VISIBLE SURFACE DETECTION
The problem of Visibility – Occlusion.

Problem Definition:
Given a set of 3-D surfaces to be projected onto a 2-D screen, obtain the nearest surface corresponding to any point on the screen.

Two types of methods used:

- **Object-space methods (Continuous):**

 Compares parts of objects to each other to determine which surfaces should be labeled as visible (use of bounding boxes, and check limits along each direction).
Order the surfaces being drawn, such that it provides the correct impression of depth variations and positions.

Image Space methods (discrete):

Visibility is decided point by point at each pixel position on the projection plane. Screen resolution can be a limitation.

Hidden Surface – (a) Surface for rendering or (b) Line drawing
Coherence properties:

- **Object Coherence** – If one object is entirely separate from another, do not compare.

- **Face Coherence** – smooth variations across a face; incrementally modify.

- **Edge Coherence** – Visibility changes if a edge crosses behind a visible face.

- **Implied edge coherence** – Line of intersection of a planar face penetrating another, can be obtained from two points on the intersection.
• **Scanline coherence** – Successive lines have similar spans.

• **Area Coherence** – Span of adjacent group of pixels is often covered by the same visible face.

• **Depth Coherence** – Use difference equation to estimate depths of nearby points on the same surface.

• **Frame Coherence** – Pictures of two successive frames of an animation sequence are quite similar (small changes in object and viewpoint).
Different Visible Surface Detection Methods:

- **Back-face Detection**
- **Depth (Z) buffer method**
- **Scan-line method**
- **Depth-sorting method**
- **Area-subdivision method**
- **Octree methods**
- **A-buffer method**
- **BSP Trees**
- **Ray casting method**

Visible surface techniques are 3D versions of sorting algorithms

- *basically compare depth.*
Back face Culling or removal

A Polygon (in 3D) is a back face if:
\[V \cdot N > 0. \]

Let \(V = (0, 0, V_z) \) and \(N = Ai + Bj + Ck. \)

Then \(V \cdot N = V_z \cdot C; \)

Let \(V_z \) be +ve (view along +ve Z-direction),

Check the sign of C.

Condition of back face is thus:
\[\text{sgn}(C) \geq 0. \]

What happens if \(V \cdot N = 0 \) ??
How to get normal vector (N) for a 3D surface, polygon?

\[R = P \times Q \]

Order of vertices for calculation of N – w.r.t the front side of the surface.

Brighter Side

Darker side
Take the order of vertices to be counter-clockwise for the brighter side.

Take the case of a cube:

Exterior faces of a cube:
You can choose any two vectors (edges) to obtain the normal to the surface.

Any risks in such a case, if we randomly choose any two vectors?

Better Solution to obtain the direction cosines of N:

Assume n vertices of the polygon: (X_i, Y_i, Z_i); $i=1,2,...,n$.

Compute:

\[
\begin{align*}
 a &= \sum_{i=1}^{n} (Y_i - Y_j)(Z_i + Z_j) \\
 b &= \sum_{i=1}^{n} (Z_i - Z_j)(X_i + X_j) \quad \text{where } j = i + 1 \\
 c &= \sum_{i=1}^{n} (X_i - X_j)(Y_i + Y_j)
\end{align*}
\]

If $i = n$, $j = 1$
\[
a = \sum_{i=1}^{n} (Y_i - Y_j)(Z_i + Z_j)
\]
\[
b = \sum_{i=1}^{n} (Z_i - Z_j)(X_i + X_j)\quad \text{where } j = i + 1
\]
\[
c = \sum_{i=1}^{n} (X_i - X_j)(Y_i + Y_j)
\]

If \(i = n, \ j = 1 \)

Take the expression of “c”:
Can you relate that to one property of the 2-D polygon in X-Y plane?

\(a, b \) and \(c \) also describe the projection surface of the polygon on the Y-Z, Z-X and X-Y planes (or along the X, Y and Z axis) respectively.
If A is the total area of the polygon, the projected areas are:

\[A_{YZ} = a/2; \quad A_{XZ} = b/2; \quad A_{XY} = c/2; \]

The surface normal appears to be pointing outwards. Facing towards the viewer, the edges of the polygon appears to be drawn counter-clockwise.

The polygon is a back face, if $c \geq 0$

If the view direction is along the –ve Z-direction, the above condition becomes: \[c \leq 0 \]
Drawbacks of back face culling:

- Partially hidden faces cannot be determined by this method.
- Not useful for ray tracing, or photometry/radiosity.

However, this is still useful as a pre-processing step, as almost 50% of the surfaces are eliminated.
Depth-buffer or Z-buffer method
Each \((X,Y,Z)\) point on a polygon surface, corresponds to the orthographic projection point \((X, Y)\) on the view plane.

At each point \((X, Y)\) on the PP, object depths are compared by using the depth\((Z)\) values.
Assume normalized coordinates:

\[(\text{FCP}) \ Z_{\text{max}} > Z > 0 \ (\text{BCP}), \quad \text{where} \ Z_{\text{max}} = 1.\]

Two buffer areas are used:

(i) **Depth (Z) buffer:** To store the depth values for each \((X, Y)\) position, as surfaces are processed.

(ii) **Refresh Buffer:** To store the intensity value at each position \((X, Y)\).
Depth-buffer
or
Z-buffer method
Steps for Processing:

(a) Initialize

\[I_B = \text{background intensity} \]

\[\forall (X,Y) \begin{align*}
\text{depth}(X,Y) &= Z_{\text{max}} \\
\text{refresh}(X,Y) &= I_B
\end{align*} \]

(b) For each position on each polygon surface:

(i) Calculate depth \(Z \) for each position \((X,Y)\) on the polygon.

(ii) If \(Z < \text{depth}(X,Y) \) then

\[\text{depth} (X, Y) = Z; \]

\[\text{refresh} (X, Y) = I_s (X, Y) \]
I_s is the projected intensity value of the surface at position (X, Y), which has the minimum value of Z, at the current stage of iteration.

Calculation of Z:

Equation of the surface:

\[AX + BY + CZ + D = 0; \]

\[Z = \frac{-AX - BY - D}{C} \]

Equation for Z at the next scan line:

Remember scanline/Polyfill algorithm? Using edge coherence, we get for the next scanline (Y+1):

\[X' = X - \frac{1}{m}; \]
For a vertical edge: $Z' =$
So to implement the algorithm, three constants are required for each surface:

\[
-\frac{A}{C'}, \frac{(\frac{A}{m} + B)}{C'}, \frac{B}{C}
\]

What is the special condition, C = 0?

Using the above three constants, we can keep calculating the successive depth values along and for successive scanlines. Similar approaches can be used for curved surfaces: \(Z = f(X, Y)\).
Z-Buffer Algo:

for all \((x,y)\)

\[
depth(x,y) = -\infty /* Watch this change */
\]

\[
refresh(x,y) = I_B
\]

for each polygon \(P\)

for each position \((x,y)\) on polygon \(P\)

calculate depth \(z\)

if \(z > depth(x,y)\) then

1. \(depth(x,y) = z\)

2. \(refresh(x,y) = I_P(x,y)\)

Lets take an example →
Z-values of the coordinates:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Z-Buffer values

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Z-values of the coordinates:

\[
\begin{array}{ccc}
4 & 4 & 4 \\
4 & 4 & 8 \\
9 & 8 & 7 \\
7 & 6 & 5 \\
7 & 6 & 5 \\
\end{array}
\]

IMAGES (after pseudo-texture rendering)

Z-Buffer values

\[
\begin{array}{cccc}
9 & 8 & & \\
7 & 8 & 7 & 4 \\
7 & 6 & 5 & 4 \\
\end{array}
\]
SCAN-LINE Algorithms (for VSD)

Extension of 2-D Scanline (polyfill) algorithm.

Here we deal with a set of polygons.

Data structure used:
- ET (Edge Table),
- AET (Active Edge Table) and
- PT (Polygon Table).

Edge Table entries contain information about edges of the polygon, bucket sorted based on each edge’s smaller Y coordinate.

Entries within a bucket are ordered by increasing X-coordinate of their endpoint.
Structure of each entry in ET:

- X-Coordn. of the end point with the smaller Y-Coordn.
- Y-Coordn. of the edge’s other end point
- $\Delta X = 1/m$
- Polygon ID

Structure of each entry in PT:

- Coefficients of the plane equations
- Shading or color information of the polygon
- Flag (IN/OUT), initialized to ‘false’
Take adjacent (not successive) pairs of intersections to fill; FILL (within pair) if POLY_FLAG is set to IN.

Compare Z values in this region to find the visible Z value.
AET Contents

<table>
<thead>
<tr>
<th>Scan Line</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5</td>
<td>AB</td>
</tr>
<tr>
<td>L4</td>
<td>AB</td>
</tr>
<tr>
<td>L3, L2</td>
<td>AB</td>
</tr>
<tr>
<td>L1</td>
<td>AB</td>
</tr>
</tbody>
</table>
Three non-intersecting polygons

GHIJ is behind ABC and DEF.
So, when scanline leaves edge BC, it is still inside polygons DEF and GHIJ. If polygons do not intersect, depth calculations and comparisons between GHIJ and DEF can be avoided.

Thus depth computations are unnecessary when the scanline leaves an obscured polygon. It is required only when it leaves an obscuring polygon.

Additional treatment is necessary for intersecting polygons.
Depth-sorting or Painter’s Algorithm

Paint the polygons in the frame buffer in order of decreasing distance from the viewpoint.

Broad Steps:

- Surfaces are sorted in increasing order of DEPTH.
- Resolve ambiguities when polygons overlap (in DEPTH), splitting polygons if necessary.
- Surfaces are scan converted in order, starting with the surface of greatest DEPTH.
Principle:

Each layer of paint (polygon surface of an object) covers up the previous layers while drawing.
Since, $Z_{\text{Min1}} > Z_{\text{Max2}}$ no overlap occurs. S1 is first scan converted, and then S2. This goes on, as long as no overlap occurs.

If depth overlap occurs, additional comparisons are necessary to reorder the surfaces.

The following set of tests are used to ensure that no re-ordering of surfaces is necessary:
Four(4) Tests in Painter’s algorithm

1. The boundary rectangles in the X-Y plane for the two surfaces do not overlap.

2. Surface S is completely behind the overlapping surface relative to the viewing position.

3. The overlapping surface is completely in front of S relative to the viewing position.

4. The projections of the two surfaces onto the view plane do not overlap.
Tests must be performed in order, as specified.

Condition to RE-ORDER the surfaces:

If any one of the 4 tests is TRUE, we proceed to the next overlapping surface. i.e. If all overlapping surfaces pass at least one of the tests, none of them is behind S.

No re-ordering is required, and then S is scan converted.

RE-ORDERing is required if all the four tests fail.
TEST #1:
The boundary rectangles in the X-Y plane for the two surfaces do not overlap.

We have depth overlap, but no overlap in X-direction.

Hence, Test #1 is passed, scan convert S2 and then S1.

If we have X overlap, check for the rest.
TEST #2:

Surface S is completely behind the overlapping surface relative to the viewing position.

Fig. 1. S1 is completely behind/inside the overlapping surface S2
TEST #3:

The overlapping surface is completely in front of S relative to the viewing position.

S1 is not completely behind S2. So, Test #2 fails.

Fig. 2. Overlapping surface S2 is completely front/outside S1.

In Fig. 2, S2 is in front of S1, but S1 is not completely inside S2 – Test #2 it not TRUE or FAILS, although Test #3 is TRUE.
How to check these conditions?

i) Set the plane equation of S2, such that the surface S2 is towards the viewing position.

ii) Substitute the coordinates of all vertices of S1 into the plane equation of S2 and check for the sign.

iii) If all vertices of S1 are inside S2, then S1 is behind S2. (Fig. 1).

iv) If all vertices of S1 are outside S2, S1 is in front of S2.
TEST #4:
The projections of the two surfaces onto the view plane do not overlap.
Four(4) Tests in Painter’s algorithm - revisited

1. The boundary rectangles in the X-Y plane for the two surfaces do not overlap.

2. Surface S is completely behind the overlapping surface relative to the viewing position.

3. The overlapping surface is completely in front of S relative to the viewing position.

4. The projections of the two surfaces onto the view plane do not overlap.
Tests must be performed in order, as specified.

Condition to RE-ORDER the surfaces:

If any one of the 4 tests is TRUE, we proceed to the next overlapping surface. i.e. If all overlapping surfaces pass at least one of the tests, none of them is behind S.

No re-ordering is required, and then S is scan converted.

RE-ORDERing is required if all the four tests fail.
Case Studies – examples of Painter’s Algorithm
Case Study - I

Initial order: S1 -> S2

Change the order: S2 -> S1
Case Study - II

Initial Order:
S1 -> S2 -> S3.

S1 -> S2,
Test 1 passed.

Check S1, S3. All tests fail.

Interchange. S3 -> S2 -> S1.

Check S2 and S3. All tests fail again.

Correct Order: S2 -> S3 -> S1.
Process of checking the order, results in an infinite loop.

Avoided by setting a FLAG for a surface that has been re-ordered or shuffled. If it has to be altered again, split it into two parts.
What happens in these cases?
Area sub-division method

Examine and divide if necessary

- Works in image-space
- Area Coherence is exploited
- Divide-and-conquer strategy.

WARNOCK’s Algorithm
Possible relationships of the area of interest (rectangular, AOI) and the projection of the polygon:

1. **Surrounding** polygons are completely overlapping the area of interest.

2. **Intersecting** polygons intersect the area.

3. **Contained** polygons are completely inside the area.

4. **Disjoint** polygons are completely outside the area.
Four cases of Polygon position w.r.t rectangular AOI.

- **Surrounding**
- **Intersecting**
- **Contained**
- **Disjoint**
Treat interior part of the intersection and contained as equivalent. Disjoint is irrelevant. The decisions about division of an area is based on:

1. All polygons are **disjoint** from the area. Display background color.

2. Only one **intersecting part or interior (contained)**: Fill the area with background color and then scan-convert the polygon.

3. Single **surrounding** polygon, and no intersecting or contained polygon. Use color of surrounding polygon to shade the area.
4. More than one polygon intersect, contained in and surrounding the area. But the surrounding polygon is in front of all other polygons. Then fill the area with the color of the surrounding polygon.

Step 4 is implemented by comparing the Z-coordinates of the planes of all polygons (involved) at the four corners of the area.

If all four tests fail, divide the rectangular area into four equal parts.

Recursively apply this logic, till you reach the lowest minimum area or maximum resolution – pixel size.

Use nearest surface in that case to paint/shade.
Decision – Step 4

Intersection with:
- Contained Polygon
- Intersecting Polygon
- Surrounding Polygon
Four cases of Polygon position w.r.t rectangular AOI.

- Surrounding
- Intersecting
- Contained
- Disjoint
Case Studies – examples of Area Sub-division method
BSP (Binary Space Partition) trees
BSP (Binary Space Partition) trees
Salient features:

• Identify surfaces that are inside/front and outside/back w.r.t. the partitioning plane at each step of the space division, relative to the viewing direction.

• Start with any plane and find one set of objects behind and the rest in the front.

• In the tree, the objects are represented as terminal nodes with front objects as left branches and back objects as right branches.
• BSP tree’s root is a polygon selected from those to be displayed.

• One polygon each from the root polygon’s front and back half plane, becomes its front and back children.

• The algorithm terminates when each node contains only a single polygon.

• Intersection and sorting at object space/precision
Also see:

- potential visibility sets;
- KD trees, R+-trees;
- Bounding Volume Hierarchy (BVH)
- and Shadow Volume BSP Tree (SVBSP)

Other applications:

- Robot navigation
- Collision Detection
- GIS
- Image Registration
Display list of a BSP tree

- BSP tree may be traversed in a “modified in-order tree” walk to yield a correctly priority-ordered polygon list for an arbitrary viewpoint.

- If the viewer is in the root polygon’s front half space, the algorithm must first display:
 1. All polygons in the root’s rear half-space.
 2. Then the root.
 3. And finally all polygons in the front half-space.

- Use back face culling

- Each of the root’s children is recursively processed.
Disadvantages

- more polygon splitting may occur than in Painter's algorithm

- appropriate partitioning hyperplane selection is quite complicated and difficult

Finding Optimal BSP:

Finding an optimal root node is by testing a small number of candidates.

The node that results in the smallest number of nodes in the BSP tree should be chosen
VSD - Ray Tracing

COP
In reality, possibilities with a light ray: absorption, reflection, refraction, scattering, fluorescence or chromatic aberration (error in lens).
Remember? For Z-buffer:

Each \((X,Y,Z)\) point on a polygon surface, corresponds to the orthographic projection point \((X, Y)\) on the view plane.

At each point \((X, Y)\) on the PP, object depths are compared by using the \(\text{depth}(Z)\) values.

For Ray-tracing:

- Shoot ray from eye point through pixel \((x,y)\) into scene

- Intersect with all surfaces, find first one the ray hits
For Ray-tracing (cont’d):

- Line of Sight of each pixel is intersected with all surfaces

- Shade that point to compute the color of pixel \((x, y)\)

- Consider only the closest surface for shading

- Based on optics of image formation, paths of light rays are traced

- Light rays are traced backward
For Ray-tracing (cont’d):

- Suitable for complex curved surfaces
- Computationally expensive
- Need of an efficient ray-surface intersection technique
- Almost all visual effects can be generated
- Can be parallelized
- Has aliasing problems
Mathematically, the intersection problem is of finding the roots of an equation:

Surface – RAY = 0;

Ray Equation: \(r(t) = t (P - C) \)

Eqns. for

LINE: \[x = x_0 + t\Delta x; \quad y = y_0 + t\Delta y; \quad z = z_0 + t\Delta z; \]

SPHERE: \[(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 \]
Substitution gives us:

\[
(x_0 + t\Delta x)^2 - 2a(x_0 + t\Delta x) + a^2
\]
\[
+(y_0 + t\Delta y)^2 - 2b(y_0 + t\Delta y) + b^2
\]
\[
+(z_0 + t\Delta z)^2 - 2c(z_0 + t\Delta z) + c^2 = r^2
\]

Collecting terms gives us:

\[
(\Delta x^2 + \Delta y^2 + \Delta z^2)t^2 +
\]
\[
2t[\Delta x(x_0 - a) + \Delta y(y_0 - b) + \Delta z(z_0 - c)]
\]
\[
+(x_0 - a)^2 + (y_0 - b)^2 + (z_0 - c)^2 - r^2 = 0
\]
The Equation is Quadratic, with coefficients from the constants of sphere and ray equations.

Cases:

- **No real roots** - Surface and ray do not intersect

- **One real root** - Ray tangentially grazes the surface

- **Two real roots** - From both intersections, get the one with the smallest value of t.
What is the shade, at that point of intersection?

Sphere has center (a, b, c).

The surface normal at any point of intersection is:

\[
\left[\frac{x_p - a}{r}, \frac{y_p - b}{r}, \frac{z_p - c}{r} \right]
\]

What about intersection with other (regular) non-linear surfaces??

- Gaussian
- Ellipsoid
- Directional sinusoid
- Torus
Eqns. for
LINE : \[x = x_0 + t\Delta x; \quad y = y_0 + t\Delta y; \quad z = z_0 + t\Delta z; \]

PLANE : \[Ax + By + Cz + D = 0 \]

Substitution gives us:

\[t = -\frac{(Ax_0 + By_0 + Cz_0 + D)}{(A\Delta x + B\Delta y + C\Delta z)} \]

- Denominator should not be zero;
- Find if intersection is within the polygon, by projecting onto a suitable coordinate plane;
- Overall processing is ray-wise, not polygon-wise.
Read about:

• Stochastic/Distributed Ray Tracing (Monte Carlo on Graphics)
• Global Illumination
• Radiosity
• The Metropolis light transport (MLT) - SIGGRAPH 1997
• Bi-directional Ray Tracing
Rendering with **global illumination**: Light is reflected by surfaces, and colored light transfers from one surface to another. Color from the red wall and green wall (latter not visible) reflects onto other surfaces in the scene. Also notable is the caustic projected onto the red wall from light passing through the glass sphere.
Comparison of VSD (HSR) techniques

<table>
<thead>
<tr>
<th>Algorithms/Methods</th>
<th>Memory</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Buffer</td>
<td>Two arrays</td>
<td>Depth complexity</td>
</tr>
<tr>
<td>Painter’s</td>
<td>One array</td>
<td>Apriori sorting helps speed-up</td>
</tr>
<tr>
<td>Ray casting</td>
<td>Object database</td>
<td>O(#pixels, #surfaces or objects)</td>
</tr>
<tr>
<td>Scanline, Area sub-division</td>
<td>-</td>
<td>Slowest</td>
</tr>
<tr>
<td>Algorithms /Methods</td>
<td>Issues in Implementation</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Z-Buffer</td>
<td>Scan conversion, Hardware</td>
<td>Commonly used</td>
</tr>
<tr>
<td>Painter’s</td>
<td>Scan conversion</td>
<td>Splitting and sorting the major bottleneck</td>
</tr>
<tr>
<td>Ray casting</td>
<td>Spatial data structures help speedup</td>
<td>Excellent for CSG, shadows, transparency</td>
</tr>
<tr>
<td>Scanline, Area sub-division</td>
<td>Hard</td>
<td>Cannot be generalized for non-polygonal models.</td>
</tr>
</tbody>
</table>
VSD - "Visible Surface Detection"
is also called:

Hidden Surface Elimination (HSE); Also: HSR, OC.

So, what is HLE:

Hidden Line Elimination.

Problem:
Take any VSD algorithm and convert to an HLE algorithm
End of lectures on

VISIBLE SURFACE DETECTION