. .. = mMmin (all Y In the ET)

min

AET = null
forY =Y, i, tO Y, .«

Merge-sort ET[Y] into AET by X value

— .C NS ==

| P -T
!

etween pairs of X in AET.

—:-11
il




for each edge in AET
If edge.Y, =Y
remove edge from AET
else
edge.X = edge.X + dx/dy
endif
sort AET by X value

end scan_ fill




What about vertex processing on both sides of a horizontal edge ?




What do you do to fill till vertex D — odd number of intersections




Problem with HORIZONTAL EDGES

Problem with
adjacent polygons:
(the LOC problem ©)

b i '1‘1{* -.:"-’T-E .J'.- . gt I e et (e _:_-7 ._' e _:-.
el g 1'-.' ’_?:.-i_', it ¥ . £ = 4 .- IT-. L i U N et R TR e R i TR e L
LT, AR oL ST s e R R B L A
T e e e - - S

__: e S e

E‘ R -_'& e gL R,
o gt
i -

P b & ’_?:.-",1'.
b e R 1 A
" NEehy St Ay L o
e S e

bIeE s

e

Think of the background surrounding polygon,
producing the same problem at the edges.




Problem with HORIZONTAL EDGES

Problem with
adjacent polygons:
(the LOC problem ©)

Vo

™

ke -:1!{- -

s --.- .;: s --.
s Ty e
o B GEeT - et A -8
L} ' - *a
3 i




Problem with HORIZONTAL EDGES

Problem with

adjacent polygons:

(the LOC problem ©) .
/i ' e’g ;:."". i

Coiiie i e
Py ¢ J_."-':";E__ " : _.._-_"' J.'-.i:': ik




End of Lectures on




