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BASICS
Representation of Points in the 3D world:  a vector of length 3

Right handed 
coordinate system

z

x

y

P(x,y,z) P’(x’,y’,z’)

T

Transformations 
of points in 3D

4 basic transformations 

• Translation

• Rotation

• Scaling

• Shear

Affine 
transformations



Right handed 
coordinate system



Basics 3D Transformation equations
• Translation : P’ = P + ΔP

α

β

γ

• Scaling: P’= SP

• Rotation : about an axis,
P’ = RP



Positive Rotations: counter clockwise about
the origin            

ROTATION - 2D

In matrix form, this is :                  

For rotations, |R| = 1 and [R]T = [R]-1. 
Rotation matrices are orthogonal. 









=

)cos()sin(
)sin(-)cos(

θθ
θθ

R 0

5

4

3

2

1

1 2 3 4 5 X

Y

θ = 30°

θ

( ) ( )
( ) ( )θθ

θθ
  cos    sin'
  sin    cos'

yxy
yxx

+=
−=



• Translate by (-Px, -Py)

• Rotate

• Translate by (Px, Py)

Rotation about an arbitrary
point P in space

As we mentioned before, rotations are
applied about the origin. So to rotate about
any arbitrary point P in space, translate so
that P coincides with the origin, then rotate,
then translate back. Steps are:



P1

House at P1

Translation of 
P1 to Origin

Rotation by θ
θ

Translation 
back to P1

P1

Rotation about an arbitrary
point P in space



2D Transformation equations (revisited)
• Translation : P’ = P + ΔP

• Rotation : about an axis,
P’ = RP 








=

)cos()sin(
)sin(-)cos(

θθ
θθ

R

Solution ?



Rgen = T1(-Px, -Py) * R2(θ) * T3(Px, Py) 

Rotation about an arbitrary
point P in space

Using Homogeneous system



Rotation (2D) about 
an arbitrary point P in space

𝐑𝐠𝐞𝐧 =𝐓𝟑 𝐏𝐱,𝐏𝐲 ∗ 𝐑𝟐 𝛉 ∗ 𝐓𝟏 −𝐏𝐱,−𝐏𝐲
=  

1 0 P୶0 1 P୷0 0 1 * 
cosθ −sinθ 0sinθ cosθ 00 0 1 ∗ 1 0 −P୶0 1 −P୷0 0 1

=  
cosθ −sinθ P୶sinθ cosθ P୷0 0 1 ∗ 1 0 −P୶0 1 −P୷0 0 1

=   
𝐜𝐨𝐬𝛉 −𝐬𝐢𝐧𝛉 𝐏𝐱 𝟏 − 𝐜𝐨𝐬𝛉 + 𝐏𝐲𝐬𝐢𝐧𝛉𝐬𝐢𝐧𝛉 𝐜𝐨𝐬𝛉 𝐏𝒚(𝟏 − 𝐜𝐨𝐬𝛉) − 𝐏𝒙𝐬𝐢𝐧𝛉𝟎 𝟎 𝟏

    𝐑𝐠𝐞𝐧= 𝐓𝟏 −𝐏𝐱,−𝐏𝐲 ∗ 𝐑𝟐 𝛉 ∗ 𝐓𝟑 𝐏𝐱,𝐏𝐲
= 
𝐜𝐨𝐬𝛉 −𝐬𝐢𝐧𝛉 𝐏𝐱(𝐜𝐨𝐬𝛉 − 𝟏) − 𝐏𝐲𝐬𝐢𝐧𝛉𝐬𝐢𝐧𝛉 𝐜𝐨𝐬𝛉 𝐏𝒚 𝒄𝒐𝒔𝛉 − 𝟏 + 𝐏𝒙𝒔𝒊𝒏𝛉𝟎 𝟎 𝟏

When 𝒙 𝒚
୥ୣ୬When 𝒙 𝒚

୥ୣ୬



Homogeneous representation of a 
point in 3D space:

point) 3D afor  1,w(
|w z yx | T

=
=P

Transformations will thus be 
represented by 4x4 matrices:

P’ = A.P



Homogenous Coordinate systems
• In order to Apply a sequence of transformations to 

produce composite transformations we introduce the 
fourth coordinate

• Homogeneous representation of 3D point: 
|x y z h|T (h=1 for a 3D point, dummy coordinate)

• Transformations will be represented by 4x4 matrices.

Homogenous Translation 
matrix

Homogenous Scaling 
matrix



Rotation about x axis by angle α

Rotation about z axis by angle γ

Rotation about y axis by angle β

Change of 
sign?

How can one do a Rotation about an arbitrary Axis in Space?



3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an 
axis in space, passing through the point (x0, y0, z0)with direction cosines  (cx, cy, cz), by θ degrees. 

1) First of all, translate by:  - (x0, y0, z0) = |T|.
2) Next, we rotate the axis into one of the principle  

axes. Let's pick,  Z (|Rx|,  |Ry|).3) We rotate next by θ degrees in Z ( |Rz(θ)|).
4) Then we undo the rotations to align the axis. 
5) We undo the translation: translate  by (x0, y0, z0)

The tricky part is (2) above.

This is going to take  2 rotations, 
i)  about x  (to place the axis in the x-z plane) 
and 
ii) about y  (to place the result coincident with the z 
axis).



Rotation about x by α:  
How do we determine α? 

Project  the unit vector, along 
OP, into the y-z plane. The y 
and z components are cy and 
cz, the directions cosines of 
the unit vector along the 
arbitrary axis.  It can be seen 
from the diagram above, that : 

x
y

z

0
P cz

cx

cy

d

d = sqrt(cy
2 + cz

2), cos(α) = cz /d 

sin(α)  = cy /d

x
y

z

0

P(cx, 0 ,d)

d

cx

Rotation by β about y:             
How do we determine β? 
Similar to above:



Determine the angle β to rotate the result into the Z axis: 
The x component is cx and the z component is d. 

cos(β) = d =  d /(length of the unit vector) 
sin(β)  = cx =  cx /(length of the unit vector). 

Final Transformation: 
M = |T|-1 |Rx|-1 |Ry|-1 |Rz| |Ry| |Rx| |T| 

If you are given 2 points instead, you can calculate 
the direction cosines as follows: 

V   =  | (x1 -x0)  (y1 -y0)  (z1 -z0) |T 

cx =  (x1 -x0)/ |V| 
cy =  (y1 -y0)/ |V| 
cz =  (z1 -z0)/ |V|,

where |V| is the length of the vector V. 



Inverse transformations

Inverse Translation Inverse scaling

Rα
-1 Rγ

-1Rβ
-1

Inverse Rotation



Concatenation of transformations
• The 4 X 4 representation is used to perform a 

sequence of transformations. 
• Thus application of several transformations 

in a particular sequence can be presented by 
a single transformation matrix

• The order of application is important… the 
multiplication may not be commutable.



Cases where T1 * T2 = T2 * T1:         

Commutivity of Transformations 
If we scale, then translate to the origin,

and then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

When does T1 * T2 = T2 * T1?

T2T1
translationtranslation

scalescale
rotationrotation
rotationScale (uniform)



COMPOSITE TRANSFORMATIONS
If we want to apply a series of 

transformations  T1, T2, T3 to a set of points, 
We can do it in two ways: 

1) We can calculate p'=T1*p, p''= T2*p',    
p'''=T3*p'' 

2) Calculate T= T1*T2*T3, then p'''= T*p. 

Method 2, saves large number of additions
and multiplications (computational time) –
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the
matrices into one final transformation matrix,
and then apply that to the points.



Spaces
Object Space

definition of objects. Also called Modeling space. 

World Space
where the scene and viewing specification is made 

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z 

axis. 

3D Image Space
A 3D Perspected space. 
Dimensions: -1:1 in x & y, 0:1 in Z. 
Where Image space hidden surface algorithms work. 

Screen Space (2D) 
Coordinates 0:width, 0:height



Projections
We will look at several planar geometric 3D to 2D

projection: 

-Parallel Projections
Orthographic 
Oblique

-Perspective 

Projection of a 3D object is defined  by  straight 
projection  rays (projectors) emanating from the 
center of projection (COP) passing through each 
point of the object and intersecting the  projection 
plane.



Perspective 
Projection

Perspective Projections

Distance from COP to 
projection plane is finite.  
The projectors are not 
parallel  & we specify a 
center of projection. 

Center of Projection is 
also called the 
Perspective Reference 
Point 

COP = PRP



• Perspective foreshortening: the size of the perspective 
projection of the object varies inversely with the 
distance of the object from the center of projection. 

• Vanishing Point: The perspective projections of any set 
of parallel lines that are not parallel to the projection 
plane converge to a vanishing point. 





Example of Orthographic Projection

Projection
Plane
(front view)

Projectors for 
front view

Projection
Plane
(side view)

Projectors for 
top view

Projectors
for 
side view

Projection
Plane
(top view)



Example of Isometric Projection: 

Projection-
plane normal

Projection
plane 

Projector



Example Oblique Projection 

Projection
plane

Projection-plane normal

Projectorz

y

x



END OF BASICS





In optics and photography, hyperfocal
distance is a distance beyond which all objects 
can be brought into an "acceptable" focus. 

There are two commonly used definitions of 
hyperfocal distance:

Definition 1: The hyperfocal distance is the 
closest distance at which a lens can be focused 
while keeping objects at infinity acceptably sharp. 
When the lens is focused at this distance, all 
objects at distances from half of the hyperfocal
distance out to infinity will be acceptably sharp.

Definition 2: The hyperfocal distance is the 
distance beyond which all objects are acceptably 
sharp, for a lens focused at infinity.



An object at distance H
forms a sharp image at 
distance x (blue line). 

Here, objects at infinity 
have images with a circle of 
confusion indicated by the 
brown ellipse where the 
upper red ray through the 
focal point intersects the 
blue line.

Objects at infinity form sharp images at the focal 
length f (blue line). 

Here, an object at H forms an image with a circle of 
confusion indicated by the brown ellipse where the lower 
red ray converging to its sharp image intersects the blue line





In optics, a circle of confusion is an 
optical spot caused by a cone of light 
rays from a lens not coming to a 
perfect focus when imaging a point 
source. It is also known as disk of 
confusion, circle of indistinctness, 
blur circle, or blur spot.
In photography, the circle of 
confusion (CoC) is used to determine 
the depth of field, the part of an 
image that is acceptably sharp.







Reducing the aperture diameter increases the DOF because the circle of confusion is shrunk 
directly and indirectly by reducing the light hitting the outside of the lens which is focused to 
a different point than light hitting the inside of the lens due to spherical aberration caused by 
the construction of the lens. 





Deep focus is a photographic and cinematographic technique 
using a large depth of field. Depth of field is the front-to-
back range of focus in an image — that is, how much of it 
appears sharp and clear. Consequently, in deep focus the 
foreground, middle-ground and background are all in focus.



DISTORTION

Spherical Aberration

COMA



An optical system with astigmatism is one where 
rays that propagate in two perpendicular planes have 
different focus. 

If an optical system with astigmatism is used to form 
an image of a cross, the vertical and horizontal lines will be in 
sharp focus at two different distances



Field
Curvature

Chromatic 
Aberration



Hartmann-Shack 
sensor: single 
lenslet L = 
lenslet, CCD = 
CCD sensor, d = 
lenslet diameter, 
f = focal length, 
Δy = local tilt of 
wavefront

In optics, tilt is a deviation in the direction a beam of light 
propagates.   Tilt quantifies the average slope in both the X 
and Y directions of a wavefront or phase profile across the 
pupil of an optical system.



THE CAMERA MODEL: 
perspective projection

p(x,y,z)

P (X,Y)

0

x,X

y,Y

z

I

f

COL

Camera lens

(x,y,z)- 3D world

(X,Y) - 2D Image plane



F P(X,Y,Z)

Z

X or Y

IP

(COL)

PP

X or Y

xp or yp

P(X,Y,Z)

ZO

Perspective Geometry and Camera Models



• Image plane before the 
camera lens

• Origin of coordinate 
systems at the image 
plane 

• Image plane at origin of 
coordinate system

CASE - 1

(COL) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,y

By similarity of triangles



• Image plane before the 
camera lens

• Origin of coordinate 
systems at the camera lens 

• Image plane at origin of 
coordinate system

CASE - 1.1

(COL) Z

x ,y

P(-X,-Y)

p(x,y,z)

PP

f

O

X,Y

By similarity of triangles



• Image plane after the 
camera lens

• Origin of coordinate 
systems at the camera lens 

• Focal length f

CASE  - 2

(COL)
Z

x ,y

P(X,Y)

p(x,y,z)
PP

f
O

X, Y

By similarity of triangles



• Image plane after the 
camera lens

• Origin of coordinate system 
not at COP 

• Image plane origin coincides 
with 3D world origin

CASE – 2.1

(COL) Z

X ,Y

P(X,Y)

p(x,y,z)

PP

f O

x,y

By similarity of triangles



(COP) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,y
Consider the first case ….

• Note that the equations 
are non-linear

• We can develop a matrix 
formulation of the 
equations given below

(Z is not important and is 
eliminated)



Inverse perspective projection
p(x0,y0,z0)

P(X0,Y0)

Hence no 3D information can be retrieved with the inverse 
transformation



So we introduce the dummy variable i.e. the depth Z

Let the image point be represented as:

Solve for (xo, yo )



CASE  - 1

(COL) Z

X ,Y

P(-X,-Y)

p(x,y,z)

PP

f

O

x,yForward: 3D to 2D

Inverse: 2D to 3D



CASE  - 2

(COL)
Z

x ,y

P(X,Y)

p(x,y,z)
PP

f
O

X, Y

Forward: 3D to 2D

Inverse: 2D to 3D



Observations about Perspective 
projection

• 3D scene to image plane is a one to one 
transformation (unique correspondence) 

• For every image point no unique world 
coordinate can be found

• So depth information cannot be retrieved using a 
single image ? What to do?

• Would two (2) images of the same object (from 
different viewing angles) help? 

• Termed - Stereo Vision



Stereo Vision

X
Y

X
Y

Image 1

Image 2
B

Lens center
Optical axis

p(x,y,z)

(X2,Y2)

(X1,Y1)

World point



Stereo Vision (2)
• Stereo imaging involves obtaining two separate image 

views of an object  ( in this discussion the world point)
• The distance between the centers of the two lenses is 

called the baseline width.
• The projection of the world point on the two image 

planes is (X1, Y1) and (X2, Y2)
• The assumption is that the cameras are identical 
• The coordinate system of both cameras are perfectly 

aligned differing only in the x-coordinate location of the 
origin.

• The world coordinate system is also bought into the 
coincidence with one of the image X, Y planes (say 
image plane 1) . So y, z coordinates are same for both 
the camera coordinate systems.



O1

B

(X2,Y2)

(X1,Y1)

f

f

W(x, y, z)

X

z1

Image 1

Image 2

Top view of the stereo imaging system with origin 
at center of first imaging plane.

O2

z2



First bringing the first camera into coincidence with 
the world coordinate system and then using the second 
camera coordinate system and directly applying the 
formula we get:

Because the separation between the two cameras is B



• The equation above gives the depth directly from 
the coordinate of the two points

• The quantity given below is called the disparity

• The most difficult task is to find out the two 
corresponding points in different images of the 
same scene – the correspondence problem.

• Once the correspondence problem is solved –
(non-analytical), we get D. Then obtain depth 
using:



Alternate Model 
– Case 2



O1

B

(X2,Y2)

(X1,Y1)

f
W(x, y, z)

X

z1

IP 1

IP 2

Top view of the stereo imaging system with origin 
at center of first camera lens.

O2

z2



Compare the two solutions

What do you think of D ?



The Correspondence Problem; 
watch flip of  +ve X Direction

X2

Y2Y1

X1

21 YY =𝟐 𝟏𝟏 𝟐 𝒇(𝑩)𝒛ଶ ଵ

Image Plane - I Image Plane - II
EPIPOLAR Line

(X1, Y1) (X2, Y2)



Error in Depth Estimation

Expressing in terms of depth (z), we have:

What is the maximum value of depth (z), you can 
measure  using a stereo setup ?



Even if correspondence is solved correctly, the 
computation of D may have an error, with an upper 
bound of 0.5;   i.e. (δD)max = 0.5.

That may cause an error of:

Larger baseline width and Focal length (of the 
camera) reduces the error and increases the maximum 
value of depth that may be estimated.

What about the minimum value of depth (object 
closest to the cameras) ?

What is Dmax ?
maxmax XD =

Xmax depends on f and image resolution 
(in other words, angle of field-of-view or FOV).







General Stereo Views



Effect of Baseline width



Effect of Baseline width



Effect of Baseline width



Perfect Stereo Views



Perfect Stereo Views



Perfect Stereo Views











We can also have arbitrary pair of views from two 
cameras. 

• The baseline may not lie on any of the principle axis

• The viewing axes of the cameras may not be parallel

• Unequal focal lengths of the cameras

• The coordinate systems of the image planes may not be 
aligned

In general we may have multiple views ( 2 or more) of 
a scene. Typically used for 3D surveillance tasks.

Take home exercises/problems:

What about Epipolar line in cases above ?

How do you derive the equation of an epipolar line ?



The Epipolar line in case of Arbitrary Views

Y1

X1

Image Plane - I Image Plane - II
EPIPOLAR Line

(X1, Y1) (X2, Y2)



Y1

X1
X2

Y2

(X1, Y1)

(X’2, Y’2)



Classical Depth Estimation

83

 Depth estimation of image points – need at least two 
views of the same object

C1

C2

Xworld

ximagex’imag
e

Xworld

C1

C2

ximage

x’image

C3

x’’image

General Stereo

Arbitrary multiple 
view geometry



Camera Image formulation
• Action of eye is simulated by an abstract camera model 

(pinhole camera model)
• 3D real world is captured on the image plane. Image is 

projection of 3D object on a 2D plane.

X
Y

Z

worldX

imagex
C

Π

f

),,( www ZYX=worldX

),(
w

w

w

w

Z
Yf

Z
Xf=imagex

),(),,(: iiwww yxZYXF →



Pinhole Camera schematic diagram



Camera Geometry
• Camera can be considered as a projection matrix,

– A pinhole camera has the projection matrix as

– Principal point offset

– Camera with rotation and translation

Xx 4*3P=
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Camera Geometry
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Pincushion, 
non-linear distrortion

Camera skew factor/parameter, s:

The parameter “s” accounts for a  possible non-
orthogonality of the axes in the image plane. 

This might be the case if the rows and columns of 
pixels on the sensor are not perpendicular to each other.



The Reconstruction Problem

89

 Given a set of images of a particular 3D scene, can we 
reconstruct the scene back?

 3D representation of an object is difficult because of the 
problem of depth estimation.

 Image is projection of 3D object on a 2D plane.

(Xw, Yw, Zw) are real world coordinates and
(x, y) are Image coordinates

 Reverse mapping is not one to one. 

),(),,(: yxZYXF www →

C

?wX

wX

'C

ix
'ix



3D Reconstruction
• Given a set of images of a particular 3D scene, can we 

reconstruct the scene back?

90

[a]

[a]. Oxford Keble College

 Classical inverse problem of the computer vision



91

Reconstruction from turntable 
sequence
 The images acquired from 

various poses using an 
ordinary camera can be used 
to generate the 3D model

 How stable is the two-view 
reconstruction process?

 Is there some rotation value 
where the reconstruction is 
better than others?



3D 
Reconstruction

In case of perfect stereo,
why will epipolar line
be horizontal ?



Epipolar lines and Fundamental 
matrix

93

 An epipolar plane is a plane containing the camera centers 
(baseline) and the object point. 

 An epipolar line is the intersection of an epipolar plane with the 
image plane.

 Fundamental Matrix (F) gives the constraint between 
corresponding image points of same 3D object point [a]

[a] A. Zisserman, Multiple View Geometry ‘02



Some Notations (different; WATCH very carefully)
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2-D Planar Transformations
Affine:
Parallel lines
remain parallel
under Affine
Tranasformation
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2-D

3-D



The camera centre is the essence, (a) Image formation: the image 
points xi are the intersection of a plane with rays from the space points Xj
through the camera centre C. (b) If the space points are coplanar then there is 
a projective transformation between the world and image planes: xi = H3X3Xi. 

A projectivity (or homography) is an 
invertible mapping H from P2 to 
itself such that three points x1, x2 
and x3 lie on the same line, iff 
H(x1), H(x2) and H(x3) do.

(c) All images with the same camera centre are related by a projective 
transformation, x’i = H’3x3xi. Compare (b) and (c) - in both cases planes are 
mapped to one another by rays through a centre. In (b) the mapping is 
between a scene and image plane, in (c) between two image planes.



(d) If the camera centre moves, then the images are in 
general not related by a projective transformation, 
unless - (e) all the space points are coplanar. 

H  is non-singular, with 8 dof. It has applications in 
image/video mosaic, stereo reconstruction, camera 
calibration, scene modeling and understanding etc.





Homography 
of points

0xx'

x
x][

x'][
x'

x;x'

=

=
′=
′=

′=′

=

×

×

F

F
He

e
el

H

T

x

















−
−

−
=

=

×

0
0

0
][

][

12

13

23

321

ee
ee

ee
e

eeee

;0'.x' =lT



F & H in terms of camera 
matrix.
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H in terms of K
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The basic tool in the reconstruction of point sets from 
two views is the fundamental matrix, which represents the 
constraint obeyed by image points x and x' if they are to be 
images of the same 3D point. 

This constraint arises from the coplanarity of the 
camera centres of the two views, the images points and the 
space point. 



Fundamental matrix, F:

The fundamental matrix F may be written as F = [e']xHΠ, where HΠ is the 
transfer mapping from one image to another via any plane Π. 
Furthermore, since [e']x has rank 2 and HΠ rank 3, F is a matrix of rank 2. 

F is a 3 x 3 matrix of rank 2. Equations (Xi’FXi = 0) are 
linear in the entries of the matrix F, which means that if F is 
unknown, then it can be computed from a set of point 
correspondences. 

A pair of camera matrices P and P' uniquely determine 
a fundamental matrix F, and conversely, the fundamental 
matrix determines the pair of camera matrices, up to a 3D 
projective ambiguity. 

Thus, the fundamental matrix encapsulates the 
complete projective geometry of the pair of cameras, and is 
unchanged by projective transformation of 3D. 



The fundamental-matrix method for reconstructing the 
scene from two views, consisting of the following steps: 

(i) Given several point correspondences xi
’ <-> xi across two 

views, form linear equations in the entries of F based on 
the coplanarity equations xi

TFxi, = 0. 

(ii) Find F as the solution to a set of linear equations;

(iii) Compute a pair of camera matrices from F according to 
the simple formula given as: 
The camera matrices corresponding to a fundamental matrix 
F, may be chosen as: P = [I | 0] and P' = [[e']xF | e'].

(iv) Given the two cameras (P, P') and the corresponding 
image point pairs xi

’ <-> xi , find the 3D point Xi that projects 
to the given image points. Solving for X in this way is known 
as triangulation. 

Issues:
How to get correct correspondences ? 
How to estimate F ?  
What is triangulation process ?



Scene Homography (points)
A homography is an invertible mapping of points and lines 

on a projective plane. Its an invertible mapping to itself, such that 
collinearity is preserved. It is represented as:

...................(1)



Scene Homography (Lines)
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Solving Homography using point correspondences

Solution to a homogeneous system ?
The solution set to a homogeneous system is the 

same as the null space of the corresponding matrix A.



Singular Value Decomposition (SVD)

Singular value decomposition takes a matrix (defined 
as A, where A is a n x p matrix). The SVD theorem states:

where, 

Calculating the SVD consists of :

- Finding the eigenvalues and eigenvectors of AAT and ATA. 
- The columns of V are orthonormal eigenvectors of ATA 
- The columns of U are orthonormal eigenvectors of AAT

- Also, the singular values in S are square roots of eigenvalues 
from AAT or ATA in descending order.  

Some important observations:

- The singular values are the diagonal entries of the S matrix 
and are arranged in descending order. 
- The singular values are always real numbers. 
- If the matrix M is a real matrix, then U and V are also real.

M = U Σ V*

The right-singular vectors corresponding to vanishing 
singular values of M span the null space of M. The left-singular 
vectors corresponding to the non-zero singular values of M span the 
range (space) of M.



This is the basic DLT algorithm, which only requires  
normalization  (pixel coordinates) and de-normalization steps, 
prior and after the solution of the homogeneous system. 

Also a cost minimization approach (use RANSAC) is used 
for a over-determined set of systems, for a robust solution.

For Homography using line correspondences (Note: l’ = H-Tl):

If the homography is exactly determined, then σ9 = 0, and 
there exists a homography that fits the points exactly.



Estimate H (DLT, but with an alternate notation)

Given n>=4   2-D point pairs;

Algo:

Use: 
-

- Assemble n such 2*9 matrices Ai into a single 2n*9 matrix A, by 
stacking horizontally row-wise;

- SVD of A, gives :

- h9*1 is the last column of V (unit singular eigen-vector 
corresponding to smallest singular value)

- Form H3*3, by arranging elements of h

- May need normalization of coordinates

;TUDVA =



Epipolar line homography:

(a) There is a pencil of epipolar lines in each image centred on the
epipole. The correspondence between epipolar lines, li l′i is 
defined by the pencil of planes with axis the baseline. 

(b) The corresponding lines are related by a perspectivity, with 
centre at any point p on the baseline. It follows that the 
correspondence between epipolar lines in the pencils is a 
1D homography.

(a) (b)

If the stereo is calibrated;  i.e P and P’ known, use:
A compact algorithm for rectification of stereo pairs; Andrea Fusiello, Emanuele Trucco, Alessandro Verri ; 
Machine Vision and Applications (2000) 12: 16–22 Machine Vision and Applications;  Springer-Verlag 2000; 



W is orthogonal to both r & l;  - formula ??



Process of Rectification
Image rectification is the process of applying a pair of 2 

dimensional projective transforms, or homographies, to a pair of 
images whose epipolar geometry is known so that epipolar lines in 
the original images map to horizontally aligned lines in the 
transformed images.





What happened
To Epipoles ?





















Assumptions and Problem 
Statement of Rectification:

Given a stereo pair of 
images, the intrinsic parameters 
(K) of each camera, and the 
extrinsic parameters
of the system, R and T;

compute the image 
transformation that makes 
conjugated epipolar
lines collinear and parallel to the 
horizontal image axis.

The algorithm (Trucco, Verri) 
consists of four steps:

•   Rotate the left camera so that the epipole goes to infinity 
along the horizontal axis.
•    Apply the same rotation to the right camera to recover the 
original geometry.
•    Rotate the right camera by R.
•    Adjust the scale in both camera reference frames.
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RECTIFICATION Illustrated

Formula - for projection
of a vector on a plane ?



Rectification algo. (four steps), by Trucco, Verri:

•   Rotate the left camera so that the epipole goes to infinity along 
the horizontal axis.

•    Apply the same rotation to the right camera to recover the 
original geometry.

First rotate the left camera so that it looks perpendicular to the line joining 
the camera centers c0 and c1. Since there is a degree of freedom in the tilt, the 
smallest rotations that achieve this should be used. Smallest rotation can be 
computed from the cross product between the original and desired optical axes.

To determine the desired twist around the optical axes, make the up 
vector (the camera y axis) perpendicular to the baseline. This ensures that 
corresponding epipolar lines are horizontal and that the disparity for points at 
infinity is 0. The cross product between the current x-axis after the first rotation 
and the line joining the cameras gives the rotation.

•    Rotate the right camera by R (or R-1).

•    Adjust the scale in both camera reference frames.
If necessary, to account for different focal lengths, magnifying the 

smaller image to avoid aliasing.  Now, both have the same resolution (and hence 
line-to-line correspondence).



Algorithm RECTIFICATION
The input is formed by the intrinsic and extrinsic 

parameters of a stereo system and a set of points in each 
camera to be rectified (which could be the whole images). 
Also, in both cameras:

i). the origin of the image reference frame is the principal point;
ii). the focal length is equal to f.

Steps:

1. Build the matrix Rrect as:

2. Set Rl = Rrect and Rr =  R-1.Rrect  ;

3, 4: For Left and Right camera points,
do:
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This algorithm fails when the optical axis is parallel to the 
baseline, i.e., when there is a pure forward motion.
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Disparity
Post-Rect



But, what if the external parameters
are not known

Zhang’s (CVPR’99) method assumes that F is known. 
If the intrinsic parameters of a camera are known, we say 
the images are calibrated, and the fundamental matrix 
becomes the essential matrix. 

This method of rectification is suitable for calibrated 
or uncalibrated images pairs, provided that F is known 
between them.



Rectification (Zhang’s), using Fundamental matrix

Work on entirely 2-D space; 
Points and lines: [ ] [ ]Tcba

T
wvu lllmmmm == l   ;

F is a 3x3 rank-2 matrix, 
is known (?).

;0''   ;' == lmlFm T

;'0 eFFe T==
Properties of rectified image pair: 

- All epipolar lines are parallel to horizontal (x- or u-axis)
- Corresponding points have identical y- or v-coordinates.

Fundamental matrix 
for a rectified image pair:
What is i ??

where, i = [1 0 0]T, is X-VP (at Inf.); check with  x’ x = 0; = 0;



Rectification (Zhang’s) – maps epipolar lines to image scan lines;

Let,
and consider

Then, the corresponding lines v and v’, w and w’ must be epipolar
lines (as, l’e=0), for minimal distortion due to rectification;     
H = Hsh.Hrs.Hp



Minimization criteria used to 
compute Hp.

<- used earlier;
Proof in Loop & Zhang ’99.

Hs (shearing) only effects the u-coordinate; hence 
rectification in unaffected. Hr is similarity;   Hp is perspective.



Hp

Hrs.

Hsh





Latest/Modern methods of 
Correspondence/Rectification/reconstruction include:

- Monassee et. al’s Rectification – BMVC 2010;

- Plane Sweep;

- Sparse feature set matching

- Profile curves or contours (even occluding)

- Dense correspondences using : similarity measures (NCC, 
SAD, SSD, MSE, MAD), local methods; 

- Global optimization (RANSAC, L-M) – Dynamic Prog., 
Segmentation based; etc.



Monasse 3-step Rectification
• INPUT : Fundamental Matrix, F by DLT.
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Monasse 3-step Rectification

• Step 1:
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Monasse 3-step Rectification

• Step 2:

• Step 3:
The remaining relationship between the two
cameras of the rectified image is characterized by a
rotation, around the baseline.
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Finding the Essential Matrix

• According to Zisserman and Hartley, 
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The optimization step

12
T

2
T

1

12
T

2
T

1
T

12
T

12

22

HHFHHF

0eHHFHHe

0eHHFeHH

0eFe

~̂~

~̂
)(~̂)(

~̂

′′=∴

=′′′

=′′′

=′

0eFe T =′ ~ and,

. of in terms  estimate  todone is )( ofon minimizatiA 
. and between  distanceEuclidean   theis ),(                                                     

image. in the pixels of no.  theis  where,)x~,x()x~,x()(

:as defined is  function,on optimizatian  Now

iiii

fKfS
qpqpd

NFdFdfS

S
N

1i

T
=

′+′=

xXorxX
estimated. is  and  , From

′′==∴

′
++ PP

PPK





Input:  F, computed using correspondences;
which gives  epipoles e and e’;

Steps: 1 & 2:
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Step 3: Rotation R^, of one camera about baseline:

H3 is obtained after obtaining optimal K  (or f)









H/W (triangulation): Find eqn. of  the line ||l to w  
which intersects r and l.         Inputs:  Ol ,   Or ,   pl ,   pr , R,  T



Properties of F :

(i) Transpose: If F is the fundamental matrix of the pair of 
cameras (P, P'), then FT is the fundamental matrix of the 
pair in the opposite order: (P', P).

(ii) Epipolar lines: For any point x in the first image, the 
corresponding epipolar line is l' = Fx. Similarly, l = FTx' 
represents the epipolar line corresponding to x' in the 
second image;

(iii) The epipole: for any point x (other than e) the epipolar
line l' = Fx contains the epipole e'. Thus e' satisfies e’T(Fx) 
= (e’TF)x = 0 for all x. It follows that e’TF = 0, i.e. e' is the 
left null-vector of F. Similarly Fe = 0, i.e. e is the right 
null-vector of F.

(iv) F is rank-2 homogenous matrix with 7 dof.
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F in terms of K

]0|[IKP = ]|[' tRKP =′

• Let K be the internal parameter matrix of the camera. 
• Camera matrix of the second camera (P’) is a rotation and translation 
of the first camera(P):
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For any vector t and non-singular matrix M:
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Homography:  x’ = Hx;

Relationship with 
Fundamental matrix, F:

H-1x’ lies on the 
corresponding epipolar line: FTx’ 

Thus, e’ = He;   H-1e’ = e; 

0xx' =<= FT

where, Hπ is the homography imposed by epipolar plane.
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Typical methods used to estimate F:

- 8-pt DLT algo.

- RANSAC

- Normalize data, using Transformation matrix TTS
- DLT; F is the “smallest singular” vector  of A
- replace F by F~, using SVD, where det (F~) = 0 
- Denormalize, as:

TFTF T
~

'=

=>𝐴𝑓 = 0;    /∗  𝑭𝒐𝒓𝒎𝒖𝒍𝒂𝒕𝒆 𝑨  

Also, look at Gold Standard method based on MLE





RANSAC Method for computing F:

(i) Interest points: Compute interest points in each image. 

(ii) Putative correspondences: Compute a set of interest point matches based
on proximity and similarity of their intensity neighbourhood;

(iii) RANSAC robust estimation: Repeat for N samples:

(a) Select a random sample of 7 (or 8) correspondences and compute 
the fundamental matrix F (Algebraic Min. or DLT).

(b) the solution with most inliers is retained; i.e. Choose the F with 
the largest number of inliers;

Repeat the following two steps, until stability:

(iv) Non-linear estimation: re-estimate F from all correspondences classified 
as inliers by minimizing a cost function, using the Levenberg-Marquardt (LM) 
algorithm.

(v) Guided matching: Further interest point correspondences are now 
determined using the estimated F to define a search strip about the epipolar
line. 

Other methods – Gold-standard (MLE);  Sampson Distance 
(cost) function; 



Both the fundamental and essential matrices could 
completely describe the geometric relationship between 
corresponding points of a stereo pair of cameras. 

The only difference between the two is that the 
fundamental matrix deals with uncalibrated cameras, while 
the essential matrix deals with calibrated cameras.

(c) (d) detected corners 
superimposed on the images. 
There are approximately 500 
corners on each image. 

The following results are 
superimposed on the left image: 
(e) 188 putative matches shown 
by the line linking corners, note 
the clear mismatches; 

(f) outliers - 89 of the putative 
matches, 

(g) inliers - 99 correspondences 
consistent with the estimated F; 

(h) final set of 157 
correspondences after guided 
matching and MLE. 



E, the essential matrix
Maps a point from one image plane to a point in the corresponding 

image domain; Has 5 dof.

Two images of a single scene/object are related by the epipolar
geometry, which can be described by a 3x3 singular matrix called the 
essential matrix if images’ internal parameters are known, or the 
fundamental matrix otherwise. Mostly used in case of SFM problems.

0x̂'x̂ =ET
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x^ is in normalized coordns. 

And normalized camera matrix is :
(where the effect of known camera 
calibration matrix has been 
removed.)

]|[1 tRPK =−

The fundamental matrix corresponding to the pair of 
normalized cameras is customarily called the essential matrix.







Thus for a pair of normalized cameras:

Using:

and ignoring K & K’:

So actually:
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A 3 x 3 matrix is an essential matrix, E if and only if 
two of its singular values are equal, and the third is zero . 

For a given essential matrix E = U.diag(1, 1,0).VT, and first camera 
matrix P = [I | 0], there are four possible choices for the second camera 
matrix P', namely :

t = u3, the last column of U. 



Finding the Essential Matrix

• According to Zisserman and Hartley, 
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The Essential matrix, E

The observed location of 
point p in the first image, 
p0 = d0x^0
is mapped into the second 
image by the transformation:

Taking the cross product of both
sides with t

 Solve for
d0 and d1 





Linear stereo matching; Leonardo De-Maeztu, Stefano Mattoccia, 
Arantxa Villanueva, Rafael Cabeza; ICCV-2011.  (Spain + Italy)



Courtesy:   Szeliski



Segmentation-based stereo matching (Zitnick, Kang, Uyttendaele et 
al. 2004) c 2004 ACM:( a) input color image; (b) color-based 
segmentation; (c) initial disparity estimates; (d) final piecewise-
smoothed disparities;

Slices through a typical disparity space image (DSI) 
(Scharstein and Szeliski 2002) c 2002, Springer: 
(a) original color image;    (b) ground truth disparities; 
(b) (c–e) three (x, y) slices for d = 10, 16, 21;



Courtesy:
Szeliski
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3D world object

2D View (Cam1) 2D View (Cam2)

Feature Extraction Feature Extraction

Find Correspondence

Fundamental / 
Essential  Matrix

Projective Reconstruction

(Triangulation process ) [a] 
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Ambiguity in Reconstruction

( )( )iii XHPHPXx 1-==

 From Image correspondences, the scene and the 
camera can be reconstructed to a projective 
equivalent of the original scene and camera

 Projective Reconstruction theorem:

 Additional information (scene 
parallel lines, camera internal 
parameters) required for metric 
reconstruction



GENERIC STEREO RECONSTRUCTION (sec. 10.6, pp 277; H&Z)

Input:  Two Uncalibrated images;
Output:  Reconstruction (metric) of the scene structure

and camera 

Algo. Steps:

• Projective reconstruction 
• Compute Fundamental matrix, F
• Compute P and P’ (camera matrices) using F
• Use triangulation (with rectification) to get X, from xi and xi’

• Rectify from projective to Metric (M), using either
(a) Direct:

Estimate homography H, from grnd. Control pts.,;
PM=P.H-1; P’M=P’.H-1; XMi = HXi.

OR
(b) Stratified (use, VP, VL, VPI, Homography, DIAC etc.):

Affine;
Metric

Also see: Algorithm 12.1. The optimal triangulation method 
(sec. 12.5.2, Algo. 12.1; pp 318 (336); H&Z)



For self- or auto-calibration :

Use  (this is research material) -

Affine to metric reconstruction, 
Stratification, 
Scene homography, 
Cheirality and DIAC,

Bundle adjustment, 
L-M Optimization, RANSAC  etc.

Refer to the books by:

- Hartley & Zisserman,

- Ma,  Shastry et. al;

- Forsyth and Ponce.





Vanishing points

( ) ( ) λKdaλPDPAλPXλx +=+==
( ) ( ) KdλKda limλ xlimv

λλ
=+==

∞→∞→



Vanishing lines



In case of a set of arbitrary views (multi-view 
geometry) used for 3-D reconstruction (object structure, 
surface geometry, modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker

- Bundle adjustment and RANSAC

- 8-point DLT algorithm

- Zhang’s scene homography

- Tri-focal tensors

- Cheriality and DIAC

- Auto-calibration 

- Affine to Metric reconstruction

- Stratification  

- Kruppa’s eqn. for infinite homography













3D surface point and wireframe 
reconstruction from multiview 
photographic images; Simant 
Prakoonwit, Ralph Benjamin;
IVC – 2008/9

Example of
3-D reconstruction



Robust Recovery of Shapes with 
Unknown Topology from the Dual Space;
Chen Liang and Kwan-Yee K. Wong,
IEEE TRANSACTIONS ON PATTERN 
ANALYSIS AND MACHINE INTELLIGENCE;
Page(s): 2205 – 2216; 05 November 2007
DOI: 10.1109/TPAMI.2007.1127
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