TEXTURE ANALYSIS

USING

GABOR FILTERS
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Texture Types

e Definition of Texture

e Texture types
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Texture Definition

Texture: the regular repetition of LR SREERTN)
an element or pattern on a surface. ot

e Purpose of texture analysis:

— To identify different textured and non-
textured regionsin an image.

— To classify/segment different textureregionsin
an image.

— To extract boundaries between major texture
regions.

— To describethe texel unit.
— 3-D shape from texture

Ref: [Forsyth2003, Raghu95]
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Flow-chart of atypical method of texture classification
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Processing of Texture-like Images
2-D Gabor Filter

f(x,Y,0,0,0,0) = Zizi'ay exp[_zl((; jget (%)2 ) + ja(xcosé + ysine)}

A typical Gaussian A typical Gabor filter with

IRt S=0 6=30, ©=3.14 and 6=45°




Gabor filterswith different combinations of
spatial width o, frequency ® and orientation 6.




2-D Gabor filter:

f(x,y,m,08,0x0y) = ; exp[ (( ) +(— ) )+ Jaw(Xcose + ysmé?)}
JTOX Oy

where

o) IS the spatial spread

® IS the frequency

0 IS the orientation

1-D Gabor filter: 1 LL o
f(X,w,0) = exp
\N2TTO

1-D Gaussian function:

g(Xx) = \/—G 0.5




Processing of Texture-like Images

1-D Gabor Filter

1-D Gaussian Filter 1 %2
2

f(X,w,0)= exp( + JwX)
il — x° % >
g(x) = exp : 2O 20
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Asymmetric 2-D Gaussian function




gab(x, y) =

gab(x, y) = K exp(—7(a° (X~ X;), +b*(Y = ¥5)5))

exp( ] (27F,(xcosw, + ySinw,) + P)

» K : Scales the magnitude of the
Gaussian envelop.
* (a, b) : Scalethe two axis of the
Gaussian envelop.

e O : (Rotation) angle of the Gaussian
envelop.

* (Xo Yo) - Location of the peak of the
Gaussian envelop.

* (Upy, V) - Spatial frequencies of the
sinusoidal carrier in Cartesian
coordinates. It can aso be expressed in
polar coordinates as (F,, ).

P : Phase of the sinusoidal carrier.

K exp(—ﬂ(az(X— Xo)z i bz(y_ yo)z) + J (27 (UgX+VyY) + P)




Asymmetrical Gaussian of 128x128 pixels. The parameters
are as follows:
Xo = Yo = 0; a =1/50 pixels; b = 1/40 pixels; 6 = -45 deg.

The real and imaginary parts of a complex Gabor
function in space domain, with

Fo =sqrt(2)/80 cycles/pixel, @,= 45 deg, P = 0 deg.
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Fourier transform
of the Gaussian

Fourier transform

of the GABOR ??

Green — Gaussian;




The freqguency response of a typical dyadic bank of Gabor filters.
One center-symmetric pair of lobes in the illustration
represents each filter.




Read more about —
In wavelets, OMFB
and Q-factor

elc.

Octave bands:

Center frequencies:

Octave bands,
due to Dvadic
decomposition

Filter bank
1
1/2
[3321 1/4 3/4
1/8 3/8 5/8 7/8
116 3/16 5/16 7116 9/16 | 11/16 | 13/16 | 15/16
v

..(.., 0.0625); (0.0625, 0.125); (0.125, 0.25); (0.25, 0.5); (0.5, 1)

....0.0938 (3/32); 0.1875 (3/16); 0.375 (3/8); 0.75 (37/4).




Some properties of Gabor filters:
e A tunable bandpass filter
e« Similar toa STFT or windowed Fourier transform

o Satisfiesthe lower-most bound of the time-spectrum resolution
(uncertainty principle)

e |t'sa multi-scale, multi-resolution filter

o Has selectivity for orientation, spectral bandwidth and spatial
extent.

« Hasresponse similar to that of the Human visual cortex (first
few layersof brain cells)
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« Computational cost often high, dueto the necessity of using a
lar ge bank of filters (or Gabor jet) in most applications
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Magnitude of the
Gabor Responses

Smoothed
Features
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Natural Textures
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Segmentation using Gabor based features
of a texture image containing five regions.




SIR-C/X-SAR image
of Lost City of Ubar

Classification using
multispectral information
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Classification using
multispectral and textural
information




o Filtering methods:
— Discrete Wavelet Transform (DWT) (Daubechies 8-Taps)
— Gabor Filter (Bank of 8 Gabor filters)
— Discrete Cosine Transform (DCT) (9 filters) Ref: [Ng 92]
— Gaussian Markov random field models Ref: [Cesmeli 2001]

— Combination of DWT and Gabor filter Ref: [Rao 2004]
— Combination of DWT and MRF Ref: [Wang 99]
* Non-linearity:
— Magnitude (| . |)
» Smoothing: . (_Zombi ne Edge and region map
— Gaussian filter UEITElElEERIN

e Feature vectors.

— Mean (computed in alocal window around a pixel)
o Classification:

— Fuzzy-C Means (FCM) (unsupervised classifier)
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GLCM based texture feature (statistical)

The Grey Level Co-occurrence Matrix, GLCM
(also called the Grey Tone Spatial Dependency Matrix)

The GLCM is a tabulation of how often different

combinations of pixel brightness values (grev levels) occur
IN an image.

The GLCM is usually defined for a series of ""'second
order' texture calculations.

Second order means they consider the relationship
between groups of two pixels in the original image.

First order texture measures are statistics calculated
from the original image values, like variance, and do not

consider pixel relationships. Third and higher order textures
(considering the relationships among three or more pixels)
are theoretically possible but not implemented due to

calculation time and interpretation difficulty.
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A small image
neighborhood

Spatial relationship
between two pixels:

NPV>

RPV

W IN kO

Nealghbor/Reference Pixel Value

GLCM texture considers the relation between two
pixels at a time, called the reference and the neighbour
pixel. Let, the neighbour pixel is chosen to be the one to the

east (right) of each reference pixel. This can also be
expressed as a (1,0) relation: (1, )) -= (1+1, J)

-y 3 /"

Each pixel within the window becomes the reference
pixel in turn, starting in the upper left corner and proceeding
to the lower right.
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Expressingthe GLCM

as a probability:

Thisisthe number of times
this outcome occurs, divided by the
total number of possible outcomes.

Thisprocessiscalled

nor malizing the matrix.

Normalization involvesdividing

by the sum of values.
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Symmetrical (1,0) GLCM
NPV >
RPV 3 4 3
0 4 2 1 O
1 2 4 O O
2 1 O 6 1
3 0, O 1 2
.166 .083 .042 0
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Find,

A small image
neighborhood

(1,0), South GLCM (solveit):
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Any reason for

Normalized symmetrical
vertical GLCM

Diagonal dominance ?
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