Three - Dimensional

Graphics




Three-Dimensional Graphics

e Use of a right-handed coordinate system
(consistent with math)

e [Left-handed suitable to screens.

e To transform from right to left, negate the
z values.
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Right Handed Space Left Handed Space




Homogeneous representation of a
point iIn 3D space:

P=|xyzw]|

(w=1,fora3Dpoint)

Transformations will thus be
represented by 4x4 matrices:

P’=AP




Transformation Matrix in 3D:

where,

produces linear transformations:
scaling, shearing, reflection
and rotation.

K= [p qr]', produces translation
I = [I mn]T, yields perspective transformation

while, ® = S, is responsible for uniform scaling







3D Reflection:

The following matrices:

produce reflection about:

XY \ 4 ZX
plane plane plane

respectively.




Rotation Matrices along an axis:

1 0 0 0| cos(B) O sin(B)
0 cos@) -sin(@) O 0

1 O
0 sinf@) cosl@) OfF|—sin(8) 0 cos(B)
0 O 0 1 0 0 O

X-axis Y-axIs

coséy; — sirz(g; )
sin\y) cos\y e
0 0 Z-axIs

0 0

Why is the sign reversed In one case ?
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Rotation About an Arbitrary AXIS In Space

Assume, we want to perform a rotation by

O degrees, about an axis in space passing
through the point (X, Yo, Zg) Wwith direction
cosines (c,, C,, C,).

1. First of all, translate by:
ITI = - (Xos Yo» Zo)'
2. Next, we rotate the axis into one of the
principle axes, let's pick, Z (|R.]. IR,]).

3. We rotate next by 0 degrees in Z (|R, (O D).
4. Then we undo the rotations to align the
axis.
5. We undo the translation: translate by
(-Xgs “Yo: ~Zo)'!




The tricky part of the algorithm is
INn step (2), as given before.

This Is going to take 2 rotations:

) About x-axis
(to place the axis In the xz plane)

and

1)) About y-axis
(to place the result coincident with the
Z-axXIs).




First step of Rotation:

Rotation about x by a.

How do we determine o?




Project the unit vector, along OP, Into
the yz plane.

The y and z components, c, and c,, are
the direction cosines of the unit vector
along the arbitrary axis.

It can be seen from the diagram, that :




Z
After first step
of Rotation £ Cy




Rotation by 3 about y:

How do we determine 3?
Steps are similar to that done for a:

e Determine the angle B to rotate the
result into the Z axis:

e The x component is C, and the z
component iIs d.

cos(B)= d = d/(length of the unit vector)

sin(B)= c,, = c,/(length of the unit vector).

Final Transformation for 3D rotation, about an
arbitrary axis:

M= |T| [R,| [Ry| [R,| [Ry[™ [R,|™* [T|*




Final Transformation matrix for 3D rotation,
about an arbitrary axis:

M= 1T| [R,| [Ry| IR, [Ry[* [Ry|* [T[*

where:
1

T =

cosd —sind 0 0
sind cosé@ 0 Of
0 0 1 0
0 0 01




M = [T] R IRy IR, IR R, [T

= [TRyRJJ[R,] [T RyR,]"
= C[R,)]C:

A special case of 3D rotation:

Rotation about an axis parallel to a
coordinate axis (say, parallel to X-axis):




Rotation About an Arbitrary AXIS In Space

Assume, we want to perform a rotation by

O degrees, about an axis in space passing
through the point (X, Yo, Zg) Wwith direction
cosines (c,, C,, C,).

1. First of all, translate by:
ITI = - (Xos Yo» Zo)'
2. Next, we rotate the axis into one of the
principle axes, let's pick, Z (|R.]. IR,]).

3. We rotate next by 0 degrees in Z (|R, (O D).
4. Then we undo the rotations to align the
axis.
5. We undo the translation: translate by
(-Xgs “Yo: ~Zo)'!
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Final Transformation matrix for 3D rotation,
about an arbitrary axis:

M= 1T| [R,| [Ry| IR, [Ry[* [Ry|* [T[*

where:
1

T =

cosd —sind 0 0
sind cosé@ 0 Of
0 0 1 0
0 0 01




If you are given 2 points instead (on the
axis of rotation), you can calculate the direction
cosines of the axis as follows:

where |V |isthe lenght of the vectorV.




Reflection through an arbitrary plane

Method i1s similar to that of rotation
about an arbitrary axis.

M= T| [R,| [Ry| [Ral [Ry ™[Ry [T|™

T does the job of translating the origin to
the plane.

R, and R, will rotate the vector normal to
the reflection plane (at the origin), until It is
coincident with the +Z axis.

Rs IS the reflection matrix about X-Y
plane or Z=0 plane.




Spaces

Object Space:

definition of objects. Also called
Modeling space.

World Space:

where the scene and viewing
specification iIs made

Eyespace (Normalized Viewing Space):
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3D Image Space:
A 3D Projective space.
Dimensions: [-1:1] In X & Y, [0:1] In Z.

This I1s where image space hidden
surface algorithms work.

Screen Space (2D):

Range of Coordinates -
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Projections

We will look at several planar geometric
3D to 2D projection:

- Parallel Projections
Orthographic
Oblique

- Perspective

Projection of a 3D object Is defined by
straight projection rays (projectors)
emanating from the center of projection

(COP) passing through each point of the
object and intersecting the projection plane.




Classification of Geometric Projections

Planar geometric
projections

Parallel

plan

Three-
. Cavalier point
o
olevat

levation [|elevation




Perspective Projections

Distance from COP to projection
plane iIs finite. The projectors are not
parallel & we specify a center of
projection (COP).

Center of Projection iIs also called
the Perspective Reference Point

YD DDD
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Perspective foreshortening:

The size of the perspective
projection of the object varies inversely
with the distance of the object from the
center of projection.

Vanishing Point:
The perspective projections of any
set of parallel lines that are not parallel

to the projection plane converge to a
vanishing point.




Z-axis vanishing point

Z-axis
vanishing point




Center of
projection
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Perspective Geometry and Camera Models

X orY P(X,Y,2)

PP

X, Or y,

O (COP)
-




Perspective Geometry and Camera Models

X orY P(X,Y,2)

e
N

1= XoryY P(X.,Y.2)

PP
X, Or 'y,

(cop) O




Perspective Geometry and Camera Models

X orY P(X,Y,2)
i XorY — P(XY,2)
X, Or y,
ya
O (COP) PP
f X, Or y,
A
(cop) O

f

Equations of Perspective geometry, next ->




X,/ Y./ v/ Equa}tions of
A ENYS B4l Pcrspective geometry

X, X ¥ Y

fZ+f f Z+f

where, P=[XY Z 1]T




Generalized formulation of
perspective projection:

PP
XorY (COP)

L ,
P (Xp, ¥p. Zp)
Q

(dy, dy, d)

P(X,Y,2)

| Z
0,0, Z,)

Parametric egn. of the line L between
COP and P:

COP + t(P-COP); O<t<1.




Let the direction vector from (O, O, Z,) to
COP be (d,, d, d,),
and Q be the distance from (O, O, Z,) to COP.

Then COP = (O, O, Z,) + Q(d,, d, d,).
The coordinates of any point on line L Is:

X" = de = (X_ de)t;

Y~ =Qd, + (Y- Qd)t;
" = (£, +Qd,) + (Z- (Z, + Qd),))t;

Using the condition Z© = Z,, at the intersection
of line L and plane PP:

= ¢ Now subsitute to
Z—(Zp+Qdz) obtain, x, and y,.







Generalized formula of perspective
projection matrix:




Special cases from the generalized formulation
of the perspective projection matrix

Matrix

Type Zp Q [dX’ dy’ dZ]
M, h O Infinity [O, O, -1]
Moer d d |0, O, -1]
M’ ber O d |0, O, -1]

If Q Is finite, M_., defines a one-point

gen

perspective projection in the above two cases.




Parallel Projection

Distance from COP to projection
plane is infinite.

Therefore, the projectors are parallel lines
& we need to specify a:

direction of projection (DOP)

Orthographic:

the direction of projection and the
normal to the projection plane are the same.
(direction of projection is normal to the
projection plane).




Classification of Geometric Projections

Planar geometric
projections

Parallel

plan
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Projection

Plane

(top view) Projectors
for

Projectors for side view

top view I
PP
A '_
.
Projection

= Plane

(side view

/ Projection Projectors for
Plane front view

(front view)

Example of Orthographic Projection




Example of Isometric Projection:

Projection

Projection-
plane normal




Axonometric orthographic projections
use planes of projection that are not
normal to a principal axis (they
therefore show multiple face of an

object.)

Isometric projection: projection plane
normal makes equal angles with each
principle axis. DOP Vector: [1 1 1].
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axes to be made with the same scale.
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Obligue projections

projection plane normal and the
direction of projection differ.

Plane of projection is normal to a
Principle axis

Projectors are not normal to the
projection plane




Example Oblique Projection

Projection

Projection-plane normal




General obligue projection of a point/line:




General oblique projection of a point/line:

Projection Plane: x-y plane; P~ Is the
projection of P(0O, O, 1) onto x-y plane.

“I” Is the projection of the z-axis unit
vector onto x-y plane and o Is the angle
the projection makes with the x-axis.

When DOP varies, both I and a will
vary.

Coordinates of P : (Icos a, Isin a, 0).

As given In the figure: DOP is:
(dy, dy, -1) or (/{cos a, I'sin a, -1).




General obligue projection of a point/line:

What is B ?




View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC

\Y

VUP

(umwﬂvmw)

VP

(umm’VmM) \V/=IN




VP

VPN é. -

n COP/PRP

Semi-infinite pyramid view volume

for perspective projection




o

Finite pyramid
view volume for
perspective projection




PRP V/=IN

N

Infinite parallelopiped view volume
for parallel projection




Finite parallelopiped
view volume for
parallel projection

D




