
Computer Graphics
Term Project Report

TRay - The final trace

Arvind Thiagarajan John P John

May 3, 2004

Abstract

The traditional approach to computer graphics rendering has been
the forward graphics pipeline consisting of transformations, clipping
and scan conversion. These are essentially object space methods. The
other approach to solving this problem is ray tracing, which is an
image space method and works on an illumination-per-pixel rather
than per-object basis. Ray tracing makes it possible to model realis-
tic effects like shadows and specular reflection much easier than in the
traditional methods. Other effects like recursive reflection, refraction,
transformations, constructive solid geometry, texture mapping, dielec-
tric surfaces can also be modeled by ray tracing or simple extensions
to it. Finally, harder to capture global illumination effects includ-
ing caustics and inter-diffuse reflections are handled by path tracing,
a close cousin of ray tracing. In this term project, we present the
implementation of a ray tracer supporting the above features which
we call Tray. This report describes the features we implemented, the
theoretical basis for each method and the practical implementation
challenges that ere faced in addition.

1 Aim and Motivation

This section will be a little informal. The whole story began one afternoon
when browsing images submitted for the rendering competition on graph-

1

ics.stanford.edu. The addictive realism of the images and their stunning
quality led us to write to a couple of students at Stanford on what term
project we could take up. Huamin Wang of Stanford graciously responded
by asking us to try out a ray tracer. He said that it would teach us a lot of
things about graphics and that we would be able to create realistic images.

The motivation behind image space methods is that they are able to
more easily simulate effects like shadows and specular highlights that cannot
be easily captured by object space methods that are traditionally used in
real time rendering. Further, the quality of a rendering produced by a ray
tracer can be much superior to real time rendering using graphics libraries
like OpenGL or DirectX.

More importantly, we think what really excited us about ray tracing was
that we would be actually implementing a subset of the graphics pipeline,
not using functionality provided by other libraries as mentioned above. This
meant two things: one, that it would be much more challenging (as it would
involve core computer graphics algorithms and implementation, rather than
just the use of a higher level API) and second, that we would have more
control over the rendering.

2 Introduction to Ray Tracing

In itself, ray tracing is a simple and elegant algorithm. It is basically a point
sampling method that traces infinitesimal beams of light (that we shall call
rays) through a model of a scene. The fundamental idea in ray tracing is that
light rays can be traced back from the observer to the sources. This approach
can easily handle mirror reflections, refractions and direct illumination. The
advantage of ray tracing is that the geometry of the scene is treated like a
black box - rays are traced into the scene, they intersect objects, and return
some illumination value. This means that handling complex geometry is
easier with ray tracing. It also has the disadvantage, however, that certain
coherence properties of objects cannot be exploited. Further, backwards ray
tracing cannot possibly generate global illumination effects like caustics, soft
shadows, indirect illumination and color bleeding.

The input to a ray tracer is a description of the scene that is to be
rendered. This description is normally written in a scene description language
(SDL) that the ray tracer understands. The SDL file will typically include the

2

following: The position and parameters of the eye/camera, the specifications
of objects in the scene (position, shape and size) and the parameters of the
image to be generated (size, antialiasing/filtering options). Objects can be
specified in a variety of ways in a rray tracer - the most common technique is
primitive instancing, where the object is an instance of some primitive that
the ray tracer supports natively.

The algorithm works by shooting rays from the eye through each pixel in
the final image. These rays intersect objects in the scene and return a color
value for that pixel. The color value returned typically includes the direct
illumination for the nearest object intersected by a ray (in ray casting) but
it can also include the effects of multiple specular reflections and refractions
(in recursive ray tracing).

In the following sections, we present each of the modules of our ray tracer
and the features we implemented in chronological order.

3 Steps in Implementing TRay

3.1 Ray Casting, Spheres and Ambient Light

The first step in any implementation is the basic ray casting algorithm. The
idea is as follows: For each ray cast through the scene, determine the nearest
object along the line of sight that intersects the ray. Each type of primitive
that the ray tracer supports will need to have an intersect() routine that
intersects the object with a given ray. Among the easiest primitives to inter-
sect with a ray is a sphere - this is why ray traced images invariably contain
spheres.

3.1.1 Casting a Ray

To cast a ray through the scene, one needs to transform from the coordinates
as given in the scene file to image space coordinates. As in the forward
graphics pipeline, the scene file will contain the world coordinate positions
of the CW (Centre of Window) and the COP (Centre of Projection). In a
ray tracer, the COP is the eye and the CW is normally termed ”look” or
”lookat” (as it is a point that the eye is supposed to be looking at). Finally,
the SDL file will also contain the VUP (view up vector) that is used to
determine the direction which is ”upwards”.

3

Consider a ray from the COP through pixel (i,j) of the image whose
width is w pixels and height is h pixels (w and h are either parameters for
the ray tracer or set to defaults). Let the field of view angle (also specified
in the scene file) be fov. The direction of the ray d is given by the (vector)
equations:

DOP = CW −COP

DU = DOP×VUP

DV = DOP×DU

fl = w ÷ (2 ∗ tan fov/2)

CORNER = ((fl ×DOP)/DOP)− wDU/2− hDV/2

d =



DU.x DV.x CORNER.x
DU.y DV.y CORNER.y
DU.z DV.z CORNER.z






i
j
1




3.1.2 Ray - Sphere Intersection

Consider a ray whose origin is given by the position vector p and whose
direction is given by d. The parametric equation of the ray is given by:
r = p + td while the equation of the sphere is given by |r − c| = r0. These
two equations can be solved directly for r, the position vector of the point of
intersection, but it is normally inefficient to do so. Instead, a better approach
is to first use a quick test to see if the ray is actually heading towards the
sphere. This is done by determining the vector c−p, which is the line joining
the origin of the ray to the centre of the sphere. The dot product of this with
d is determined. If this is negative, the ray can never intersect the sphere and
can quickly be rejected. This leads to a substantial time saving, especially
for complex scenes.

There is one subtle point in the above method: testing the dot product
(c− p).d will not work if the ray originates inside the sphere. This is not a

4

problem with ray casting as all rays originate only from the eye. However,
when extended to recursive ray tracing, this approach fails. The ray sphere
intersection needs to be written with more care in this case, especially for
the case of refraction, where the origin of the ray can be inside a sphere.

3.1.3 Simple Ambient Lighting

The simplest model for direct illumination is to assign an intrinsic color Oaλ

to the surface of each object (in terms of red, green and blue components
or more generally, for any λ). Each object is also assumed to have a coef-
ficient of ambient lighting ka that controls the ambient illumination. This
model assumes uniform illumination of the object: irrespective of the point
of intersection, the intensity returned by the ray is IakaOaλ for each ambient
light source and each color component λ. However, this is sufficient to test
the simple ray caster and the sphere intersection routine, which is what it is
basically meant for.

3.2 Phong Illumination and Point Sources

The next step in implementation, obviously, was to improve the primitive
lighting model. We extended our ray caster in this stage to handle point
light sources and directional lights. The illumination model used is called
the Phong model and is a very simple, easy to implement model that is
popular in most ray tracers. This is not a physically based model - it is just
intended to give aesthetically pleasing results. The Phong lighting model for
any surface consists of three distinct components: ambient lighting (this is
given by the term mentioned in the previous section), diffuse lighting and
specular lighting. The model is based on the observation that some surfaces
are perfectly specular, i.e they reflect light only along one direction (e.g mirror
reflectors like silver or other metals) while others scatter light uniformly in
all directions (e.g walls, chalk). Further, some surfaces are in between in that
they tend to scatter light in a cone about the mirror reflected ray. These are
glossy surfaces (e.g glass, apples).

The diffuse lighting component is independent of the direction of the ray
being cast, and depends only on the angle at which the light from the source
falls on the object being illuminated. The diffuse illumination in the Phong
model is therefore given by IpkdOdλ cos(θ) for a given point light source p.

5

In this equation, kd is called the coefficient of diffuse reflection and Odλ is an
intrinsic diffuse color for the object (in Tray, this is the same as the ambient
color as a separate diffuse color is not really necessary).

The specular reflection component tries to model the property of glossy
surfaces of light being cast in a cone about the reflected ray. First, given a
point source p whose position vector with respect to the point of the ray-
object intersection is S, we compute the reflected ray using the law of reflec-
tion. The reflected ray R is given by:

R = 2(N.S)N− S

In the above equation, N is the normal vector to the surface at the point of in-
tersection. The illumination due to specular reflection is given by IpksOsλ(V.R)ns ,
where V is the view vector (along the reverse of the ray which just intersected
the object) and ns is a property of the surface called shininess. The higher
the value of ns, the closer the surface is to a perfect mirror. Lower values of
ns are used for imperfect reflectors like glossy surfaces.

The Phong lighting model can be easily extended to multiple light sources
by summing the contributions from each light source (ambient, point or di-
rectional). Care needs to be taken to clamp the individual components of
the color (red, green and blue) to a maximum of 1, however. Another point
worth noting is that since computation of both diffuse and specular lighting
requires knowing the value of N, the ray tracer needs to be extended not
only to compute ray-object intersections, but also the normal to the object’s
surface at the point of intersection. This is very easy to do for spheres, for
instance.

The main limitation of simple models like this and indeed, of ray tracing
itself, is that they cannot capture global illumination effects. There is no
easy way to capture indirect illumination of diffuse surfaces with ray tracing.
Effects like soft shadows and caustics are also impossible to render with ray
tracing alone. A solution to this problem that we implemented is described
at the end of the report.

6

3.3 Recursive Ray Tracing, Reflection and Shadows

The next feature that was added was recursive ray tracing. A simple ray
caster only computes reflected illumination due to light sources: it does not
compute specular reflections bouncing off other objects in the scene. This is
handled elegantly by the recursive ray tracing algorithm: When a ray strikes
a specular surface, a new ray (corresponding to the reflected ray) is created
and is traced through the scene. This ray originates from a point just above
the surface (the reason for this is explained below) and is directed in the
reflected direction as computed using the law of reflection. This ray, like all
other rays in the scene, returns an illumination value. The illumination due
to the ray is scaled by a factor kr which is called the reflectance of the surface.
This is added to the illumination due to the light sources in the scene.

One very important point that has been ignored till now is the possibility
of occlusion of a light source due to shadows cast by other objects in the
scene. To handle this, a new kind of ray called shadow rays are introduced.
These are traced towards the light source (if it is a point source) from a
point just above the surface of the object under consideration. The same
ray-object intersection routines can be reused for shadow rays to determine
if the shadow ray intersects any object that is closer than the light source. If
the light source is blocked, then we do not add the illumination due to that
light source. It is instructive that a feature that is considered highly complex
in a scanline-based forward pipeline (shadows) are so easy to implement with
ray tracing.

The fact that the ray tracing algorithm has become recursive complicates
things a bit, though. Some practical implementation issues that we faced
in this regard were memory leaks and stack overflows due to recursion, with
memory not being freed properly. A second, important issue, (hinted at
earlier) is the origin for recursively spawned rays. One cannot begin tracing
the ray exactly from the intersection point, mainly due to the vagaries of
floating point numbers in modern computers. There is always the possibility
that such a ray might intersect the very same surface again! To avoid this,
the rays need to start from a point just above the surface.

7

3.4 SDL Parser

At this stage, we implemented a parser using yacc for a simple scene descrip-
tion language, to test the ray tracer on different scenes. The SDL used is
very simple and is meant only as a tool to test the program.

3.5 Refraction and Transparency

Modeling transparent objects in a ray tracer is a bit more of a challenge
- it requires implementing refraction. In principle, this is the same as re-
flection, with a refracted ray being created instead of a reflected ray. The
equation governing the direction of the refracted ray is given by Snell’s laws
of refraction:

• The incident ray, refracted ray and the normal to the surface at the
point of incidence all lie in the same plane.

• If i is the angle of incidence and r is the angle of refraction, then
sin i/ sin r = n2/n1, where n1 is the refractive index of the medium of
the incident ray and n2 is the refractive index of the medium of the
refracted ray.

Once the refracted ray is computed correctly, the computation of illumina-
tion is much the same as in reflection - trace the refracted ray and scale
the illumination returned by kt which is the transmission coefficient for the
medium.

The real difficulty in implementing refraction is not in this computation,
but rather in keeping track of the refractive indices ! When a ray enters a
medium, we need to keep track of the refractive index of the medium it has
just entered. However, when it leaves the medium and enters a medium,
there is no easy way to know the refractive index of the new medium. The
solution is to store the refractive indices in a hierarchy based on the geom-
etry of the scene - however, this becomes very complicated even for simple
scenes. We have sidestepped this issue by forbidding nesting of refractive
indices, that is, the only possible interfaces are between air and some other
medium. Supporting nested refractive indices in a ray tracer is much more
of a challenge and is a possible feature that could be added.

Another interesting case is total internal reflection, where a ray gets
trapped inside a refracting medium with high refractive index. This can be

8

handled similar to reflection, by spawing a new totally reflected ray and trac-
ing it. However, there are cases when the recursion never terminates, and the
ray remains trapped within the object. To handle this problem and prevent
stack overflows, one needs to limit the recursion depth. Beyond this limit, we
do not trace recursive reflected/refracted rays. This also significantly saves
on rendering time for complex scenes with reflection. Even a depth of as low
as 3 is enough to capture most effects in a scene.

3.6 Transformations

Transformations like translation, rotation and scaling are useful in a ray
tracer for modeling more complex scenes. This enables modelers to visu-
alize the object they wish to model in its own object coordinate system,
and then position it in its environment using an appropriate combination of
translation, rotation and scaling. Another advantage is that more complex
objects can sometimes be obtained by transforming primitives. For example,
an ellipsoid is simply a scaled version of a sphere!

Transformations are implemented in TRay using a transformation matrix
stored with each object. When the SDL specifies a transformation to be
applied to an object, we multiply the transformation matrix for that object
with the matrix for that transformation. Homogeneous coordinates are used
to unify translation with rotation and scaling. When we want to intersect a
ray with a transformed object, the trick is to apply the inverse transformation
to the ray and proceed with the intersection as we normally would. The
result (intersection point and normal) are in object coordinates and need to
be transformed back to world coordinates.

Transforming the intersection point is straightforward, but the normals
are trickier to handle. The idea used to transform normals is to transform
the plane perpendicular to the normal, and to get back the new normal.
Alternatively, it is possible to argue that translation does not affect the nor-
mal’s direction, rotation simply rotates the normal by the same amount, and
scaling scales the normal by the inverse factor. We have used the second
approach as it is more efficient.

One final point is that the transformation matrix, its inverse and the
normal transformation matrix are all precomputed for efficiency. We have
used LUP decomposition in TRay to invert the 4x4 matrix.

9

3.7 Other Objects - Planes and Boxes

The next feature that was added to TRay was support for objects other than
spheres. We started off with planes and boxes as the next two objects to
consider. Both of them are quite easy to intersect with a ray.

For a plane, the standard Cyrus Beck formulation is used:

t = N.(p− pe)/−N.d

where p and d are the origin and direction of the ray, as before, N is the
plane normal and pe is a point on the plane (this with N actually specifies
the plane in the SDL file).

For boxes, the approach is to simply intersect the ray with each of the 6
bounding planes and use the minimum positive value of t so obtained. Back
face culling seems to be a method for optimization, but when one remembers
that rays can originate inside objects, it fails miserably.

Infinite planes with mirror surfaces intersecting at different angles can be
used to create excellent looking scenes with multiple reflections. We did try
out such fun experiments with TRay!

3.8 Constructive Solid Geometry

Another feature present in TRay is CSG (Constructive Solid Geometry) that
enables objects to be modeled as the union, intersection or difference of
primitives (or other CSG objects). While such a feature is very hard to
implement in the conventional scanline models, it is much easier with ray
tracing. As explained earlier, ray tracing is more or less independent of the
geometry of the scene: all that is needed to render an object with ray tracing
is a ray-object intersection routine and a normal computation method. In a
way, these are the interfaces an object needs to implement.

A CSG object is normally represented by a tree, whose leaves are primitive
objects and whose internal nodes are boolean set operators (union, intersec-
tion and difference). This representation is particularly convenient in ray
tracing, as explained below.

To intersect a ray with a CSG object (represented by a node in the tree),
all we do is to recursively intersect the ray with each of its children. These
children could themselves be CSG objects, or primitives (leaves). The trick

10

is to do extra bookkeeping: instead of just keeping track of the nearest
intersection of the ray with each object, we keep track of all the intersections.
These intersections are stored as a sequence of intervals that represent the
ray entering and leaving the object respectively.

From the sequence of intervals for each child of the original object in the
tree, we reconstruct the intervals for the original object by applying the ap-
propriate operation (union, intersection or difference) to the set of intervals.
Thus, with ray tracing, the complicated process of applying Boolean set op-
erators to solid objects is replaced by the much simpler process of performing
the same operators on sets of intervals. We have used an efficient O(n) al-
gorithm for performing the CSG operations on the intervals. This was done
by a technique similar to k-way merging of lists.

However, there are other, more subtle issues in CSG: those of ensuring the
validity of the resultant object. For example, it is difficult, if not impossible to
support infinite/open objects like planes in CSG as the ray-object intersection
interval can extend to infinity. This means such boundary cases need to
be handled properly by the ray tracer, which really complicates the CSG
implementation.

3.9 Antialiasing using Simple Supersampling

Since ray tracing is inherently a point sampling process, it suffers from alias-
ing problems. These problems are often exacerbated by the fact that ray
tracing is ”unaware” of the scene geometry and cannot exploit object or
scanline coherence to solve aliasing problems. Thus, the image produced
by the ray tracer needs to be antialiased to eliminate or reduce effects like
jaggies and irregular object boundaries.

The simplest approach to antialiasing is naive supersampling, where in-
stead of firing just one ray per pixel of the image, multiple rays are fired
through different positions in the pixel. The contribution from each of these
rays is averaged to get the illumination for that pixel. For 4 rays, one each
through the corners of each pixel, the extra cost involved is negligible but
the improvement in visual appearance is often marked. However, all artifacts
cannot be eliminated completely by naive supersampling. Casting more rays
than 4 can improve image quality, but substantially slows down rendering.
A better solution that we implemented later is described in this report.

11

3.10 Triangles and Meshes

More complex objects are normally represented as triangle meshes or B-
reps. This means that ray tracing complex objects reduces to being able
to compute ray-triangle intersections efficiently. The triangle primitive was
implemented in TRay using an efficient algorithm called the MT algorithm
developed by Moller and Trumbore in 1997. This method not only computes
the ray triangle intersection, but also computes some other parameters which
are useful for shading.

Shading a wireframe or mesh object is more complicated. The three
methods traditionally used are flat shading, Gouraud shading and Phong
shading. The first approach simply assumes that all points in the interior
of a triangle have the same normal and uses this normal for the shading
calculations. While simple and fast, this has the shortcoming that it leads
to Mach bands - discontinuities across triangles that are actually visible in
the final rendering. To improve on this, Gouraud shading interpolates the
illumination at the vertices of the triangle to compute the illumination at an
interior point. The best method is Phong shading, which interpolates the
normals rather than the illumination values at the vertices. TRay supports
flat and Phong shading. The interpolation is done using a nice trick: The
weight of a vertex is simply the area of the triangle formed by the opposit
edge with the interior point. These areas are used by MT for intersection
and are precomputed by the MT algorithm, which makes the approach all
the more efficient.

Let V1, V2 and V3 be the position vectors of the vertices of the triangle
and let N be normal to the plane of the triangle. Let e1 and e2 be the edges
sharing vertex V1. All of the above parameters can be precomputed to save
time. Let the ray to be intersected with the triangle originate at p and have
direction d. The Moller - Trumbore test for triangle intersection is as follows:

det = d.N
if(det = 0) then return false
else compute:
u = d.(e2× (p−V1))/det
if(u ≤ 0 or u ≥ 1) then return false
v = −d.(e1× (p−V1))/det

12

if(v ≤ 0 or u+ v ≥ 1) then return false
else t = −(p−V1).N/det

Interestingly, u and v turn out to be the areas one can use for Phong shading
and interpolation, as also for texture mapping as described later.

We have ray traced a teapot with 1560 triangles using TRay. The ren-
dering took a really long time of 75 minutes and led us to try to optimize
the ray object intersections.

3.11 Bounding Volume Hierarchies

We have implemented the bounding volume hierarchy technique proposed
by Kajiya to speed up the ray object intersection calculations. The idea is
to bound each object in the scene by an axis aligned bounding box. These
boxes are themselves bounded in groups by other, bigger bounding boxes.
The boxes are thus arranged in a hierarchy with the root bounding box
bounding the entire scene. Each box contains all of its children. The leaves
of the tree bound actual primitives or CSG objects.

The ray object intersection can be sped up by first testing a ray against
the root of the hierarchy. If the test fails, we can save on further ray object
tests. If the ray intersects the root, we push all its children into a heap order
by distance from the ray. From this, we examine the closest bounding box
and repeat the procedure. If this test fails, we try with the next child in the
heap, and so on. This procedure is extremely efficient and saves on a huge
number of intersection calculations.

Constructing a good hierarchy in itself was a challenge - we have used
a heuristic search based on Goldsmith and Salmon’s cost function (1987) to
determine a good hierarchy.

After implementing bounding volume hierarchies, the time to render the
same teapot was cut to a mere 7 minutes.This represents a speedup by a
factor of 10. We consider the implementation of bounding volumes as the
hardest stage in this term project.

3.12 Other optimizations

To speed up TRay to the maximum extent possible, we have profiled the
code in detail and code tuned by hand all the important routines. One such

13

routine is the ray - bounding box intersection routine. Even though rays
can originate inside bounding boxes, it is safe to use back face culling for
bounding boxes as once a ray is found to originate inside, one has to consider
all the children of that box for intersection anyway.

Another optimization we have implemented is exploiting shadow ray co-
herence. Once a shadow ray intersects an object, we cache the object that
just intersected this shadow ray. The next time a shadow ray intersection is
done, we first test with the object in the cache, if any.

Finally, we have implemented separate shadow ray intersection routines
for each object. These are based on the fact that we only need to deter-
mine if there is an intersection for a shadow ray, not necessarily the closest
intersection.

With all of the above optimizations, the rendering time for the teapot
scene came down to a minute. We consider this to be an important achieve-
ment in our term project.

3.13 Adaptive Supersampling

The next thing we did was to try to improve antialiasing using an adaptive
rather than a naive algorithm. An adaptive algorithm shoots more rays in
those areas of the image that are more prone to aliasing, and thus saves time
in other areas. This is done based on the variance in the values returned from
the 4 corners of a pixel. The pixel is recursively subdivided into 4 sub areas
and the process of firing rays is repeated recursively. Once the difference
in illumination is smaller than a cutoff, we stop the recursion. Adaptive
supersampling considerably improves image quality but also slows down the
ray tracer. The teapot rendered with this method with a cutoff depth of 5
took 7 minutes to render, a slowdown of about 6-7 times.

3.14 Texture Mapping

Texture mapping is a feature that is very easy to add to a ray tracer. The
idea is to map parametric u-v coordinates on an object’s surface to texels
in the texture image. For a sphere, u and v are simply the latitude and
longitude expressed as fractions between 0 and 1. These map onto texels
based on the width and height of the texture file.

14

One issue encountered in texture mapping is that of filtering. One texel
may map onto multiple pixels in the output image which leads to blockiness
in the output image. A solution to this is to use some filtering method. We
have used bilinear filtering by interpolating texels based on the fractional
parts of the u and v coordinates returned by the ray object intersection
routine.

3.15 Monte Carlo Path Tracing

Ray tracing cannot simulate full global illumination, including features like
caustics, soft shadows, indirect illumination on diffuse surfaces and color
bleeding. This is because only specular rays are traced and not diffuse rays.
One solution is to use a Monte Carlo probabilistic method to evaluate diffuse
illumination: The idea is to trace a random ray at each diffuse surface and
add the contributed illumination. To be effective, a large number of sample
light paths need to be used for each pixel.

We have rendered a room with an area light source and two specular
spheres, and diffuse walls and ceiling using the Monte Carlo method with
10, 100 and 1000 paths per pixel. For fewer samples, the main problem is
one of noise in the output image. At a higher number of paths per pixel,
the noise artifacts disappear. We have successfully been able to render soft
shadows and area lighting, and a caustic (if a bit feeble!) using the path
tracing algorithm.

4 Results and Conclusion

We have successfully implemented a ray tracer TRay with support for refrac-
tion, transformations, planes, CSG, adaptive antialiasing, meshes, bounding
volumes, textures, area lights and soft shadows using path tracing. Possible
extensions include nested refractive indices, ray tracing torii and quadrics,
photon mapping, subsurface scattering and better illumination models (e.g
physically based illumination models).

References

[1] http://graphics.lcs.mit.edu/classes/6.837

15

[2] http://graphics.stanford.edu

[3] Computer Graphics - Second Edition in C - Foley, Van Dam, Feiner and
Hughes, 1991

[4] Realistic Image synthesis using Photon Mapping - Henrik Wann Jensen,
1997

[5] Ray Tracing Complex Scenes - Kajiya, 1986

16

