
Concepts in

Edge Detection

Dr. Sukhendu Das
Deptt. of Computer Science and Engg.,
Indian Institute of Technology, Madras

Chennai – 600036, India.

http://www.cs.iitm.ernet.in/~sdas
Email: sdas@iitm.ac.in

Edge Detection
Edge is a boundary between two homogeneous regions. The

gray level properties of the two regions on either side of an edge are
distinct and exhibit some local uniformity or homogeneity among
themselves.

An edge is typically extracted by computing the derivative of the
image intensity function. This consists of two parts:

• Magnitude of the derivative: measure of the strength/contrast of
the edge

• Direction of the derivative vector: edge orientation

Ideal Step edge in 1-D Step edge in 2-D

Computing the derivative: Finite difference in 1-D

22

2)()(2)(

2
)()()()(

dx
dxxfxfdxxf

xd
fd

dx
dxxfdxxf

dx
xfdxxf

dx
df

−+−+≈

−−+≈−+≈

x-dx x x+dx X

F(x)

Computing the derivative: Finite differences in 2-D

dy
dyyxfdyyxf

dy
yxfdyyxf

y
f

dx
dydxxfdydxxf

dx
yxfydxxf

x
f

2
),(),(),(),(

2
),(),(),(),(

−−+≈−+≈
∂
∂

−−+≈−+≈
∂
∂

Original Image Horizontal derivative Vertical derivative

Differentiation using convolution:

δf/δx = [-1 1]; δf/δy = [-1 1]T ;

δ2f/δx2 = [1 -2 1]; δ2f/δy2 = [1 -2 1]T ;

Need to use wider masks to add an element of smoothing and
better response. The traditional derivative operators used were:

Roberts

Prewitt

Sobel

















−















−
−
−

















−−−















−
−
−









−








−

121
000
121

,
101
202
101

111
000
111

,
101
101
101

10
01

,
01
10

Laplacian 














−

010
141
010

Most of these partial derivative operators are sensitive to noise.
Use of these masks resulted in thick edges or boundaries, in addition to
spurious edge pixels due to noise.

Laplacian mask is highly sensitive to spike noise. Use of noise
smoothing became mandatory before edge detection, specifically for
noisy images. But noise smoothing, typically by the use of a Gaussian
function, caused a blurring or smearing of the edge information or
gradient values.

Two components of the edge values computed are:

Gradient values: Gx = δf/δx; Gy = δf/δy.

The magnitude of the edge is calculated as:

|G| = [Gx
2 + Gy

2]1/2

and orientation as:

 θ = arctan(Gy/Gx)

Gx, Gy

Gaussian Function

2

2

2

2
1)(σ

σπ

x

exg
−

=

A Gaussian function is shown below. The width of the Gaussian
depends on the variance σ. The value of σ dictates the amount of
smoothing. The expression of the Gaussian function is given as:

Marr and Hildreth (1980) suggested the use of the “Laplacian of
the Gaussian” (LOG) operator to detect edges. This produced edges as
Zero-Crossings (ZC’s) in the output function - why??

However, it did not give any idea of the gradient magnitude or
orientation of the edges. But ZC’s were spread through-out an image. How
do one detect true edges from ZC’s??

LOG operator in 1-D

LOG operator in 2-D

First Derivative

Ideal
Step
Edge

Smoothed
Step
Edge

G:
Gaussian
Function

Images

Horizontal
Intensity
Profiles

First
Derivative

Second
Derivative

Original Gray
scale Image X-gradient Y-gradient Total Gradient

Magnitude
Bi level

Thresholding

Original Grey
level Image After Laplace Operator After Zero-crossing

δF δ2F

Edge Noisy
Edge

First Derivative Second Derivative

)
2

exp()
2

()(')(2

2

3 σσπ
yyygyc −−==

Canny in 1986 suggested an optimal operator, which uses the
Gaussian smoothing and the derivative function together. He proved that
the first derivative of the Gaussian function, as shown below, is a good
approximation to his optimal operator.

It combines both the derivative and smoothing properties in a nice
way to obtain good edges. Canny also talks of a hysteresis based
thresholding strategy for marking the edges from the gradient values.

Smoothing and derivative when applied separately, were not
producing good results under noisy conditions. This is because, one
opposes the other. Whereas, when combined together produces the
desired output.

Expression of Canny (1-D operator is):

Canny’s algorithm for edge detection:

Detect an edge, where simultaneously the following conditions
are satisfied:

∇2G*f = 0 and
∇G*f reaches a maximum.

∇G is the first derivative of the Gausian defined (in 1-D) as:

)
2

exp(
2

)(2
2

2

3
2 σσπ

xxxG −−=∇

and

∇ 2G in two-dimension is given by (also known as the
“Laplacian of the Gaussian” or LOG operator):

)
2

exp()12)(1()(2

2
22

4
2

σ
σπσ

rrrG −−=∇

G:
Gaussian
Function

δG

δ2G

2

2

2

2
1)(σ

σπ

x

exg
−

=

)
2

exp(
2

)(

2
2

2

3
2 σσπ

xx
xG

−−
=∇

()
)

2
exp(

2

]1[

)(

2
2

2

3
2

2

2

σσπ
σ xx

xG

−
−−

=∇

1. Detection:
The probability of detecting real edge points should be maximized while
the probability of falsely detecting non-edge points should be
minimized. This corresponds to maximizing the signal-to-noise ratio
(SNR).
(Detection of edge with low error rate, which means that the detection
should accurately catch as many edges shown in the image as possible).

2. Localization:
The detected edges should be as close as possible to the real edges.
(The edge point detected from the operator should accurately localize on
the center of the edge).

3. Number of responses:
Minimize the number of local maxima around the true edge;
One real edge should not result in more than one detected edge
(a given edge in the image should only be marked once, and where
possible, image noise should not create false edges).

Noisy
Edge, Sn

G:
Gaussian
Function

δG δG * Sn

δG

δ2G

δG * Sn

δ2G * Sn

Noisy
Edge, Sn

δG

δ2G

δG * Sn

δ2G * Sn

Lena

LOG

Sobel

Canny

Venice

LOG

Sobel

Canny

BIRD SOBEL

LOG Canny

Three criteria in the optimization function used by Canny, for
deriving the operator:
- Localization, Detection and minimal response (SNR-based).

The three stages of Canny’s algorithm:

- Apply Operator (often implemented as Smoothing then Derivative)

- Apply non-maximal suppression

- Apply hysteresis based (linking and) thresholding

Read about - DERICHE recursive filtering

Non-maximum suppression:
Select the single maximum point across the width of an edge.

Wide ridges around the
local maxima (large
values around the edges)

Th

Graphical Interpretation of non-maximal suppression

x x

NONMAX_SUPRESSION (Mag, Dir)

• Consider 4 directions Del+ = { (1, 0), (1, 1), (0, 1), (-1, 1)}
Del- = { (-1, 0), (-1, -1), (0, -1), (1, 1)}

• For each pixel (i, j) do:
1. Find the direction of gradient (normal to the edge)

d = (Dir(i, j)+π/8) mod π/4 <* or should be “div” ?? *>

2. If Mag(i,j) is smaller than at least one of its neigh. along d then
IN(i,j)=0, otherwise, IN(i,j)= Mag(i,j)
If Mag(i, j) < Mag((i, j) + Del+(d)) then IN(i, j)=0
Else If Mag(i, j) < Mag((i, j) + Del-(d)) then IN(i, j)=0
Else IN=Mag(i, j)

• The output is the thinned edge image IN

Example

original image (Lena)

Derivative of Gaussian filter ??
(say, Gaussian and LOG in 2-D given earlier)

x-direction y-direction

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel
• Threshold at minimum level
• Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each
orientation At q, we have a maximum

if the value is larger than
those at both p and at r.
Interpolate to get these
values.

Source: D. Forsyth

Check if pixel is local
maximum along gradient
direction.
Requires checking
interpolated pixels p and r

Predicting
the next
edge point

Assume the
marked point is
an edge point.
Then we construct
the tangent to the
edge curve (which
is normal to the
gradient at that
point) and use
this to predict the
next points (here
either r or s).

(Forsyth & Ponce)

Before Non-max Suppression

After non-max suppression

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-
python-computer-vision-b49c3a2d8123

NMS Results

Non-Max Suppression image (left) — Bi-level Thresholding
result (right): weak pixels in gray and strong ones in white.

Hysteresis thresholding
• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels

Hysteresis thresholding

• Check that maximum value of gradient
value is sufficiently large
– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Canny Edge Detection (Hysteresis)

courtesy of G. Loy

Original
image

Strong
edges
only

Strong +
connected

weak edges

Weak
edges

Final Canny Edges

Original Image, Presmoothed Image, Gradient Image, Non-maximum Suppressed Image, Final Result

Original Image, Presmoothed Image, Gradient Image, Non-maximum Suppressed Image, Final Result

http://www-scf.usc.edu/~boqinggo/Canny.htm

Effect of threshold

Thigh = 255 Tlow = 220

original

Thigh = 255 Tlow = 1

σ = 1 σ = 1

Effect of threshold and of σ (Gaussian kernel size)

Thigh = 120 Tlow = 1

original

Thigh = 120 Tlow = 1

σ = 1 σ = 2

The choice of depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features

Effect of Noise
On Canny Edge;

Thresh = 0.15;
sigma = 2;

Effect of Noise
On Canny Edge

Thresh = 0.25;
sigma = 3;

Thresh = 0.2;
sigma = 2.25;

Thresh = 0.31;
sigma = 3.8;

Thresh = 0.38;
sigma = 4.5;

Multi-scale Edge detection

• Our goal is to simultaneously extract edges of all lengths

• Edges are well localized across the scale-space

Problem definition

Input image Edge map generated by scale space
Combination

Edge map generated by single scale

5.0=σ

2=σ
1=σ

5.1=σ

2-D Canny
edge maps

LOG with increasing SIGMA

• Real-world objects are composed of different structures at
different scales

Motivation

• Connectivity of an object depends on the scale at which it is
observed

• In real-world images the edges may not be ideal

• Variation of the response over different scales is important

• A step edge is sensed at various points by cells of the
retinal array

Optimal Edge Detection in Two-Dimensional Images

NES: Normalized Edge Strength
NESS: Normalized Edge Strength of
sub-segment
LT: Low Threshold
HT: High threshold
MT: Medium Threshold

Compute the
gradient map of
Gaussian blurred
image

Assign the magnitude
of the gradient as edge
strength to all edge
pixels

Edge strength is
equalized (HEQ) to
full scale of intensity

Compute the normalized edge
strength (NES) for all edge
segments as sum of strengths of
all the edge points divided by
length of the segment

Compute the histogram
for the edge segment
strengths

Fit a Gaussian to the low intensity part of the
histogram and compute three threshold
(Low, medium and high) based on mean and
variance of Gaussian

NES >
MT

Salient edge
Map

yes

No yes

Compute edge
subsegments and
compute NESS for
each subsegment

NESS
>LT

NESS
> HT yes

SALIENCY
TEST

Histogram of the normalised edge strengths and
fitted Gaussian distribution

5.0=σ

5.1=σ

5.0=σ 2=σ1=σ

Salient Edge maps

5.1=σ

2-D Canny edge map

• The combination procedure checks if there are new salient edges
in the detection results from larger scales

Algorithm

1. Minmap, maxmap= edge map of smallest scale

2. Compare maxmap with second smallest scale edgemap

3. If an edge segment of minimum length from second smallest
scale does not appear in maxmap, add that particular
segment to minmap

4. Repeat step 2 and step 3 with various scales

5. Minmap is the final combined scale output

Combining different scales

Scale space combination
2-D Canny edge model

Scale space combination
of Qian & Huang

edge model

Lena
256x256

REFERENCES

“Digital Image Processing and Computer Vision”; Robert J. Schallkoff;
John Wiley and Sons; 1989+.

“Digital Image Processing”; R. C. Gonzalez and R. E. Woods; Addison
Wesley; 1992+.

Optimal Edge Detection in Two-Dimensional Images, Richard J. Qian and
Thomas S. Huang, IEEE TRANSACTIONS ON IMAGE PROCESSING,
VOL. 5, NO. 7, JULY 1996, 1215-1220.

A Two-Dimensional Edge Detection Scheme for General Visual Processing,
Qian, R.J. and Huang, T.S, ICPR-94, YEAR = "1994", "595-598".

R. Deriche, Using Canny's criteria to derive a recursively implemented
optimal edge detector, Int. J. Computer Vision, Vol. 1, pp. 167–187,
April 1987.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

R. Sirdey, A Gentle Introduction to the Deriche Optimal Edge Detector,
Éditions des Nik's news, 1998.

Read about:

- Hysteresis based Thresholding

- Non-maximal suppression

- Edge Linking & Thinning

- Edge preserving enhancement or super-resolution

- Contour Tracing

- Level set based or differential geometry based analysis

- Edge detection with sub-pixel accuracy

- Neuro-fuzzy models for optimal edge detection

- Phase Congruency model (Peter Kovesi) for edge detection

- Deriche model for optimal/recursive filtering

- Neural model for supervised edge detection

- Physics based processing
- Optimization based (MRF, HMM) edge detection, in presence of noise and blur

- Multi-channel edge detection

- Berkeley Edge Detection/segmentation

- Structured Forests

Few Modern / State-of-the-
Art Edge Detectors

• -Berkeley, Spatial Clustering;
• SCG
• ST
• SF

References
– Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect

natural image boundaries using brightness and texture." Advances in Neural
Information Processing Systems. 2002.

– Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect
natural image boundaries using local brightness, color, and texture cues." Pattern
Analysis and Machine Intelligence, IEEE Transactions (2004): 530-549.

– Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and
hierarchical image segmentation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(5), 898-916. (gPb+owt+ucm)

– Xiaofeng, Ren, and Liefeng Bo. "Discriminatively trained sparse code gradients for
contour detection." Advances in neural information processing systems. 2012.
(SCG)

– Lim, Joseph, C. Zitnick, and Piotr Dollár. "Sketch tokens: A learned mid-level
representation for contour and object detection." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2013 (Sketch Tokens)

– Dollár, Piotr, and C. Zitnick. "Structured forests for fast edge
detection."Proceedings of the IEEE International Conference on Computer Vision.
2013. (SE)

– Dollár, Piotr, and C. Lawrence Zitnick. "Fast edge detection using structured
forests." Pattern Analysis and Machine Intelligence, IEEE Transactions on; 37/8
(2015): 1558-1570.

Berkley Edge Detector - Key
Ideas (2002, 2004)

• Based on cues
– Brightness, Color and Texture

• Cues are Optimized and then Simple Linear
model for Cue combination is proposed

Results:

BG - Brightness
Gradient;

CG –
Color Gradient;

TG –
Texture Gradient

Images are from
BSDS500 Dataset

Improvement on the Previous
Method (gPb+owt+ucm) (2011)
• Contour Detector - Combines Local cues

into Globalization framework based on
Spectral Clustering

• Also, gives Hierarchical Segmentation
Output

Row 1 - Input Images from BSDS500 Dataset
Row 2 - global Probability of Boundary + Oriented Watershed Transform + Ultrametric
Contour Map (gPb+owt+ucm)
Row 3 - Hierarchical segmentation results

Results (gPb+owt+ucm):

Using Sparse Code Gradients
(NIPS 2012)

• Sparse Code Gradients (SCG) - measure
contrast using patch representations
automatically learned through sparse coding

• Steps:
– use K-SVD for dictionary learning and

Orthogonal Matching Pursuit for computing
sparse codes on oriented local neighborhoods

– apply multi-scale pooling and power transforms
– classify with linear SVMs

Steps:
Efficiency Over Previous Method
• preserve fine details
• higher precision on large-scale contours

Row 1 - Input Images from BSDS500 Dataset;

Row 2 - gPb+owt+ucm (from the previous method);

Row 3 - SCG output (this work)

Results (SCG) (BSDS Dataset)

Results (SCG) (NYUD Dataset with depth
maps)

Column 1 - Input Images from NYUD Dataset
Column 2 - Input Depth
Column 3 - SCG contour output with image only
Column 4 - SCG contour output with depth only
Column 5 - SCG contour output with color + depth

Using Sketch Tokens (CVPR
2013)

• Sketch tokens - set of token classes that
represent the wide variety of local edge
structures that may exist in an image

• Discovered from human-generated image
sketches

• Advantage - Captures even more fine
details compared to SCG

Col 1 - Input Images from BSDS500 Dataset; Col 2 - Ground Truth;
Col 3 - SCG output ; Col4 - Sketch Token output (this work)

Results (Sketch Token) (BSDS Dataset)

Structured Forest Approach
(SF) (ICCV 2013)

• Structured Learning - Edge Masks for the
patches in the image

• Random Forest - Capture the structured
information

• Outputs of the forests are aggregated across
the image to compute our final edge map

• Advantage - Orders of Magnitude Faster
than state-of-the-art approaches

Row 1 - Input Images from BSDS500 Dataset; Row 2 - Ground Truth
Row 3 - SCG output ; Row 4 - Structured Edges (SE) – (this work)

Results (SF) - (BSDS Dataset)

Results (SF - NYUD Dataset with depth)
maps)

Column 1 - Input Images from NYUD Dataset
Column 2 - Input Depth
Column 3 - Ground Truth
Column 4 - SCG contour output with image only
Column 5 - SCG contour output with depth only
Column 6 - SCG contour output with color + depth

Improved SF (PAMI 2015)

• Edges are Sharpened

Results
(BSDS
Dataset)

SCG - Sparse Code
Gradient

SF - Structured
Forest

MS - Multi Scale

SH - Sharpening

Results :
(NYUD
Dataset)

SF-D –
SF using Depth Only;

SF-RGB –
SF using Color Only;

SF-RGBD –
SF using Depth
and Color

References
– Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect

natural image boundaries using brightness and texture." Advances in Neural
Information Processing Systems. 2002.

– Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect
natural image boundaries using local brightness, color, and texture cues." Pattern
Analysis and Machine Intelligence, IEEE Transactions (2004): 530-549.

– Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and
hierarchical image segmentation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(5), 898-916. (gPb+owt+ucm)

– Xiaofeng, Ren, and Liefeng Bo. "Discriminatively trained sparse code gradients for
contour detection." Advances in neural information processing systems. 2012.
(SCG)

– Lim, Joseph, C. Zitnick, and Piotr Dollár. "Sketch tokens: A learned mid-level
representation for contour and object detection." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2013 (Sketch Tokens)

– Dollár, Piotr, and C. Zitnick. "Structured forests for fast edge
detection."Proceedings of the IEEE International Conference on Computer Vision.
2013. (SE)

– Dollár, Piotr, and C. Lawrence Zitnick. "Fast edge detection using structured
forests." Pattern Analysis and Machine Intelligence, IEEE Transactions on; 37/8
(2015): 1558-1570.

https://en.wikipedia.org/wiki/File:PST_edge_detector_saint_Paul.tif

OK;

Let’s get past the edge now.

