INTRODUCTION
Contents to be covered

1. Introduction
2. Neighborhood and Connectivity of pixels
3. Fourier Theory, Filtering in spatial and spectral domains
4. 3D transformations, projection and stereo
5. Histogram based image processing
6. Concepts in Edge Detection
7. Hough Transform
8. Scale-Space - Image Pyramids
9. Feature extraction (recent trends) – detectors and descriptors
10. Image segmentation
11. Texture analysis using Gabor filters
12. Pattern Recognition
14. Object Recognition
15. Motion Analysis
16. Shape from Shading
17. Wavelet transform
18. Reconstruction - affine, model-based
19. Registration and Matching
20. Solid Modelling;
21. Color
22. Hardware;
23. Morphology

Use slides as brief:
Points, comments, links

These are not substitute for materials in books.
References


References (Contd..)

Journals:
• IEEE-T-PAMI (Transactions on Pattern Analysis and Machine Intelligence)
• IEEE-T-IP (Transactions on Image processing)
• PR (Pattern Recognition)
• PRL (Pattern Recognition Letters)
• CVGIP (Computer Vision, Graphics & Image Processing)
• IJCV (International Journal of Computer Vision)

Online links
1. CV online: http://homepages.inf.ed.ac.uk/rbf/CVonline
Typical Distribution of marks for Evaluation/grading

Quiz (50 mins.) - 15 - 20
End Sem exam (120-150 mins.) - 35 – 40
TPA - 35 - 40
TUTS - 05 - 10
_____________________

Total 100

+/- 05 marks variation at any part;
To be finalized well before end sem exam.
Human Vision System (HVS) Vs. Computer Vision System (CVS)

The Optics of the eye
A computer Vision System (CVS)
Images, scenes, pictures

Computer Vision

Visualization

Models, Object/Scene representation
**Computer Vision** is an area of work, which is a combination of concepts, techniques and ideas from Digital Image Processing, Pattern Recognition, Artificial Intelligence and Computer Graphics.

Majority of the tasks in the fields of Digital Image Processing or Computer Vision deals with the process of understanding or deriving the scene information or description, from the input scene (digital image/s). The methods used to solve a problem in digital image processing depends on the application domain and nature of data being analyzed.

Analysis of two-dimensional pictures are generally not applicable of processing three-dimensional scenes, and vice-versa. The choice of processing, techniques and methods and 'features' to be used for a particular application is made after some amount of trial and error, and hence experience in handling images is crucial in most of these cases.

For example, analysis of remote sensed or satellite imagery involves techniques based on classification or analysis of texture imagery. These techniques are not useful for analyzing optical images of indoor or outdoor scenes.
Computer Vision

- VLSI & Architecture
- Optimization Techniques
- DIP
- CG
- PR
- Parallel and Distributed Processing
- Probability & Fuzzy
The Developmental Pathway of Computational Vision Technology

- DSP
- Linear algebra; Subspaces
- Computer Graphics
- ANN
- GPU
- Optimization Methods
- PR
- Prob. & Stat.
- ML
- Fuzzy & Soft computing
- Computational Neurosciences
*Digital Image processing* is in many cases concerned with taking one array of pixels as input and producing another array of pixels as output which in some way represents an improvement to the original array.

**Purpose:**

1. **Improvement of Pictorial Information**
   - improve the contrast of the image,
   - remove noise,
   - remove blurring caused by movement of the camera during image acquisition,
   - it may correct for geometrical distortions caused by the lens.

2. **Automatic Machine perception** (termed Computer Vision, Pattern Recognition or Visual Perception) for intelligent interpretation of scenes or pictures.
Elements of a Digital Image Processing System

- Image
- Digitizer
- Image Processor
- Digital Computer
- Mass storage
- Operator Console
- Display
- Hard copy device
Image processors: Consists of set of hardware modules that perform 4 basic functions:
- Image acquisition: frame grabber
- Storage: frame buffer
- Low-level processing: specialized hardware device designed to perform Arithmetic Logic operations on pixels in parallel
- Display: read from image memory (frame buffer) and convert to analog video signal

- **Digitizers:** Converts image into numerical representation suitable for input to a digital computer
- **Digital Computers:** Interfaced with the image processor to provide versatility and ease of programming.
- **Storage Devices:** For bulk storage. e.g.: Magnetic disks, magnetic tapes, optical disks
- **Display and Recording devices:** Monochrome and Color Television monitors, CRT, Laser printers, heat-sensitive paper devices, and ink spray systems.
Image acquisition using a CCD camera

- **Original Scene**
  - Light Areas (high intensity)
  - Dark Areas (low intensity)

- **CCD Response**
  - Image capture - ‘sampling’ using digital camera or scanner
  - Electrical response proportional to light exposure
  - No response in unexposed areas

- **Digital Image**
  - Analogue to digital conversion followed by conversion to image pixel values for display
  - Pixel representations of white and black

- Example pixel values:
  - 255, 255, 255, 255
  - 255, 0, 0, 0
  - 255, 255, 255, 255
A digital Image

Image is an array of integers: \( f(x,y) \in \{0,1,\ldots,I_{\text{max}}-1\} \),
where, \( x,y \in \{0,1,\ldots,N-1\} \)

- \( N \) is the resolution of the image and \( I_{\text{max}} \) is the level of discretized brightness value

- Larger the value of \( N \), more is the clarity of the picture (larger resolution), but more data to be analyzed in the image

- If the image is a gray-level (8-bit per pixel - termed raw, gray) image, then it requires \( N^2 \) Bytes for storage

- If the image is color - RGB, each pixel requires 3 Bytes of storage space.

<table>
<thead>
<tr>
<th>Image Size (resolution)</th>
<th>Storage space required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw - Gray</td>
</tr>
<tr>
<td>64*64</td>
<td>4K</td>
</tr>
<tr>
<td>256*256</td>
<td>64K</td>
</tr>
<tr>
<td>512*512</td>
<td>256K</td>
</tr>
</tbody>
</table>
A digital image is a two-dimensional (3-D image is called range data) array of intensity values, \( f(x, y) \), which represents 2-D intensity function discretized both in spatial coordinates (spatial sampling) and brightness (quantization) values.

The elements of such an array are called pixels (picture elements).

The storage requirement for an image depends on the spatial resolution and number of bits necessary for pixel quantization.

The processing of an image depends on the application domain and the methodology used to solve a problem. There exists four broad categories of tasks in digital image processing:

(i) Compression,  (ii) Segmentation,
(iii) Recognition and  (iv) motion.
**Segmentation** deals with the process of fragmenting the image into homogeneous meaningful parts, regions or sub-images. Segmentation is generally based on the analysis of the histogram of images using gray level values as features. Other features used are edges or lines, colors and textures.

**Recognition** deals with identification or classification of objects in an image for the purpose of interpretation or identification. Recognition is based on models, which represent an object. A system is trained (using HMM, GMM, ANN etc.) to learn or store the models, based on training samples. The test data is then matched with all such models to identify the object with a certain measure of confidence.
**Compression** involves methodologies for efficient storage and retrieval of image data, which occupies large disk space. Typical methods are, JPEG-based, Wavelet based, Huffman Coding, Run length coding etc. for still images and MPEG-I, II, IV & VII for digital video or sequence of frames.

**Motion analysis (or dynamic scene analysis)** involves techniques for the purpose of tracking and estimation of the path of movement of object/s from a sequence of frames (digital video). Methods for dynamic scene analysis are based on (i) tracking, (ii) obtaining correspondence between frames and then (iii) estimating the motion parameters and (iv) structure of moving objects. Typical methods for analysis are based on optical flow, iterative Kalman filter and Newton/Euler's equations of dynamics.
There are generally three main categories of tasks involved in a complete computer vision system. They are:

- **Low level processing**: Involves image processing tasks in which the quality of the image is improved for the benefit of human observers and higher level routines to perform better.

- **Intermediate level processing**: Involves the processes of feature extraction and pattern detection tasks. The algorithms used here are chosen and tuned in a manner as may be required to assist the final tasks of high level vision.

- **High level vision**: Involves autonomous interpretation of scenes for pattern classification, recognition and identification of objects in the scenes as well as any other information required for human understanding.

A **top down approach**, rather than a bottom-up approach is used in the design of these systems in many applications. The **methods** used to solve a problem in digital image processing depends on the **application domain** and **nature of data** being analyzed.
Different fields of applications include:

- Character Recognition,
- Document processing,
- Commercial (signature & seal verification) application,
- **Biometry and Forensic** *(authentication: recognition and verification of persons using face, palm & fingerprint),*
- **Pose** and gesture identification,
- **Automatic inspection of industrial products,**
- Industrial process monitoring,
- Biomedical Engg. (Diagnosis and surgery),
- **Military surveillance and target identification,**
- Navigation and mobility *(for robots and unmanned vehicles - land, air and underwater),*
- **Remote sensing (using satellite imagery),**
- **GIS**
- Safety and security *(night vision),*
- Traffic monitoring,
- **Sports (training and incident analysis)**
- VLDB *(organization and retrieval)*
- Entertainment and virtual reality.
TARGETED INDUSTRIAL APPLICATIONS

Intelligent Traffic Control
Anti-forging Stamps
Card Counting Systems
Drive Quality Test
Camera Flame Detection
CCTV Fog Penetration
Key Image Search/Index
Security Monitoring
Robust Shadow Detection

Vehicle Segmentation
Visual Tracking Systems
Illegal content (adult) Filter
Scratch Detection
Smart Traffic Monitoring
Vehicle Categorization
Vehicle Wheel alignment
Number Plate Identification
Referrals for Line calls
Different categories of work being done in CV, to solve problems:

2-D image analysis – segmentation, target detection, matching, CBIR;

3-D multi-camera calibration;
Correspondence and stereo;
Reconstruction of 3-D Objects and surfaces;

Pattern Recognition for Objects, scenes;

Video and motion analysis;
Video analytics; CBVR;
Compression;

Feature extraction:
Canny, GHT, Snakes, DWT, Corners,
SIFT, GLOH, LESH;

Multi-sensor data,
Decision and feature fusion;

Image and Video-based Rendering;

Steganography and Watermarking;
The various sub-categories of technology in these related fields are:

- **image enhancement**,  
- **image restoration and filtering**,  
- **representation and description**,  
- **feature extraction**,  
- **image segmentation**,  
- **image matching**,  
- **color image processing**,  
- **image synthesis**,  
- **image representation**,  
- **image reconstruction**,  
- **range data processing**,  
- **stereo image processing**,  
- **computational geometry**,  
- **image morphology**,  
- **artificial neural networks**,  
- **Neuro-fuzzy techniques**,  
- **computational geometry**,  
- **parallel architectures & algorithms**.
What is CVPR?

http://cvpr2016.thecvf.com/

http://www.pamitc.org/cvpr16/index.php;
<table>
<thead>
<tr>
<th>Publication</th>
<th>h5-index</th>
<th>h5-median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature</td>
<td>377</td>
<td>529</td>
</tr>
<tr>
<td>The New England Journal of Medicine</td>
<td>328</td>
<td>520</td>
</tr>
<tr>
<td>Science</td>
<td>316</td>
<td>446</td>
</tr>
<tr>
<td>The Lancet</td>
<td>258</td>
<td>415</td>
</tr>
<tr>
<td>Cell</td>
<td>216</td>
<td>330</td>
</tr>
<tr>
<td>PLoS ONE</td>
<td>161</td>
<td>210</td>
</tr>
<tr>
<td>Physical Review D</td>
<td>138</td>
<td>178</td>
</tr>
<tr>
<td>Nature Immunology</td>
<td>129</td>
<td>218</td>
</tr>
<tr>
<td>Nature Reviews Molecular Cell Biology</td>
<td>129</td>
<td>216</td>
</tr>
<tr>
<td>The American Economic Review</td>
<td>129</td>
<td>196</td>
</tr>
<tr>
<td>Hepatology</td>
<td>129</td>
<td>181</td>
</tr>
<tr>
<td>IEEE Conference on Computer Vision and Pattern Recognition, CVPR</td>
<td>128</td>
<td>203</td>
</tr>
<tr>
<td>Immunity</td>
<td>128</td>
<td>177</td>
</tr>
<tr>
<td>Nature Reviews Immunology</td>
<td>127</td>
<td>214</td>
</tr>
<tr>
<td>Nature Methods</td>
<td>125</td>
<td>185</td>
</tr>
<tr>
<td>Nature Neuroscience</td>
<td>125</td>
<td>175</td>
</tr>
<tr>
<td>IEEE Transactions on Industrial Electronics</td>
<td>109</td>
<td>147</td>
</tr>
</tbody>
</table>
3D Computer Vision
Action Recognition
Biometrics
Big Data, Large Scale Methods
Computational Photography, Sensing, and Display
Convolutional Neural Networks and Deep Learning
Document Analysis
Face and Gesture
Kinect/3D
Low-level Vision, Image Processing
Medical, Biological and Cell Microscopy Image Analysis
Motion and Tracking

Optimization Methods
Performance Evaluation and Data Sets
Physics-based Vision and Shape From X
Recognition: Detection, Categorization, Indexing, Matching
Segmentation, Grouping, and Shape Representation
Statistical Methods and Learning
Video: Events, Activities, and Surveillance
Vision for Graphics
Vision for Robotics
Vision for Web
Few DEMOS and ILLUSTRATIONS

Courtesy: students of VPLAB - CSE-IITM
Results of Segmentation

Input Image

Segmented map before integration

Edge map before integration

Segmented map and Edge map after integration
Road extraction from Satellite Images

SAT Images

Results

Hand-drawn
Our proposed approach for segmentation of an object with a hole, using a combination of (i) Active Contour and (ii) GrabCut

Here, objective is to crop the soldier from the input image

Cropped image should not contain any part of the background
Object Extraction From an Image
Method 1

<table>
<thead>
<tr>
<th>Image</th>
<th>IT</th>
<th>FT</th>
<th>CA</th>
<th>GB</th>
<th>IS</th>
<th>RC</th>
<th>HFT</th>
<th>SF</th>
<th>Proposed</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.jpg" alt="Image" /></td>
<td><img src="saliency1.jpg" alt="Saliency" /></td>
<td><img src="saliency2.jpg" alt="Saliency" /></td>
<td><img src="saliency3.jpg" alt="Saliency" /></td>
<td><img src="saliency4.jpg" alt="Saliency" /></td>
<td><img src="saliency5.jpg" alt="Saliency" /></td>
<td><img src="saliency6.jpg" alt="Saliency" /></td>
<td><img src="saliency7.jpg" alt="Saliency" /></td>
<td><img src="saliency8.jpg" alt="Saliency" /></td>
<td><img src="gt1.jpg" alt="GT" /></td>
<td><img src="gt2.jpg" alt="GT" /></td>
</tr>
<tr>
<td><img src="image2.jpg" alt="Image" /></td>
<td><img src="saliency1.jpg" alt="Saliency" /></td>
<td><img src="saliency2.jpg" alt="Saliency" /></td>
<td><img src="saliency3.jpg" alt="Saliency" /></td>
<td><img src="saliency4.jpg" alt="Saliency" /></td>
<td><img src="saliency5.jpg" alt="Saliency" /></td>
<td><img src="saliency6.jpg" alt="Saliency" /></td>
<td><img src="saliency7.jpg" alt="Saliency" /></td>
<td><img src="saliency8.jpg" alt="Saliency" /></td>
<td><img src="gt1.jpg" alt="GT" /></td>
<td><img src="gt2.jpg" alt="GT" /></td>
</tr>
<tr>
<td><img src="image3.jpg" alt="Image" /></td>
<td><img src="saliency1.jpg" alt="Saliency" /></td>
<td><img src="saliency2.jpg" alt="Saliency" /></td>
<td><img src="saliency3.jpg" alt="Saliency" /></td>
<td><img src="saliency4.jpg" alt="Saliency" /></td>
<td><img src="saliency5.jpg" alt="Saliency" /></td>
<td><img src="saliency6.jpg" alt="Saliency" /></td>
<td><img src="saliency7.jpg" alt="Saliency" /></td>
<td><img src="saliency8.jpg" alt="Saliency" /></td>
<td><img src="gt1.jpg" alt="GT" /></td>
<td><img src="gt2.jpg" alt="GT" /></td>
</tr>
<tr>
<td><img src="image4.jpg" alt="Image" /></td>
<td><img src="saliency1.jpg" alt="Saliency" /></td>
<td><img src="saliency2.jpg" alt="Saliency" /></td>
<td><img src="saliency3.jpg" alt="Saliency" /></td>
<td><img src="saliency4.jpg" alt="Saliency" /></td>
<td><img src="saliency5.jpg" alt="Saliency" /></td>
<td><img src="saliency6.jpg" alt="Saliency" /></td>
<td><img src="saliency7.jpg" alt="Saliency" /></td>
<td><img src="saliency8.jpg" alt="Saliency" /></td>
<td><img src="gt1.jpg" alt="GT" /></td>
<td><img src="gt2.jpg" alt="GT" /></td>
</tr>
</tbody>
</table>

Images from MSRA B 5000 image Dataset


Salient Object Segmentation In Oct 24,
Visual Results on PASCAL

Method 2

Image SF PARAM MR wCrt Proposed GT
Object Detection or segmentation – involves object Detection and recognition modules
Results of top 20 image retrievals (arranged in row-major order) shown for visual comparative study, using: (a) query image from the PASCAL datasets; (b) MTH (2010); (c) MSD (2011), (d) SLAR (2012); (e) CDH (2013); and (f) our proposed RADAR framework. Erroneous results are highlighted using a red template.
Intermediate stages of Face Processing

SCface

VJFD

FR_SURV

Gallery

Probe

Landmark Localization

Detection of Face Parts

Gallery

Probe
Top 10 Retrievals for SCface

Query

Rank – ordered Retrieval Results

Erroneous retrievals are marked by red templates.
Top 10 Retrievals for FR_SURV

Query

Rank – ordered Retrieval Results

Erroneous retrievals are marked by red templates.
SIFT : Result

Object detection
The Problem Definition

Given a bitmap template (IMT) and a noisy bitmap image IMRN which contains IMT (believe me):
**FIND OUT** the location of IMT in IMRN!
Problem explanation for pessimists.

- IMRN (in previous page) is obtained by adding a large level of "Salt and Pepper" noise onto IMR bitmap image.
- IMT is also obtained from IMR as shown above.
The RESULT beats the human EYE
Classified Vector Quantization of Images

BHASKAR RAMAMURTHI
& Allen G.
Thank you