Three - Dimensional

Graphics

Three-Dimensional Graphics

- Use of a right-handed coordinate system (consistent with math)
- Left-handed suitable to screens.
- To transform from right to left, negate the z values.

Right Handed Space

Left Handed Space

Homogeneous representation of a point in 3D space:

$$
\begin{aligned}
& P=\mid \mathrm{x} \mathrm{y} \mathrm{z} \mathrm{w}^{\mathrm{T}} \\
& (\mathrm{w}=1, \text { for a 3D point })
\end{aligned}
$$

Transformations will thus be represented by 4×4 matrices:

$$
\mathbf{P}^{\prime}=\mathbf{A} \cdot \mathbf{P}
$$

Transformation Matrix in 3D:

$$
A=\left[\begin{array}{llll}
a & b & c & p \\
d & e & f & q \\
g & i & j & r \\
l & m & n & s
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{T} & \mathrm{~K} \\
\Gamma & \Theta
\end{array}\right]
$$

$\mathrm{T}=\left[\begin{array}{lll}\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \\ \boldsymbol{d} & \boldsymbol{e} & \boldsymbol{f} \\ \boldsymbol{g} & \boldsymbol{i} & \boldsymbol{j}\end{array}\right] \begin{aligned} & \text { produces linear transformations: } \\ & \text { scaling, shearing, reflection }\end{aligned}$ and rotation.
$\mathrm{K}=[\mathrm{pq} \mathrm{r}]^{\mathrm{T}}$, produces translation
$\Gamma=[1 \mathrm{~m} \mathrm{n}]^{\mathrm{T}}$, yields perspective transformation while, $\Theta=s$, is responsible for uniform scaling

$\left[\begin{array}{cccc}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}S x & 0 & 0 & 0 \\ 0 & S y & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
 Translation
 Scale

Shear

Origin is unaffected by scale and shear

3D Reflection:

The following matrices:
$T_{X Y}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] T_{Y Z}=\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \boldsymbol{T}_{Z X}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
produce reflection about:
XY
plane
YZ
plane
ZX
plane
respectively.

Why is the sign reversed in one case ?

$\underbrace{}_{Y} \begin{aligned} & \text { Around } \\ & \text { X-axis } \\ & \ddots \\ & \vdots\end{aligned}$

Rotation About an Arbitrary Axis in Space

Assume, we want to perform a rotation by θ degrees, about an axis in space passing through the point ($\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{z}_{0}$) with direction cosines $\left(c_{x}, c_{y}, c_{z}\right)$.

1. First of all, translate by:

$$
|T|=-\left(x_{0}, y_{0}, z_{0}\right)^{\top}
$$

2. Next, we rotate the axis into one of the principle axes, let's pick, $Z\left(\left|R_{x}\right|,\left|R_{y}\right|\right)$.
3. We rotate next by θ degrees in $Z\left(\left|R_{z}(\theta)\right|\right)$.
4. Then we undo the rotations to align the axis.
5. We undo the translation: translate by
$\left(-x_{0},-y_{0},-z_{0}\right)^{\top}$

The tricky part of the algorithm is in step (2), as given before.

This is going to take 2 rotations:
i) About x-axis
(to place the axis in the $x z$ plane)
and
ii) About y-axis
(to place the result coincident with the z-axis).

Rotation about x by α :
How do we determine α ?

Project the unit vector, along OP, into the $y z$ plane.

The y and z components, c_{y} and c_{z}, are the direction cosines of the unit vector along the arbitrary axis.
It can be seen from the diagram, that :

$$
\begin{gathered}
\mathrm{d}=\operatorname{sqrt}\left(C_{y}^{2}+C_{z}^{2}\right) \\
\cos (\alpha)=C_{z} / d \\
\sin (\alpha)=C_{y} / d
\end{gathered}
$$

$$
\alpha=\sin ^{-1}\left[\frac{c_{y}}{\sqrt{c_{y}^{2}+c_{z}^{2}}}\right]
$$

Rotation by β about y :

How do we determine β ?
Steps are similar to that done for α :

- Determine the angle β to rotate the result into the \mathbf{Z} axis:
- The \mathbf{x} component is \mathbf{C}_{x} and the \mathbf{z} component is d.

$$
\begin{aligned}
& \cos (\beta)=d=d /(\text { length of the unit vector }) \\
& \sin (\beta)=c_{x}=c_{x} / \text { (length of the unit vector). }
\end{aligned}
$$

Final Transformation for 3D rotation, about an arbitrary axis:

$$
M=|T|\left|R_{x}\right|\left|R_{y}\right|\left|R_{z}\right|\left|R_{y}\right|^{-1}\left|R_{x}\right|^{-1}|T|^{-1}
$$

Final Transformation matrix for 3D rotation, about an arbitrary axis:

$$
M=|T|\left|R_{x}\right|\left|R_{y}\right|\left|R_{z}\right|\left|R_{y}\right|^{-1}\left|R_{x}\right|^{-1}|T|^{-1}
$$

where:

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] ;
$$

$$
\boldsymbol{R}_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C_{z} / d & -C_{y} / d & 0 \\
0 & C_{y} / d & C_{z} / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;
$$

$$
\boldsymbol{R}_{y}=\left[\begin{array}{cccc}
\boldsymbol{d} & \mathbf{0} & -C_{x} & 0 \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
C_{x} & \mathbf{0} & d & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right] ;
$$

$R_{z}=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ;$

$M=|T|\left|R_{x}\right|\left|R_{y}\right|\left|R_{z}\right|\left|R_{y}\right|^{-1}\left|R_{x}\right|^{-1}|T|^{-1}$
 $=\left[T R_{x} R_{y}\right]\left[R_{z}\right]\left[T R_{x} R_{y}\right]^{-1}$
 $=\quad C\left[R_{z}\right] C^{-1}$

A special case of 3D rotation:

Rotation about an axis parallel to a coordinate axis (say, parallel to X-axis):

$$
M_{X}=|T|\left|R_{X}\right||T|^{-1}
$$

Rotation About an Arbitrary Axis in Space

Assume, we want to perform a rotation by θ degrees, about an axis in space passing through the point ($\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{z}_{0}$) with direction cosines $\left(c_{x}, c_{y}, c_{z}\right)$.

1. First of all, translate by:

$$
|T|=-\left(x_{0}, y_{0}, z_{0}\right)^{\top}
$$

2. Next, we rotate the axis into one of the principle axes, let's pick, $Z\left(\left|R_{x}\right|,\left|R_{y}\right|\right)$.
3. We rotate next by θ degrees in $Z\left(\left|R_{z}(\theta)\right|\right)$.
4. Then we undo the rotations to align the axis.
5. We undo the translation: translate by
$\left(-x_{0},-y_{0},-z_{0}\right)^{\top}$

Final Transformation matrix for 3D rotation, about an arbitrary axis:

$$
M=|T|\left|R_{x}\right|\left|R_{y}\right|\left|R_{z}\right|\left|R_{y}\right|^{-1}\left|R_{x}\right|^{-1}|T|^{-1}
$$

where:

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] ;
$$

$$
\boldsymbol{R}_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C_{z} / d & -C_{y} / d & 0 \\
0 & C_{y} / d & C_{z} / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;
$$

$$
\boldsymbol{R}_{y}=\left[\begin{array}{cccc}
\boldsymbol{d} & \mathbf{0} & -C_{x} & 0 \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
C_{x} & \mathbf{0} & d & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right] ;
$$

$R_{z}=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ;$

If you are given 2 points instead (on the axis of rotation), you can calculate the direction cosines of the axis as follows:

$$
\begin{aligned}
& V=\left|\left(x_{1}-x_{0}\right)\left(y_{1}-y_{0}\right)\left(z_{1}-z_{0}\right)\right|^{T} \\
& c_{x}=\left(x_{1}-x_{0}\right) /|V| \\
& c_{y}=\left(y_{1}-y_{0}\right) /|V| \\
& c_{z}=\left(z_{1}-z_{0}\right) /|V|, \\
& \text { where }|V| \text { is the lenght of the vector } V \text {. }
\end{aligned}
$$

Reflection through an arbitrary plane

Method is similar to that of rotation about an arbitrary axis.

$M=|T|\left|R_{x}\right|\left|R_{y}\right|\left|R_{f i l}\right|\left|R_{y}\right|^{-1}\left|R_{x}\right|^{-1}|T|^{-1}$

T does the job of translating the origin to the plane.
\mathbf{R}_{x} and \mathbf{R}_{y} will rotate the vector normal to the reflection plane (at the origin), until it is coincident with the $+Z$ axis.
\mathbf{R}_{fl} is the reflection matrix about $\mathrm{X}-\mathrm{Y}$ plane or $\mathbf{Z}=\mathbf{0}$ plane.

Spaces

Object Space:

definition of objects. Also called Modeling space.

World Space:

where the scene and viewing specification is made

Eyespace (Normalized Viewing Space):
 where eye point (COP) is at the origin looking down the Z axis.

3D Image Space:

A 3D Projective space.
Dimensions: [-1:1] in X \& $Y,[0: 1]$ in Z.
This is where image space hidden surface algorithms work.

Screen Space (2D):

Range of Coordinates -
[0 : width], [0 : height]

Projections

We will look at several planar geometric 3D to 2D projection:

- Parallel Projections

Orthographic
Oblique

- Perspective

Projection of a 3D object is defined by straight projection rays (projectors) emanating from the center of projection (COP) passing through each point of the object and intersecting the projection plane.

Classification of Geometric Projections

Perspective Projections

Distance from COP to projection

 plane is finite. The projectors are not parallel \& we specify a center of projection (COP).Center of Projection is also called the Perspective Reference Point

$$
C O P=P R P
$$

Perspective foreshortening:
The size of the perspective projection of the object varies inversely with the distance of the object from the center of projection.

Vanishing Point:

The perspective projections of any set of parallel lines that are not parallel to the projection plane converge to a vanishing point.

Projection Plane normal

Perspective Geometry and Camera Models

Perspective Geometry and Camera Models

Perspective Geometry and Camera Models

Equations of Perspective geometry, next ->
$\mathrm{x}_{\mathrm{p}} / \mathrm{f}=\mathrm{X} / \mathrm{Z} ;{ }^{\mathrm{y}_{\mathrm{p}}} / \mathrm{f}=\mathrm{Y} / \mathrm{Z} ;$

Equations of Perspective geometry

$$
\frac{x_{p}}{f}=\frac{X}{Z+f} ; \frac{y_{p}}{f}=\frac{Y}{Z+f} ;
$$

$$
M_{\mathrm{per}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]
$$

$\mathrm{P}^{\prime}=\mathrm{M}_{\text {per }} \mathbf{P}$;
where, $P=[X Y Z 1]^{\top}$

Generalized formulation of perspective projection:

Parametric eqn. of the line L between COP and P:
$\mathbf{C O P}+\mathrm{t}(\mathrm{P}-\mathrm{COP}) ; 0 \leq \mathrm{t} \leq 1$.

Let the direction vector from ($\mathbf{0}, \mathbf{0}, \mathbf{Z}_{\mathrm{p}}$) to COP be ($\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}$), and Q be the distance from ($0,0, Z_{p}$) to COP.

Then COP $=\left(0,0, Z_{p}\right)+Q\left(d_{x}, d_{y}, d_{z}\right)$.

The coordinates of any point on line L is:

$$
\begin{aligned}
& \mathbf{X}^{\prime}=\mathbf{Q} d_{x}+\left(X-Q d_{x}\right) t ; \\
& \mathbf{Y}^{\prime}=\mathbf{Q} d_{y}+\left(Y-Q d_{y}\right) \mathbf{t} ; \\
& \mathbf{Z}^{\prime}=\left(Z_{p}+Q d_{z}\right)+\left(Z-\left(Z_{p}+Q d_{z}\right)\right) t ;
\end{aligned}
$$

Using the condition $\mathbf{Z}^{\prime}=\mathbf{Z}_{\mathrm{p}}$, at the intersection of line L and plane PP:

$$
t=\frac{-Q d_{z}}{Z-\left(Z_{p}+Q d_{z}\right)}
$$

Now subsitute to obtain, x_{p} and y_{p}.

$\frac{X-Z \frac{d_{x}}{d_{z}}+Z_{p} \frac{d_{x}}{d_{z}}}{Z_{p}-Z}+1$ Qdz

$$
y_{p}=\frac{Y-Z \frac{d_{y}}{d_{z}}+Z_{p} \frac{d_{y}}{d z}}{\frac{Z_{p}-Z}{Q d_{z}}+1}
$$

Generalized formula of perspective projection matrix:

Special cases from the generalized formulation of the perspective projection matrix

Matrix Type	Z_{p}	Q	$\left[d_{x}, d_{y}, d_{z}\right]$
$M_{\text {orth }}$	0	Infinity	$[0,0,-1]$
$M_{\text {per }}$	d	d	$[0,0,-1]$
$M_{\text {per }}$	0	d	$[0,0,-1]$

If \mathbf{Q} is finite, $M_{\text {gen }}$ defines a one-point perspective projection in the above two cases.

Parallel Projection

Distance from COP to projection plane is infinite.

Therefore, the projectors are parallel lines \& we need to specify a:
direction of projection (DOP)

Orthographic:

the direction of projection and the normal to the projection plane are the same. (direction of projection is normal to the projection plane).

Classification of Geometric Projections

Example of Orthographic Projection

Example of Isometric Projection:

Axonometric orthographic projections use planes of projection that are not normal to a principal axis (they therefore show multiple face of an object.)

Isometric projection: projection plane normal makes equal angles with each principle axis. DOP Vector: [111].

All 3 axis are equally foreshortened allowing measurements along the axes to be made with the same scale.

Oblique projections :

projection plane normal and the direction of projection differ.

Plane of projection is normal to a Principle axis

Projectors are not normal to the projection plane

Example Oblique Projection

Projection-plane normal

General oblique projection of a point/line:

General oblique projection of a point/line:

 Projection Plane: x-y plane; P^{\prime} is the projection of $\mathrm{P}(0,0,1)$ onto x - y plane.' l ' is the projection of the \mathbf{z}-axis unit vector onto $x-y$ plane and α is the angle the projection makes with the x -axis.
When DOP varies, both ' l^{\prime} and α will vary.
Coordinates of $\mathrm{P}^{\prime}:(l \cos \alpha, l \sin \alpha, 0)$. As given in the figure: DOP is:
$\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}},-1\right)$ or $(l \cos \alpha, l \sin \alpha,-1)$.

General oblique projection of a point/line:

What is β ?

View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC

Semi-infinite pyramid view volume for perspective projection

Infinite parallelopiped view volume for parallel projection

Finite parallelopiped
view volume for parallel projection

