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Three-Dimensional Graphics
 Use of a right-handed coordinate   system  

ee e s o a G ap cs

(consistent with math) 

 Left-handed suitable to screens   Left-handed suitable to screens. 

 To transform from right to left, negate the g g
z values.

Right Handed Space Left Handed Space g p p



Homogeneous representation of a 
point in 3D space:po p

|| |wzyx | TP
point)3Dafor 1,w( 

Transformations will thus be Transformations will thus be 
represented by 4x4 matrices:

P’ = A.P



Transformation Matrix in 3D:
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K = [p q r]T, produces translation

 = [l m n]T, yields perspective transformation

hil   i ibl f if liwhile, = s, is responsible for uniform scaling
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3D Reflection:3 e ect o
The following matrices:
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Rotation Matrices along an axis:
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Why is the sign reversed in one case ?
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Rotation About an Arbitrary Axis in Space
Assume, we want to perform a rotation by

 d b t i i i degrees, about an axis in space passing
through the point (x0, y0, z0) with direction

i ( )cosines (cx, cy, cz).

1 First of all  translate by:  1. First of all, translate by:  
|T| =  - (x0, y0, z0)T

2 Next  we rotate the axis into one of the 2. Next, we rotate the axis into one of the 
principle axes, let's pick,  Z (|Rx|, |Ry|).

3 We rotate next by  degrees in Z (|R ()|)3. We rotate next by  degrees in Z (|Rz()|).
4. Then we undo the rotations to align the 

axisaxis.
5. We undo the translation: translate by             

( x  y  z )T(-x0, -y0, -z0)T



The tricky part of the algorithm is The tricky part of the algorithm is 
in step (2), as given before. 

This is going to take  2 rotations: 

i) About x-axis )
(to place the axis in the xz plane)

and 

ii) About y-axis 
(  l  h  l  i id  i h h   (to place the result coincident with the  
z-axis).



z First step of Rotation:
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R t ti b t bRotation about x by :  

How do we determine ?How do we determine ? 



Project  the unit vector, along OP, into j , g ,
the yz plane. 

The y and z components, cy and cz, are
the direction cosines of the unit vector
l th bit ialong the arbitrary axis.

It can be seen from the diagram, that :o g ,
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Rotation by about y:y  y
How do we determine ? 
Steps are similar to that done for :Steps are similar to that done for :

• Determine the angle  to rotate the            

• The x component is cx and the z           

g 
result into the Z axis: 

p x
component  is d. 
cos()= d =  d/(length of the unit vector) cos()= d =  d/(length of the unit vector) 

sin()= cx =  cx/(length of the unit vector).

Final Transformation for 3D rotation, about an 
bit  iarbitrary axis:

M = |T| |Rx| |Ry| |Rz| |Ry|-1 |Rx|-1 |T|-1| | | x| | y| | z| | y| | x| | |



Final Transformation matrix for 3D rotation, 
b t  bit  iabout an arbitrary axis:

M = |T| |Rx| |Ry| |Rz| |Ry|-1 |Rx|-1 |T|-1x y z y x
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M |T| |R | |R | |R | |R | 1 |R | 1 |T| 1M = |T| |Rx| |Ry| |Rz| |Ry|-1 |Rx|-1 |T|-1

= [T R R ] [R ] [T R R ]-1=  [T Rx Ry] [Rz] [T Rx Ry] 1

= C [Rz] C-1C [Rz] C

A special case of 3D rotation:
R t ti  b t  i  ll l t   Rotation about an axis parallel to a 

coordinate axis (say, parallel to X-axis):

MX = |T| |RX| |T|-1MX  |T|  |RX|  |T|



Rotation About an Arbitrary Axis in Space
Assume, we want to perform a rotation by

 d b t i i i degrees, about an axis in space passing
through the point (x0, y0, z0) with direction

i ( )cosines (cx, cy, cz).

1 First of all  translate by:  1. First of all, translate by:  
|T| =  - (x0, y0, z0)T

2 Next  we rotate the axis into one of the 2. Next, we rotate the axis into one of the 
principle axes, let's pick,  Z (|Rx|, |Ry|).

3 We rotate next by  degrees in Z (|R ()|)3. We rotate next by  degrees in Z (|Rz()|).
4. Then we undo the rotations to align the 

axisaxis.
5. We undo the translation: translate by             

( x  y  z )T(-x0, -y0, -z0)T



z

z
After first step
of Rotation cyof Rotation

d
y

cx

P
cz


P(c 0 d)

x

y
0

0

P(cx, 0, d)
x

y

c
y

0
d

cx

x



Final Transformation matrix for 3D rotation, 
b t  bit  iabout an arbitrary axis:

M = |T| |Rx| |Ry| |Rz| |Ry|-1 |Rx|-1 |T|-1x y z y x
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If   i  2 i t  i t d (  th  If you are given 2 points instead (on the 
axis of rotation), you can calculate the direction 

i  f th  i   f ll  cosines of the axis as follows: 
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Reflection through an arbitrary planeg y p

Method is similar to that of rotation Method is similar to that of rotation 
about an arbitrary axis. 

M = |T| |Rx| |Ry| |Rfl| |Ry|-1 |Rx|-1 |T|-1

T does the job of translating the origin to 
the plane. p

Rx and Ry will rotate the vector normal to 
h fl i l ( h i i ) il i ithe reflection plane (at the origin), until it is 

coincident with the +Z axis.

Rfl is the reflection matrix about X-Y 
plane or Z=0 planeplane or Z=0 plane.



SpacesSpaces

Object Space:Object Space:

definition of objects. Also called 
M d li  Modeling space.

W ld SWorld Space:

where the scene and viewing g
specification is made

Eyespace (Normalized Viewing Space):

where eye point (COP) is at the origin where eye point (COP) is at the origin 
looking down the Z axis.



3D Image Space:3D Image Space:

A 3D Projective space. j p

Dimensions: [-1:1] in X & Y, [0:1] in Z. 

This is where image space hidden 
surface algorithms worksurface algorithms work.

Screen Space (2D):

Range of Coordinates -
[0 : width]  [0 : height][0 : width], [0 : height]



ProjectionsProjections

We will look at several planar geometric We will look at several planar geometric 
3D to 2D  projection:       

Parallel Projections- Parallel Projections
Orthographic 
ObliqueOblique

- Perspective

Projection of a 3D object is defined byProjection of a 3D object is defined by
straight projection rays (projectors)
emanating from the center of projectionemanating from the center of projection
(COP) passing through each point of the
object and intersecting the projection plane.j g p j p



Classification of Geometric Projectionsj

Planar geometric
projections

Parallel Perspective

Orthographic Oblique One-point Two-
point

Top
(plan)

Cabinet Other
Three-(plan)

Front
l ti

Side
l ti

Axonometric Cavalier point

elevation elevation

Isometric Other



Perspective ProjectionsPerspective Projections

Distance from COP to projection 
plane  is finite. The projectors are not plane  is finite. The projectors are not 
parallel & we specify a center of 
projection (COP)projection (COP).

Center of Projection is also called 
the Perspective Reference Pointthe Perspective Reference Point

COP = PRPCOP = PRP



Perspective foreshortening:Perspective foreshortening:
The size of the perspective

projection of the object varies inversely
with the distance of the object from thej
center of projection.

Vanishing Point:Vanishing Point:
The perspective projections of any

set of parallel lines that are not parallelset of parallel lines that are not parallel
to the projection plane converge to a
vanishing point.
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Projection
plane

Center of 
projection

ProjectionProjection
Plane normal



Projection plane

x-axis
varnishing point

z-axis
varnishing pointvarnishing point varnishing point

C t f P j tiCenter of Projection



Perspective Geometry and Camera ModelsPerspective Geometry and Camera Models

X or Y P(X,Y,Z)
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ff



Perspective Geometry and Camera Modelsp y

F P(X,Y,Z)X or Y

ZZ
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(COP) ZO



Perspective Geometry and Camera Models

X or Y P(X,Y,Z)

PP

Z
xp or yp

PP X or Y P(X,Y,Z)

O (COP)
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f
PP

 f

(COP)

xp or yp ZO( )
f

Equations of Perspective geometry, next ->
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Generalized formulation of
perspective projection: 

(COP)X or Y
PP

L P´(xp, yp, Zp)
Q

L

ZO

P(X,Y,Z)(dx, dy, dz)
ZO

(0, 0, Zp)

Parametric eqn. of the line L between 
COP d PCOP and P:

COP + t(P-COP);  0 < t < 1.



Let the direction vector from (0, 0, Zp) to p
COP be (dx, dy, dz), 
and Q be the distance from (0, 0, Zp) to COP. p

Then COP = (0, 0, Zp) + Q(dx, dy, dz).
The coordinates of any point on line L is:

X´ = Qd + (X- Qd )t; X = Qdx + (X- Qdx)t; 

Y´ = Qdy + (Y- Qdy)t;

U i  th  diti  Z´  Z  t th  i t ti
Z´ = (Zp + Qdz) + (Z - (Zp + Qdz))t;

Using the condition Z = Zp, at the intersection
of line L and plane PP:
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obtain  x and y)Qd(ZZ zp  obtain, xp and yp.
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Generalized formula of perspective 
projection matrix: 
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Special cases from the generalized formulation 
of the perspective projection matrix

M t i  Matrix 
Type Zp Q [dx, dy, dz]

Morth 0 Infinity [0, 0, -1]

M d d [0  0  1]Mper d d [0, 0, -1]

M’per 0 d [0, 0, -1]

If Q is finite, Mgen defines a one-point 
perspective projection in the above two casesperspective projection in the above two cases.



P ll l P j tiParallel Projection

Distance from COP to projection 
plane is infinite.       p

Therefore,  the projectors are parallel lines 
& we need to specify a:

direction of projection (DOP)

Orthographic:
th  di ti  f j ti  d th  the direction of projection and the 

normal to the projection plane are the same. 
(direction of projection is normal to the (direction of projection is normal to the 
projection plane).



Classification of Geometric Projectionsj

Planar geometric
projections

Parallel Perspective

Orthographic Oblique One-point Two-
point

Top
(plan)

Cabinet Other
Three-(plan)

Front
l ti

Side
l ti

Axonometric Cavalier point

elevation elevation

Isometric Other



Projection

Projectors

j
Plane
(top view)

Projectors for 
t i

for 
side view

( )

top view

Projection

P j t f

Projection
Plane
(side view)

Projection
Plane

Projectors for 
front view

( )

E l  f O th hi  P j ti

(front view)

Example of Orthographic Projection



Example of Isometric Projection: 

Projection
plane 

P j tProjector

P j tiProjection-
plane normal



Axonometric orthographic projectionsAxonometric orthographic projections
use planes of projection that are not
normal to a principal axis (theynormal to a principal axis (they
therefore show multiple face of an
object.)

I t i  j ti j ti  lIsometric projection: projection plane
normal makes equal angles with each
principle axis. DOP Vector: [1 1 1].

All 3 axis are equally foreshortened
allowing measurements along theallowing measurements along the
axes to be made with the same scale.



Oblique projections :Oblique projections :

projection plane normal and the projection plane normal and the 
direction of projection  differ. 

Plane of projection is normal to aPlane of projection is normal to a
Principle axis

Projectors are not normal to the
projection planep j p



Example Oblique Projection Example Oblique Projection 

ProjectionProjection
plane y

Projectorz x

Projection-plane normal



General oblique projection of a point/line:General oblique projection of a point/line:

y

P´

 l



xz P(0, 0, 1)( , , )



General oblique projection of a point/line:q p j p
Projection Plane: x-y plane; P´ is the

j i f (0 0 ) lprojection of P(0, 0, 1) onto x-y plane.

`l´ is the projection of the z-axis unitl is the projection of the z-axis unit
vector onto x-y plane and  is the angle
th j ti k ith th ithe projection makes with the x-axis.

When DOP varies both `l´ and  willWhen DOP varies, both l and  will
vary.

Coordinates of  P´: (l cos , l sin , 0).

As given in the figure: DOP is:

(dx, dy, -1) or (l cos , l sin , -1).



General oblique projection of a point/line:

Wh t i 

General oblique projection of a point/line:

What is  y

P´

 l



xz P(0, 0, 1)( , , )



View Specifications:View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC 

v

VUPVUP
(umax, vmax)VP

VRPCW

VP

u

VRP

u

VPN(umin, vmin)

nn



v

VRPCWVP VRPCWVP

uVPN

n COP/PRP/

Semi-infinite pyramid view volumeSemi infinite pyramid view volume
for perspective projection



BCP

VP

DOP VRPDOP

FCP

Finite pyramid 
view volume for VPN

perspective projection



VPVP

CW

DOP
VRP

DOP

VPNPRP

n

Infinite parallelopiped view volume
for parallel projection



Finite parallelopiped 
view volume for 

parallel projection
BCP

VP

DOP VRP

FCP

VPN


