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Edge Detection
Edge is a boundary between two homogeneous regions. The 

gray level properties of the two regions on either side of an edge are 
distinct and exhibit some local uniformity or homogeneity among 
themselves.

An edge is typically extracted by computing the derivative of the 
image intensity function. This consists of two parts:

• Magnitude of the derivative: measure of the strength/contrast of 
the edge

• Direction of the derivative vector: edge orientation

Ideal Step edge in 1-D Step edge in 2-D



Computing the derivative: Finite difference in 1-D
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Computing the derivative: Finite differences in 2-D
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Differentiation using convolution:

δf/δx = [-1 1]; δf/δy = [-1 1]T ;

δ2f/δx2 = [1 -2 1]; δ2f/δy2 = [1 -2 1]T ;

Need to use wider masks to add an element of smoothing and 
better response. The traditional derivative operators used were:
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Most of these partial derivative operators are sensitive to noise. 
Use of these masks resulted in thick edges or boundaries, in addition to 
spurious edge pixels due to noise. 

Laplacian mask is highly sensitive to spike noise. Use of noise 
smoothing became mandatory before edge detection, specifically for 
noisy images. But noise smoothing, typically by the use of a Gaussian
function, caused a blurring or smearing of the edge information or 
gradient values.

Two components of the edge values computed are:

Gradient values: Gx = δf/δx; Gy = δf/δy.

The magnitude of the edge is calculated as:

|G| = [Gx
2 + Gy

2]1/2

and orientation as:
 
  θ = arctan(Gy/Gx)

Gx, Gy



Gaussian Function
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A Gaussian function is shown below. The width of the Gaussian 
depends on the variance σ. The value of σ dictates the amount of 
smoothing. The expression of the Gaussian function is given as:

Marr and Hildreth (1980) suggested the use of  the “Laplacian of 
the Gaussian” (LOG) operator to detect edges. This produced edges as 
Zero-Crossings (ZC’s) in the output function - why?? 

However, it did not give any idea of the gradient magnitude or 
orientation of the edges. But ZC’s were spread through-out an image. How 
do one detect true edges from ZC’s??



LOG operator in 1-D

LOG operator in 2-D





First Derivative
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Original Gray 
scale Image X-gradient Y-gradient Total Gradient 

Magnitude
Bi level 

Thresholding

Original Grey 
level Image After Laplace Operator After Zero-crossing
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Canny in 1986 suggested an optimal operator, which uses the 
Gaussian smoothing and the derivative function together. He proved that 
the first  derivative of the Gaussian function, as shown below, is a good 
approximation to his optimal operator. 

It combines both the derivative and smoothing properties in a nice 
way to obtain good edges. Canny also talks of a hysteresis based 
thresholding strategy for marking the edges from the gradient values.

Smoothing and derivative when applied separately, were not 
producing good results under noisy conditions. This is because, one 
opposes the other. Whereas, when combined together produces the 
desired output. 

Expression of Canny (1-D operator is):



Canny’s algorithm for edge detection:

Detect an edge, where simultaneously the following conditions 
are satisfied:

∇2G*f = 0 and  
∇G*f reaches a maximum.

∇G is the first derivative of the Gausian defined (in 1-D) as:
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∇ 2G in two-dimension is given by (also known as the
“Laplacian of the Gaussian” or LOG operator):
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G:
Gaussian 
Function
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1. Detection:
The probability of detecting real edge points should be maximized while 
the probability of falsely detecting non-edge points should be
minimized. This corresponds to maximizing the signal-to-noise ratio 
(SNR).
(Detection of edge with low error rate, which means that the detection 
should accurately catch as many edges shown in the image as possible).

2. Localization:
The detected edges should be as close as possible to the real edges.
(The edge point detected from the operator should accurately localize on
the center of the edge).

3. Number of responses:
Minimize the number of local maxima around the true edge;
One real edge should not result in more than one detected edge
(a given edge in the image should only be marked once, and where 
possible, image noise should not create false edges).





Noisy
Edge, Sn

G:
Gaussian 
Function

δG δG * Sn
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BIRD SOBEL

LOG Canny





Three criteria in the optimization function used by Canny, for 
deriving the operator:
- Localization, Detection and minimal response (SNR-based).

The three stages of Canny’s algorithm:

- Apply Operator (often implemented as Smoothing then Derivative)

- Apply non-maximal suppression

- Apply hysteresis based (linking and) thresholding

Read about  - DERICHE recursive filtering



Non-maximum suppression:
Select the single maximum point across the width of an edge.



Wide ridges around the 
local maxima (large 
values around the edges)

Th

Graphical Interpretation of non-maximal suppression

x x



NONMAX_SUPRESSION (Mag, Dir)

• Consider 4 directions Del+ = { (1, 0), (1, 1), (0, 1), (-1, 1)}
Del- = { (-1, 0), (-1, -1), (0, -1), (1, 1)}

• For each pixel (i, j) do:
1. Find the direction of gradient (normal to the edge)                   

d = (Dir(i, j)+π/8) mod π/4  <* or should be “div” ?? *>

2. If Mag(i,j) is smaller than at least one of its neigh. along d then
IN(i,j)=0, otherwise, IN(i,j)= Mag(i,j) 
If Mag(i, j) < Mag((i, j) + Del+(d)) then IN(i, j)=0
Else If Mag(i, j) < Mag((i, j) + Del-(d)) then IN(i, j)=0
Else IN=Mag(i, j)

• The output is the thinned edge image IN



Example

original image (Lena)



Derivative of Gaussian filter ??
(say, Gaussian and LOG in 2-D given earlier)

x-direction y-direction



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude



Get Orientation at Each Pixel
• Threshold at minimum level
• Get orientation

theta = atan2(gy, gx)



Non-maximum suppression for each 
orientation At q, we have a maximum 

if the value is larger than 
those at both p and at r. 
Interpolate to get these 
values.

Source: D. Forsyth

Check if pixel is local 
maximum along gradient 
direction.
Requires checking 
interpolated pixels p and r



Predicting
the next
edge point

Assume the 
marked point is 
an edge point.  
Then we construct 
the tangent to the 
edge curve (which 
is normal to the 
gradient at that 
point) and use 
this to predict the 
next points (here 
either r or s). 

(Forsyth & Ponce)





Before Non-max Suppression



After non-max suppression



https://towardsdatascience.com/canny-edge-detection-step-by-step-in-
python-computer-vision-b49c3a2d8123







NMS Results



Non-Max Suppression image (left) — Bi-level Thresholding  
result (right): weak pixels in gray and strong ones in white.





Hysteresis thresholding
• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels



Hysteresis thresholding

• Check that maximum value of gradient 
value is sufficiently large
– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.

Source: S. Seitz





Canny Edge Detection (Hysteresis)

courtesy of G. Loy

Original
image

Strong
edges
only

Strong +
connected

weak edges

Weak
edges





Final Canny Edges









Original Image, Presmoothed Image, Gradient Image, Non-maximum Suppressed Image, Final Result



Original Image, Presmoothed Image, Gradient Image, Non-maximum Suppressed Image, Final Result

http://www-scf.usc.edu/~boqinggo/Canny.htm





Effect of threshold

Thigh = 255 Tlow = 220 

original 

Thigh = 255  Tlow = 1 

σ = 1 σ = 1



Effect of threshold and of σ (Gaussian kernel size)

Thigh = 120 Tlow = 1 

original 

Thigh = 120  Tlow = 1 

σ = 1 σ = 2

The choice of     depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features







Effect of Noise
On Canny Edge;

Thresh = 0.15; 
sigma = 2;



Effect of Noise
On Canny Edge



Thresh = 0.25; 
sigma = 3;

Thresh = 0.2; 
sigma = 2.25;

Thresh = 0.31; 
sigma = 3.8;

Thresh = 0.38; 
sigma = 4.5;



Multi-scale Edge detection



• Our goal is to simultaneously extract edges of all lengths

• Edges are well localized across the scale-space

Problem definition

Input image Edge map generated by scale space 
Combination

Edge map generated by single scale



5.0=σ

2=σ
1=σ

5.1=σ

2-D Canny 
edge maps



LOG with increasing SIGMA



• Real-world objects are composed of different structures at 
different scales 

Motivation

• Connectivity of an object depends on the scale at which it is  
observed

• In real-world images the edges may not be ideal 

• Variation of the response over different scales is important

• A step edge is sensed at various points by cells of the 
retinal array



Optimal Edge Detection in Two-Dimensional Images



NES: Normalized Edge Strength
NESS: Normalized Edge Strength of 
sub-segment
LT: Low Threshold
HT: High threshold
MT: Medium Threshold

Compute the 
gradient map of 
Gaussian blurred 
image

Assign the magnitude 
of the gradient as edge 
strength to all edge 
pixels

Edge strength is 
equalized (HEQ) to 
full scale of intensity

Compute the normalized edge 
strength  (NES) for all edge 
segments as  sum of strengths of 
all the edge points divided by 
length of the segment

Compute the histogram 
for the edge segment 
strengths 

Fit a Gaussian to the low intensity part of the 
histogram  and compute  three threshold 
(Low, medium and high) based on mean and 
variance of Gaussian

NES  >     
MT

Salient edge 
Map

yes

No yes

Compute edge 
subsegments and 
compute NESS for 
each subsegment

NESS   
>LT

NESS  
> HT yes

SALIENCY 
TEST



Histogram of the normalised edge strengths and 
fitted Gaussian distribution

5.0=σ

5.1=σ



5.0=σ 2=σ1=σ

Salient Edge maps

5.1=σ

2-D Canny edge map



• The combination procedure checks if there are new salient edges 
in the detection results from larger scales

Algorithm

1. Minmap, maxmap= edge map of smallest scale

2. Compare maxmap with second smallest scale edgemap

3. If an edge segment of minimum length from second smallest 
scale does not appear in maxmap, add that particular 
segment to minmap

4. Repeat step 2 and step 3 with various scales

5. Minmap is the final combined scale output

Combining different scales



Scale space combination
2-D Canny edge model

Scale space combination
of Qian & Huang 

edge model

Lena
256x256
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Read about:

- Hysteresis based Thresholding

- Non-maximal suppression

- Edge Linking & Thinning

- Edge preserving enhancement or super-resolution

- Contour Tracing

- Level set based or differential geometry based analysis

- Edge detection with sub-pixel accuracy

- Neuro-fuzzy models for optimal edge detection

- Phase Congruency model (Peter Kovesi) for edge detection

- Deriche model for optimal/recursive filtering

- Neural model for supervised edge detection

- Physics based processing
- Optimization based (MRF, HMM) edge detection, in presence of noise and blur

- Multi-channel edge detection

- Berkeley Edge Detection/segmentation

- Structured Forests



Few Modern / State-of-the-
Art Edge Detectors

• -Berkeley, Spatial Clustering;
• SCG
• ST
• SF
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Berkley Edge Detector - Key 
Ideas (2002, 2004)

• Based on cues
– Brightness, Color and Texture

• Cues are Optimized and then Simple Linear
model for Cue combination is proposed



Results:

BG - Brightness 
Gradient;

CG –
Color Gradient;

TG –
Texture Gradient

Images are from 
BSDS500 Dataset



Improvement on the Previous 
Method (gPb+owt+ucm) (2011)
• Contour Detector - Combines Local cues

into Globalization framework based on
Spectral Clustering

• Also, gives Hierarchical Segmentation
Output



Row 1 - Input Images from BSDS500 Dataset
Row 2 - global Probability of Boundary + Oriented Watershed Transform + Ultrametric
Contour Map (gPb+owt+ucm)
Row 3 - Hierarchical segmentation results

Results (gPb+owt+ucm):



Using Sparse Code Gradients 
(NIPS 2012)

• Sparse Code Gradients (SCG) - measure
contrast using patch representations
automatically learned through sparse coding

• Steps:
– use K-SVD for dictionary learning and

Orthogonal Matching Pursuit for computing
sparse codes on oriented local neighborhoods

– apply multi-scale pooling and power transforms
– classify with linear SVMs



Steps:
Efficiency Over Previous Method
• preserve fine details 
• higher precision on large-scale contours



Row 1 - Input Images from BSDS500 Dataset;

Row 2 - gPb+owt+ucm (from the previous method);

Row 3 - SCG output (this work)

Results (SCG) (BSDS Dataset)



Results (SCG) (NYUD Dataset with depth 
maps)

Column 1 - Input Images from NYUD Dataset
Column 2 - Input Depth
Column 3 - SCG contour output with image only
Column 4 - SCG contour output with depth only
Column 5 - SCG contour output with color + depth



Using Sketch Tokens (CVPR 
2013)

• Sketch tokens - set of token classes that
represent the wide variety of local edge
structures that may exist in an image

• Discovered from human-generated image
sketches

• Advantage - Captures even more fine
details compared to SCG



Col 1 - Input Images from  BSDS500 Dataset;  Col 2 - Ground Truth;
Col 3 - SCG output ;   Col4 - Sketch Token output   (this work)

Results (Sketch Token) (BSDS Dataset)



Structured Forest Approach 
(SF) (ICCV 2013)

• Structured Learning - Edge Masks for the
patches in the image

• Random Forest - Capture the structured
information

• Outputs of the forests are aggregated across
the image to compute our final edge map

• Advantage - Orders of Magnitude Faster
than state-of-the-art approaches



Row 1 - Input Images from BSDS500 Dataset; Row 2 - Ground Truth
Row 3 - SCG output ; Row 4 - Structured Edges (SE) – (this  work)

Results (SF) - (BSDS Dataset)



Results (SF - NYUD Dataset with depth) 
maps)

Column 1 - Input Images from NYUD Dataset
Column 2 - Input Depth
Column 3 - Ground Truth
Column 4 - SCG contour output with image only
Column 5 - SCG contour output with depth only
Column 6 - SCG contour output with color + depth



Improved SF (PAMI 2015)

• Edges are Sharpened



Results 
(BSDS 
Dataset)

SCG - Sparse Code 
Gradient

SF - Structured 
Forest

MS - Multi Scale

SH - Sharpening 



Results : 
(NYUD 
Dataset)

SF-D –
SF using Depth Only; 

SF-RGB –
SF using Color Only;

SF-RGBD –
SF using Depth 
and Color 
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https://en.wikipedia.org/wiki/File:PST_edge_detector_saint_Paul.tif





OK;

Let’s get past the edge now.




